08.10.2021

Как найти коэффициент трения если известна скорость. Как найти силу трения


Измерение коэффициента трения скольжения необходимо провести двумя способами.

1-й способ заключается в измерении с помощью динамометра силы, с которой нужно тянуть брусок с грузами по горизонтальной поверхности, для того чтобы он двигался равномерно. Эта сила равна по абсолютной величине силе трения действующей на брусок. С помощью того же динамометра можно найти вес бруска о грузами Р. Этот вес равен силе нормального давления бруска на поверхность, по которой он скользит. Определив таким образом можно найти коэффициент трения. Он равен:

2-й способ измерения коэффициента трения позволяет определять на опыте не силы, а длины отрезков. Для этого используют равновесие бруска, который находится на наклонной плоскости.

Если брусок находится в равновесии на наклонной плоскости, то сила нормального давления бруска на плоскость равна составляющей силы тяжести, перпендикулярной наклонной плоскости (рис. 213). А сила трения по абсолютной величине равна составляющей силы тяжести, параллельной наклонной плоскости.

Опыт заключается в том, чтобы, увеличивая постепенно угол наклона плоскости, найти такой угол, при котором брусок только «тронется с места». При этом сила трения будет равна максимальной силе трения покоя:

где - сила давления бруска на плоскость Так как при этом т. е.

Нетрудно показать, что

Это следует из подобия треугольников Поэтому коэффициент трения равен:

Из этой формулы видно, что для того чтобы найти коэффициент трения, достаточно измерить высоту и основание наклонной плоскости, которыми определяется наклон плоскости, при котором начинается скольжение бруска.

Приборы и материалы: 1) линейка, 2) измерительная лента,

3) динамометр, 4) деревянный брусок, 5) набор грузов, 6) штатив с муфтами и лапкой.

Порядок выполнения работы

1. Положить брусок на горизонтально расположенную деревянную линейку. На брусок поставить груз.

2. Прикрепив к бруску динамометр, как можно более равномерно тянуть его вдоль линейки. Заметить при этом показание динамометра.

3. Взвесить брусок и груз.

4. По формуле найти коэффициент трения.

5. Повторить опыт, положив на брусок несколько грузов.

6. Найти среднее арифметическое значение коэффициентов трения, найденных в разных опытах.

7. Найти ошибку каждого из опытов - разность между и значениями полученными в разных опытах.

8. Определить среднее арифметическое ошибок опытов

9. Составить таблицу результатов опытов:

10. Записать результат измерений в виде

11. Положив линейку на брусок с грузами, медленно изменять ее наклон, поднимая ее конец, пока брусок не начнет скользить вдоль линейки.

Коэффициент трения — это основная характеристика трения как явления. Он определяется видом и состоянием поверхностей трущихся тел.

ОПРЕДЕЛЕНИЕ

Коэффициентом трения называют коэффициент пропорциональности, связывающий силу трения () и силу нормального давления (N) тела на опору. Чаще всего коэффициент трения обозначают буквой . И так, коэффициент трения входит в закон Кулона — Амонтона:

Данный коэффициент трения не зависит от площадей, соприкасающихся поверхностей.

В данном случае речь идет о коэффициенте трения скольжения, который зависит от совокупных свойств трущихся поверхностей и является безразмерной величиной. Коэффициент трения зависит от: качества обработки поверхностей, трущихся тел, присутствия на них грязи, скорости движения тел друг относительно друга и т.д. Коэффициент трения определяют эмпирически (опытным путем).

Коэффициент трения, который соответствует максимальной силе трения покоя в большинстве случаев больше, чем коэффициент трения движения.

Для большего числа пар материалов величина коэффициента трения не больше единицы и лежит в пределах

Угол трения

Иногда вместо коэффициента трения применяют угол трения (), который связан с коэффициентом соотношением:

Так, угол трения соответствует минимальному углу наклона плоскости по отношению к горизонту, при котором тело, лежащее на этой плоскости, начнет скользить вниз под воздействием силы тяжести. При этом выполняется равенство:

Истинный коэффициент трения

Закон трения, который учитывает влияние сил притяжения между молекулами, трущихся поверхностей записываю следующим образом:

где — называют истинным коэффициентом трения, — добавочное давление, которое вызывается силами межмолекулярного притяжения, S — общая площадь непосредственного контакта трущихся тел.

