20.06.2020

Калибровка температурных датчиков. Калибровка датчика температуры


Датчики температуры часто устанавливаются на объекты таким образом, что их демонтаж практически невозможен или вызывает большие трудности. В то же время необходимо иметь уверенность в точности их показаний. Для таких случаев разрабатываются методики контроля работоспособности датчиков в процессе их эксплуатации без демонтажа. Кроме того от периодической поверки иногда приходится отказываться по причине дороговизны самой поверки по сравнению со стоимостью датчика. В публикациях по этой теме и в проспектах фирм-производителей описаны несколько подходов в решению проблемы надежности датчиков температуры.

1) Проводится статистический анализ дрейфа характеристик датчиков конкретного типа при рабочих температурах, и устанавливается срок их эксплуатации, в течение которого точность находится в пределах заданных допусков с большой вероятностью. После истечения этого срока все датчики подлежат обязательной замене.

2) На объект устанавливается избыточное количество датчиков. Результат определяется либо по среднему арифметическому из их показаний либо разрабатывается более сложная схема анализа, включающая сравнение дрейфов датчиков и выявление датчиков, показывающих дрейф выше среднего. Распространенной моделью являются датчики с двумя и тремя чувствительными элементами в одном корпусе.

3) На объект устанавливаются датчики разных типов (например, термометры сопротивления и термопары). Это позволяет избежать ошибок, связанных с одинаковым влиянием температурных режимов и условий на датчики одного типа. В США был запатентован само-поверяемый термометр, совмещающий в себе свойства чувствительного элемента сопротивления и термопары.

4) Иногда каналы для размещения датчиков конструируются так, что предусматривается возможность ввода рядом с рабочим датчиком образцового термометра во время поверки и вывода его по окончании поверки. Методы бездемонтажной поверки важны на опасных объектах, таких, например, как активная зона реактора. К сожалению, никаких стандартов по методикам бездемонтажной проверки и контроля работоспособности датчиков нет. Однако, проблема очень часто затрагивается на международных семинарах и конференциях.

Одним из решений проблемы поверки термопар во время эксплуатации без демонтажа с объекта, является метод использования термопар с дополнительным каналом, в который устанавливается на время поверки эталонная термопара. Такую конструкцию термопары и методику ее поверки запатентовало в 2007 г. ООО «ПК «ТЕСЕЙ» (патент на изобретение 2299408). В качестве эталонного средства измерения используется тонкая кабельная термопара типа ТНН (нихросил-нисил) 3 разряда.

Термопара ТНН вводится в дополнительный канал основной термопары только на непродолжительное время - время поверки, поэтому образование термоэлектрической неоднородности в термоэлектродах маловероятно. Подробнее об этом методе можно прочитать в разделе «Публикации» .

Аналогичные конструкции термометров и термопар для бездемонтажной поверки в условиях АЭС с дополнительными каналами для эталонных датчиков производятся в ЗАО НПК «Эталон» (г. Волгодонск).

Следующий материал раздела мы нашли на конференции ТЕМПМЕКО 2010. Там был представлен интересный доклад от немецкой фирмы Electrotherm о термопарах со встроенной реперной точкой плавления металла, позволяющей делать точную периодическую поверку термопар. С разрешения фирмы публикуем краткую информацию об устройстве термопары. (Российские компании, изготавливающие аналогичные установки приглашаем прислать свой материал для публикации на сайте)

Термопара со встроенной реперной точкой

Термопара со встроенной реперной точкой (разработана и выпускается фирмой Electrotherm, Германия) сайт фирмы www.electrotherm.de

Главным элементом данной измерительной системы является термопара со встроенной ячейкой реперной точки и миниатюрным нагревательным элементом. Ячейка реперной точки содержит вещество высокой чистоты (чистый металл или эвтектический сплав). Когда температура среды медленно повышается до значения, превышающего температуру плавления металла, на кривой, отслеживающей сигнал термопары, наблюдается воспроизводимая «площадка» с постоянной ТЭДС, так называемая «площадка плавления». Во время этой площадки происходит фазовый переход, т.е. тепло, поступающее извне, идет на разрушение кристаллической решетки металла, рост температуры останавливается. Регистрируемое значение ТЭДС может использоваться для градуировки термопары при известной температуре фазового перехода. При снижении температуры можно наблюдать «площадку затвердевания».

Нагрев термопары для калибровки может быть также осуществлен без разогрева объекта, с помощью миниатюрного встроенного нагревателя.

В таблице приведены данные о реперных точках для градуировки термопар.

Каждая термопара со встроенной реперной точкой снабжена трансмиттером, сигнал с которого поступает на компьютер и обрабатывается с помощью специального программного обеспечения. Компьютер управляет всем циклом нагрева, калибровки и анализа данных. Он может соединяться сразу с 8 измерительными модулями и также связываться посредством сетевых карт с центральным управляющим компьютером.