Коэффициент трения качения

Коэффициент трения качения (k) можно определить как отношение момента силы трения качения () к силе с которой тело прижимается к опоре (N):

Отметим, что коэффициент трения качения обозначают чаще буквой . Этот коэффициент, в отличие от выше перечисленных коэффициентов трения, имеет размерность длины. То есть в системе СИ он измеряется в метрах.

Коэффициент трения качения много меньше, чем коэффициент трения скольжения.

Примеры решения задач

ПРИМЕР 1

Задание Веревка лежит частично на столе, часть ее свешивается со стола. Если треть длины веревки свесится со стола, то она начинает скользить. Каков коэффициент трения веревки о стол?
Решение Веревка скользит со стола под действием силы тяжести. Обозначим силу тяжести, которая действует на единицу длины веревки как . В таком случае в момент начала скольжения сила тяжести, которая действует на свешивающуюся часть веревки, равна:

До начала скольжения эта сила уравновешивается силой трения, которая действует на часть веревки, которая лежит на столе:

Так как силы уравновешиваются, то можно записать ():

Ответ

ПРИМЕР 2

Задание Каков коэффициент трения тела о плоскость (), если зависимость пути, которое оно проходит задано уравнением: где Плоскость составляет угол с горизонтом.
Решение Запишем второй закон Ньютона для сил, приложенных к движущемуся телу:

Сила трения – величина, с которой взаимодействуют две поверхности при движении. Она зависит от характеристики тел, направления движения. Благодаря трению скорость тела уменьшается, и вскоре оно останавливается.

Сила трения – направленная величина, независящая от площади опоры и предмета, так как при движении и увеличении площади повышается сила реакции опоры. Эта величина участвует в расчете силы трения. В итоге Fтр=N*m. Здесь N – реакция опоры, а m – коэффициент, который является постоянной величиной, если нет необходимости в очень точных расчетах. При помощи этой формулы можно вычислить силу трения скольжения, которую обязательно стоит учитывать при решении задач, связанных с движением. Если тело вращается на поверхности, то в формулу необходимо включить силу качения. Тогда трение можно найти по формуле Fтркач = f*N/r. Согласно формуле, при вращении тела имеет значение его радиус. Величина f – коэффициент, который можно найти, зная, из какого материала изготовлено тело и поверхность. Это коэффициент, который находится по таблице.

Существуют три силы трения:

  • покоя;
  • скольжения;
  • качения.
Трение покоя не позволяет двигаться предмету, к движению которого не прикладывается усилие. Соответственно гвозди, забитые в деревянную поверхность, не выпадают. Самое интересное, что человек ходит благодаря трению покоя, которое направлено в сторону движения, это является исключением из правил. В идеале при взаимодействии двух абсолютно гладких поверхностей не должно возникать силы трения. На самом деле невозможно, чтобы предмет находился в состоянии покоя или движения без сопротивления поверхностей. Во время движения в жидкости возникает вязкое сопротивление. В отличие от воздушной среды, тело в жидкости не может находиться в состоянии покоя. Оно под воздействием воды начинает движение, соответственно в жидкости не существует трения покоя. Во время перемещения в воде сопротивление движению возникает благодаря разной скорости потоков, окружающих тело. Чтобы снизить сопротивление при перемещении в жидкостях, телу придают обтекаемую форму. В природе для преодоления сопротивления в воде на теле рыб имеется смазка, снижающая трение при движении. Помните, при движении одного тела в жидкостях возникает разное значение сопротивления.