Градуировка внешнего температурного датчика для измерения концентрации ионов в режиме автоматической термокомпенсации (типа ТД-1 , ТКА-4 и др. с сопротивлением чувствительного элемента не более 5 кОм) производится с целью подстройки чувствительности по температуре в автоматическом режиме по нескольким точкам (от 2 до 5). Градуировка должна проводится с помощью термостата, обеспечивающего поддержание заданной температуры с точностью не хуже 0,1 о С.

Подключите температурный датчик к разъему «датчик» или «Т/О 2 » измерительного преобразователя. Включите анализатор, войдите в режим “Доп.Режим” и нажмите кнопку “ВВОД” .

Кнопками и выберите опцию “ГрадТермометр” и нажмите кнопку “ВВОД” . Для входа в режим градуировки термометра необходимо ввести пароль. На дисплее появится надпись

ВВЕДИТЕ ПАРОЛЬ

Введите число

Необходимо ввести с клавиатуры число "314" и нажать кнопку "ВВОД" .

Введите количество точек градуировки. Для этого нажмите кнопку “N” .На дисплее появиться надпись:

Число точек

Кнопками и установите необходимое число калибровочных точек и нажмите кнопку “ВВОД” . При этом на дисплее появится окно со значением температуры раствора в верхней строке, условным калибровочным числом и номером точки калибровки в нижней строке, например:

25.00 0С

ххххх.ххх n1

Установите температуру воды в термостате в начале диапазона температурной компенсации, например (5  0,5) 0 С. Перейдитек первой точке градуировки. Для этого кнопкой выберите окно с обозначением номера точки градуировки в нижней строке n1 . Затем нажмите кнопку “Изм” . На дисплее появится меняющееся значение градуировочного

числа. После установления его постоянного значения нажмите кнопку “ВВОД” .После сообщения:

Ввод изменения?

ДА - ВВОД НЕТ - ОТМ

нажмите кнопку “ВВОД” . Затем нажмите кнопку “Числ” . Появится сообщение “Введите число” . Введите значение температуры, измеренное эталонным термометром и нажмите кнопку “ВВОД” .После сообщения

Ввод изменения?

ДА - ВВОД НЕТ - ОТМ

нажмите последовательно кнопки “ВВОД” .

Аналогично проведите градуировку остальных температурных точек, например при температурах (20  0,5) 0 С и (35  0,5) 0 С.

Таким образом будет автоматически произведена подстройка чувствительности прибора по температуре.

3.6. Указания по поверке

3.6.1. Поверке подлежат все вновь выпускаемые, выходящие из ремонта и находящиеся в эксплуатации анализаторы.

3.6.2. Периодическая поверка анализаторов должна проводиться не реже одного раза в год территориальными органами метрологической службы Госстандарта.

3.6.3. Поверка анализаторов осуществляется в соответствии с “Методикой поверки”

3.7. Требования к квалификации исполнителя

К выполнению измерений и обработке результатов допускаются лица с высшим или средним специальным образованием, прошедшие соответствующую подготовку, имеющие опыт работы в химической лаборатории и должны ежегодно проходить проверку знаний техники безопасности.

3.8. Меры безопасности

3.8.1. По требованиям безопасности прибор соответствует требованиям ГОСТ 26104, класс защиты III.

3.8.2. При проведении испытаний и измерений должны соблюдаться требования безопасности по ГОСТ 12.1.005, ГОСТ 12.3.019 .

3.8.3. При работе с анализаторами необходимо выполнять общие правила работы с электрическими установками до 1000В и требования, предусмотренные “Основными правилами безопасной работы в химической лаборатории”, М; Химия, 1979-205с.

4. РЕМОНТ

4.1. Условия по ремонту

Анализаторы являются сложным электронным прибором, поэтому к их ремонту допускается квалифицированный персонал предприятия-изготовителя или официальных представителей на условиях сервисного обслуживания. После ремонта обязательна проверка основных технических характеристик прибора в соответствии с “Методикой поверки”.

При ремонте анализаторов следует принимать меры безопасности в соответствии с действующими правилами эксплуатации электроустановок до 1000 В.

4.2. Возможные неисправности и способы их устранения

Перечень некоторых наиболее часто встречающихся или возможных неисправностей анализаторов, их признаки и способы устранения приведены в таблице 4.

Таблица 4.1

Наименование неисправности и внешнее проявление

Вероятные причины

Способы устранения

После включения анализатора отсутствует информация на индикаторе

1. Отсутствуют батарей питания или они полностью разряжены

2. Отсутствует напряжение в сети

3. Неисправен блок питания

4. Разряжен аккумулятор

1. Установите элементы питания или замените их

2. Подключите блок питания к исправной розетке

3. Замените блок питания

4. Зарядите аккумулятор, подключив блок питания

После включения анализатора на индикаторе появляется надпись “Смените батареи”

Разряжены батареи питания

Замените элементы питания

Другие неисправности устраняются изготовителем.