Чтобы снизить сопротивление перемещению предметов в воздухе, телам придают обтекаемую форму. Именно поэтому самолеты изготавливают из гладкой стали с округлым корпусом, зауженным спереди. На трение в жидкости влияет ее температура. Для того чтобы автомобиль во время мороза нормально ездил, его необходимо предварительно разогреть. В результате этого вязкость масла уменьшается, что снижает сопротивление и уменьшает износ деталей. Во время перемещения в жидкости сопротивление может увеличиваться из-за возникновения турбулентных потоков. В таком случае направление движения становится хаотичным. Тогда формула приобретает вид: F=v2*k. Здесь v – скорость, а k – коэффициент, зависящий от свойств тела и жидкости.


Зная физические свойства тел и сопутствующие силы, воздействующие на предмет, вам легко удастся рассчитать силу трения.

Скольжения: Fтр = мN, где м – коэффициент трения скольжения, N – сила реакции опоры, Н. Для тела, скользящего по горизонтальной плоскости, N = G = mg, где G - вес тела, Н; m – масса тела, кг; g – ускорение свободного падения, м/с2. Значения безразмерного коэффициента м для данной пары материалов даны в справочной . Зная массу тела и пару материалов. скользящих друг относительно друга, найдите силу трения.

Случай 2. Рассмотрите тело, скользящее по горизонтальной поверхности и двигающееся равноускоренно. На него действуют четыре силы: сила, приводящее тело в движение, сила тяжести, сила реакции опоры, сила трения скольжения. Так как поверхность горизонтальная, сила реакции опоры и сила тяжести направлены вдоль одной прямой и уравновешивают друг друга. Перемещение описывает уравнение: Fдв - Fтр = ma; где Fдв – модуль силы, приводящей тело в движение, Н; Fтр – модуль силы трения, Н; m – масса тела, кг; a – ускорение, м/с2. Зная значения массы, ускорения тела и силы, воздействующей на него, найдите силу трения. Если эти значения не заданы прямо, посмотрите, есть ли в условии данные, из которых можно найти эти величины.

Пример задачи 1: на брусок массой 5 кг, лежащий на поверхности, воздействуют силой 10 Н. В результате брусок двигается равноускоренно и проходит 10 за 10 . Найдите силу трения скольжения.

Уравнение для движения бруска:Fдв - Fтр = ma. Путь тела для равноускоренного движения задается равенством: S = 1/2at^2. Отсюда вы можете определить ускорение: a = 2S/t^2. Подставьте данные условия: а = 2*10/10^2 = 0,2 м/с2. Теперь найдите равнодействующую двух сил: ma = 5*0,2 = 1 Н. Вычислите силу трения: Fтр = 10-1 = 9 Н.

Случай 3. Если тело на горизонтальной поверхности находится в состоянии покоя, либо двигается равномерно, по второму закону Ньютона силы находятся в равновесии: Fтр = Fдв.

Пример задачи 2: бруску массой 1 кг, находящемуся на ровной поверхности, сообщили , в результате которого он проехал 10 метров за 5 секунд и остановилось. Определите силу трения скольжения.

Как и в первом примере, на скольжение бруска влияют сила движения и сила трения. В результате этого воздействия тело останавливается, т.е. приходит равновесие. Уравнение движения бруска: Fтр = Fдв. Или: N*м = ma. Брусок скользит равноускоренно. Рассчитайте его ускорение подобно задаче 1: a = 2S/t^2. Подставьте значения величин из условия: а = 2*10/5^2 = 0,8 м/с2. Теперь найдите силу трения: Fтр = ma = 0,8*1 = 0,8 Н.

Случай 4. На тело, самопроизвольно скользящее по наклонной плоскости, действуют три силы: сила тяжести (G), сила реакции опоры (N) и сила трения (Fтр). Сила тяжести может быть записана в таком виде: G = mg, Н, где m – масса тела, кг; g – ускорение свободного падения, м/с2. Поскольку эти силы направлены не вдоль одной прямой, запишите уравнение движения в векторном виде.

Сложив по правилу параллелограмма силы N и mg, вы получите результирующую силу F’. Из рисунка можно сделать выводы: N = mg*cosα; F’ = mg*sinα. Где α – угол наклона плоскости. Силу трения можно записать формулой: Fтр = м*N = м*mg*cosα. Уравнение для движения принимает вид: F’-Fтр = ma. Или: Fтр = mg*sinα-ma.

Случай 6. Тело двигается по наклонной поверхности равномерно. Значит, по второму закону Ньютона система находится в равновесии. Если скольжение самопроизвольное, движение тела подчиняется уравнению: mg*sinα = Fтр.

Если же к телу приложена дополнительная сила (F), препятствующая равноускоренному перемещению, выражение для движения имеет вид: mg*sinα–Fтр-F = 0. Отсюда найдите силу трения: Fтр = mg*sinα-F.

Научно-практическая конференция

Коэффициент трения и м етоды его расчета

Пенза 2010 г.

I глава. Теоретическая часть

1. Виды трения, коэффициент трения

II глава. Практическая часть

    Расчет трения покоя, скольжения, и качения

    Расчет коэффициента трения покоя

Список литературы

I глава. Теоретическая часть

1. Виды трения, коэффициент трения

С трением мы сталкиваемся на каждом шагу. Вернее было бы сказать, что без трения мы и шагу ступить не можем. Но несмотря на ту большую роль, которую играет трение в нашей жизни, до сих пор не создана достаточно полная картина возникновения трения. Это связано даже не с тем, что трение имеет сложную природу, а скорее с тем, что опыты с трением очень чувствительны к обработке поверхности и поэтому трудно воспроизводимы.

Существует внешнее и внутреннее трение (иначе называемое вязкостью ). Внешним называют такой вид трения, при котором в местах соприкосновения твердых тел возникают силы, затрудняющие взаимное перемещение тел и направленные по касательной к их поверхностям.

Внутренним трением (вязкостью) называется вид трения, состоящий в том, что при взаимном перемещении. слоев жидкости или газа между ними возникают касательные силы, препятствующие такому перемещению.

Внешнее трение подразделяют на трение покоя (статическое трение ) и кинематическое трение . Трение покоя возникает между неподвижными твердыми телами, когда какое-либо из них пытаются сдвинуть с места. Кинематическое трение существует между взаимно соприкасающимися движущимися твердыми телами. Кинематическое трение, в свою очередь, подразделяется на трение скольжения и трение качения .

В жизни человека силы трения играют важную роль. В одних случаях он их использует, а в других борется с ними. Силы трения имеют электромагнитную природу.

Если тело скользит по какой-либо поверхности, его движению препятствует сила трения скольжения.

Где N - сила реакции опоры, a μ - коэффициент трения скольжения. Коэффициент μ зависит от материала и качества обработки соприкасающихся поверхностей и не зависит от веса тела. Коэффициент трения определяется опытным путем.

Сила трения скольжения всегда направлена противоположно движению тела. При изменении направления скорости изменяется и направление силы трения.

Сила трения начинает действовать на тело, когда его пытаются сдвинуть с места. Если внешняя сила F меньше произведения μN, то тело не будет сдвигаться - началу движения, как принято говорить, мешает сила трения покоя . Тело начнет движение только тогда, когда внешняя сила F превысит максимальное значение, которое может иметь сила трения покоя

Трение покоя – сила трения, препятствующая возникновению движению одного тела по поверхности другого.

II глава. Практическая часть

1. Расчет трения покоя, скольжения и качения

Основываясь на вышесказанное, я, опытном путем, находил силу трения покоя, скольжения и качения. Для этого я использовал несколько пар тел, в результате взаимодействия которых будет возникать сила трения, и прибор для измерения силы – динамометр.

Вот следующие пары тел:

    деревянный брусок в виде прямоугольного параллепипеда определенной массы и лакированный деревянный стол.

    деревянный брусок в виде прямоугольного параллепипеда с меньшей чем первый массой и лакированный деревянный стол.

    деревянный брусок в виде цилиндра определенной массы и лакированный деревянный стол.

    деревянный брусок в виде цилиндра с меньшей чем первый массой и лакированный деревянный стол.

После того как были проведены опыты – можно было сделать следующий вывод –

Сила трения покоя, скольжения и качения определяется опытном путем.