  • Установка, монтаж и подключение стационарных анализаторов.
  • Приложение №4: Калибровка датчика температуры.

    При выпуске из производства встроенный в амперометрический сенсор датчик температуры калибруется по методике, алгоритм выполнения которой записан в служебном меню анализатора. Прибегать к калибровке датчика температуры следует только при замене сенсора на новый. В этом случае подключите новый сенсор к измерительному устройству и включите анализатор. Для проведения калибровки датчика температуры Вам необходимо собрать установку показанную на рисунке. С помощью этой установки необходимо обеспечить три отметки шкалы температуры в диапазоне 5 -50 о С. Если в вашей лаборатории нет термостата, можно три отметки шкалы температуры обеспечить более простым способом. Для этого Вам необходим термос, стакан с дистиллированной водой комнатной температуры и пластиковый стакан со льдом. В термос налейте дистиллированную воду подогретую до 50 +5 о С. В стакане со льдом выполните отверстие диаметром 10 мм. Для увеличения диаметра этого отверстия до 16 мм залейте в него теплой воды. Через 5-10 минут вода в лунке будет иметь температуру таяния льда ~ 0 о С.

    Для проведения калибровки датчика температуры необходимо перейти в служебное меню калибровок. Для этого войдите в меню Калибровок и, удерживая клавишу «ВНИЗ», нажать клавишу «ВВОД». В появившемся служебном меню, выберите опцию «ТЕМПЕРАТУРЫ», нажмите «ВВОД».

    В открывшемся окне выберите опцию «Нижней точки» и нажмите «ВВОД».

    Погрузите сенсор и образцовый термометр в термостатируемый стакан с температурой нижней отметки шкалы: 5+1 о С или в лунку в стакане со льдом.


    В открывшемся окне введите температуру нижней точки с помощью клавиш перемещения курсора и нажмите «ВВОД».

    После сообщения об успешной калибровке нижней точки на экране вновь появится меню калибровки датчика температуры. Выберите опцию «Верхней точки» и нажмите «ВВОД».

    Погрузите сенсор и образцовый термометр в термостатируемый стакан или термос с температурой верхней отметки шкалы и, дождавшись установления показаний термометра, нажмите «ВВОД».

    Считайте показание образцового термометра и с помощью клавиш перемещения курсора введите это значение.

    сообщения об успешной калибровке верхней точки на экране вновь появится меню калибровки датчика температуры. Выберите опцию «Поправка Т» и нажмите «ВВОД».


    Выполните инструкцию показанную на дисплее анализатора и нажмите «ВВОД».

    Дождитесь установления показаний термометра и нажмите «ВВОД».

    Считайте показание температуры с образцового термометра и введите это значение с клавиатуры. Нажмите «ВВОД».

    Калибратор может быть использован в качестве как сухоблочного, так и жидкостного термостата. В калибраторе для охлаждения термостата до -100°С используется уникальная технология теплового насоса Стирлинга с газовым теплоносителем (FPSC). Внешний вид рабочего места представлен на рисунке 4.

    Рисунок 4 - Внешний вид рабочего места

    Термостат калибратора имеет две зоны с раздельным регулированием. Регулятор нижней зоны поддерживает заданное значение температуры, а верхней - "нулевую" разность температуры относительно нижней зоны. Такой метод обеспечивает высокую однородность температуры в рабочей зоне и низкую погрешность ее задания.

    Калибратор снабжен схемой измерения сигнала внешнего эталонного термометра сопротивления. Такой термометр устанавливается рядом с поверяемым датчиком и подключается к специальному разъему калибратора. Это существенно упрощает калибровку методом сличения, который обладает значительно меньшей погрешностью.

    Калибратор снабжен схемой DLC - динамической компенсации влияния потерь тепла через поверяемые датчики. Термометр DLC устанавливается рядом с поверяемым датчиком, измеряет перепад температуры в рабочей зоне вставной трубки и управляет регулятором верхней зоны термостата. Это обеспечивает высокую однородность распределения температуры в рабочей зоне до 60 мм от дна трубки вне зависимости от количества и/или диаметра вставленных датчиков.

    Калибратор позволяет измерять сигналы поверяемых термопар и термометров сопротивления (мВ, Ом, В, мА) по ГОСТ, IEC и DIN.

    Уникальные особенности:

    Самая низкая граница отрицательной температуры -100°С;

    Чрезвычайно высокая стабильность;

    Высокая однородность температуры в рабочей зоне до 60 мм от дна вставной трубки;

    Низкая погрешность;

    Не имеющая аналогов схема динамической компенсации влияния загрузки термостата;

    Быстрый нагрев, охлаждение;

    Полная компенсация влияния бросков и нестабильности сетевого питания;

    Встроенные средства измерения выходных сигналов различных датчиков температуры;

    Встроенная схема измерения сигнала внешнего эталонного интеллектуального термометра сопротивления, в памяти которого сохранены коэффициенты индивидуальной калибровки;

    Сохранение результатов калибровки/поверки во внутренней памяти калибратора;

    Дружественный русифицированный интерфейс пользователя на основе меню;

    Полная автоматизация поверки/калибровки датчиков температуры как в автономном режиме, так и при работе с ПК под управлением ПО, в том числе, поверка одновременно нескольких датчиков с использованием коммутаторов ASM-R.

    Кроме обеспечения задания уставок по температуре калибратор автоматически реализует поверку/калибровку в ступенчатом режиме изменения температуры, а также (в исполнении В) калибровку термореле.

    Русифицированное ПО позволяет:

    Поверить в автоматическом режиме датчики температуры или загрузить в калибратор задания на поверку/калибровку и, после ее выполнения в автономном режиме, перенести результаты поверки в ПК.

    Рекалибровать калибратор по температуре и электрическим сигналам.

    ПО обеспечивает доступ к управлению всеми функциями калибраторов и, крометого, позволяет загрузить в калибратор множественные задания на калибровку и после их выполнения в автономном или автоматическом режимах перенести результаты в персональный компьютер для обработки и хранения.

    С помощью ПО можно производить подстройку внутреннего («READ») термометра калибраторов, а также каналов измерений электрических величин, в том числе и канала внешнего («TRUE») термометра. Данное программное обеспечение позволяет загрузить в калибратор градуировочную характеристику для внешнего термопреобразователя сопротивления повышенной точности.

    Структура ПО:

    Поддержка поверяемых/калибруемых СИ температуры;

    Конфигурирование схемы поверки/калибровки СИ температуры;

    Планировщик поверки/калибровки СИ температуры;

    Поверка/калибровка СИ температуры с помощью ПК.

    Разъемы для подключения к компьютеру, а также для подключения внешних устройств представлены на рисунке 5.

    Рисунок 5 - Цифровые разъёмы.

    Встроенный датчик температуры в большинстве современных жёстких дисков может показывать неверные результаты. Разница между измеренной и фактической температурой может быть в 7-9 градусов Цельсия, а в некоторых случаях даже ещё больше.

    Чтобы решить эту проблему, рекомендуется измерить фактическую температуру жёсткого диска с помощью внешнего инфракрасного термометра или лицевой панели с датчиком температуры. А затем установить разницу между измеренным значением и температурой, которую отображает Hard Disk Sentinel (по сообщению самого диска), как температурное смещение. Это называется калибровкой.

    После измерения реальной температуры (термометром или другим внешним датчиком) смещение можно рассчитать путём вычитания значения, указанного программой из измеренного значения. Смещение может быть положительным (программа показывает меньшую температуру, чем реальная) или отрицательным (в противном случае).

    Это смещение можно указать на вкладке S.M.A.R.T. жёсткого диска, выбрав атрибут № 194 (температура жёсткого диска) и используя кнопки + / – (нажав на число между этими знаками, можно непосредственно ввести значение смещения по Цельсию ).

    Hard Disk Sentinel автоматически увеличивает (или уменьшает) все сообщённые значения температуры жёсткого диска согласно настроенным смещениям. Таким образом, правильная (реальная) температура будет отображаться в любом случае (например, при сравнении температуры жёсткого диска с пороговым значением, при сохранении отчётов и т.д.)

    Примечание: если калибровка невозможна (компьютерный блок нельзя открывать), предполагаемое значение смещения можно определить, сравнивая первое отображённое значение температуры сразу после запуска компьютера со значением температуры окружающей среды (комната, офис). В это время центральный процессор, видеокарта или другие компоненты не слишком горячие и не влияют на значение температуры жёсткого диска. Конечно, это справедливо только если компьютеру было предоставлено достаточно времени, чтобы остыть до температуры окружающей среды (не включался около 8 часов).

    Например, если температура жёсткого диска равна 17 градусов по Цельсию (сразу после запуска компьютера), а температура в помещении 22 градуса, то эта разница (5) может быть настроена как значение смещения (потому что жёсткий диск не может быть прохладнее, чем окружающая температура) . Это смещение лучше, чем ничего, но всё же внешний термометр необходим для определения надлежащего смещения температурного значения.

    Примечание : температурное смещение должно определяться по Цельсию , независимо от выбранной единицы измерения температуры (по Цельсию или по Фаренгейту).

    Примечание: незарегистрированная версия программы автоматически сбрасывает все значения смещения на 0, если пользователь перезагрузил Hard Disk Sentinel.