Трение покоя:

Для 1) Fп=0.6 Н, 2) Fп=0.4 Н, 3) Fп=0.2 Н, 4) Fп=0.15 Н

Трение скольжение:

Для 1) Fс=0.52 Н, 2) Fс=0.33 Н, 3) Fс=0.15 Н, 4) Fс=0.11 Н

Трение качение:

Для 3) Fк=0.14 Н, 4) Fк=0.08 Н

Тем самым я определил опытным путем все три вида внешнего трения и получил что

Fп> Fс > Fк для одного и того же тела.

2. Расчет коэффициента трения покоя

Но в большей степени интересна не сила трения, а коэффициент трения. Как его вычислить и определить? И я нашел только два способа определения силы трения.

Первый способ: очень простой. Зная формулу и определив опытным путем и N, можно определить коэффициент трения покоя, скольжения и качения.

1) N  0,81 Н, 2) N  0,56 Н, 3) N  2,3 Н, 4) N  1,75

Коэффициент трения покоя:

    = 0,74; 2)  = 0,71; 3)  = 0,087; 4)  = 0,084;

Коэффициент трения скольжения:

    = 0,64; 2)  = 0,59; 3)  = 0,063; 4)  = 0,063

Коэффициент трения качения:

3)  = 0,06; 4)  = 0,055;

Сверяясь с табличными данными я подтвердил верность своих значений.

Но также очень интересен второй способ нахождения коэффициента трения.

Но этот способ хорошо определяет коэффициент трения покоя, а для вычисления коэффициента трения скольжения и качения возникают ряд затруднений.

Описание: Тело находится с другим телом в покое. Затем конец второго тела на котором лежит первое тело начинают поднимать до тех пор пока первое тело не сдвинется с места.

 = sin  /cos  =tg  =BC/AC

На основе второго способа мной были вычислены некоторое число коэффициентов трения покоя.

      Дерево по дереву:

АВ = 23,5 см; ВС = 13,5 см.

П = BC/AC = 13,5/23,5 = 0,57

2. Пенопласт по дереву:

АВ = 18,5 см; ВС = 21 см.

П = BC/AC = 21/18,5 = 1,1

3. Стекло по дереву:

АВ = 24,3 см; ВС = 11 см.

П = BC/AC = 11/24,3 = 0,45

4. Алюминий по дереву:

АВ = 25,3 см; ВС = 10,5 см.

П = BC/AC = 10,5/25,3 = 0,41

5. Сталь по дереву:

АВ = 24,6 см; ВС = 11,3 см.

П = BC/AC = 11,3/24,6 = 0,46

6. Орг. Стекло по дереву:

АВ = 25,1 см; ВС = 10,5 см.

П = BC/AC = 10,5/25,1 = 0,42

7. Графит по дереву:

АВ = 23 см; ВС = 14,4 см.

П = BC/AC = 14,4/23 = 0,63

8. Алюминий по картону:

АВ = 36,6 см; ВС = 17,5 см.

П = BC/AC = 17,5/36,6 = 0,48

9. Железо по пластмассе:

АВ = 27,1 см; ВС = 11,5 см.

П = BC/AC = 11,5/27,1 = 0,43

10. Орг. Стекло по пластику:

АВ = 26,4 см; ВС = 18,5 см.

П = BC/AC = 18,5/26,4 = 0,7

На основе своих расчетов и проведенных экспериментах я сделал вывод что  П >  C >  К , что неоспоримо соответствовало теоретической базе взятой из литературы. Результаты моих вычислений не вышли за рамки табличных данных, а даже дополнили их, в результате чего я расширил табличные значения коэффициентов трений различных материалов.

Литература

1. Крагельский И.В., Добычин М.Н., Комбалов В.С. Основы расчетов на трение и износ. М.: Машиностроение, 1977. 526 с.

      Фролов, К. В. (ред.): Современная трибология: Итоги и перспективы . Изд-во ЛКИ, 2008 г.

      Елькин В.И.“Необычные учебные материалы по физике”. “Физика в школе” библиотека журнала, №16, 2000.

      Мудрость тысячелетий. Энциклопедия. Москва, Олма – пресс, 2006.