20.09.2019

Методы имитационного моделирования экономических процессов. Имитационное моделирование экономических процессов: характеристика и основные виды


Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Университет международного бизнеса.

На тему: Имитационное моделирование в экономике

Выполнил студент гр. Экономика

Тажибаев Ермек

Алматы 2009

План

Введение

1. Определение понятия «имитационное моделирование»

2. Имитационное моделирование воспроизводственных процессов в нефтегазовой промышленности

3. Метод Монте-Карло как разновидность имитационного моделирования

4. Пример. Оценка геологических запасов

Заключение

Введение

В исследовании операций широко применяются как аналитические, так и статистические модели. Каждый из этих типов имеет свои преимущества и недостатки. Аналитические модели более грубы, учитывают меньшее число факторов, всегда требуют каких-то допущений и упрощений. Зато результаты расчета по ним легче обозримы, отчетливее отражают присущие явлению основные закономерности. А, главное, аналитические модели больше приспособлены для поиска оптимальных решений. Статистические модели, по сравнению, с аналитическими, более точны и подробны, не требуют столь грубых допущений, позволяют учесть большое (в теории - неограниченно большое) число факторов. Но и у них - свои недостатки: громоздкость, плохая обозримость, большой расход машинного времени, а главное, крайняя трудность поиска оптимальных решений, которые приходятся искать «на ощупь», путем догадок и проб.

Наилучшие работы в области исследования операций основаны на совместном применении аналитических и статистических моделей. Аналитическая модель дает возможность в общих чертах разобраться в явлении, наметить как бы контур основных закономерностей. Любые уточнения могут быть получены с помощью статистических моделей.

Имитационное моделирование применяется к процессам, в ход которых может время от времени вмешиваться человеческая воля. Человек, руководящий операцией, может в зависимости от сложившейся обстановки, принимать те или другие решения, подобно тому, как шахматист, глядя на доску, выбирает свой очередной ход. Затем приводится в действие математическая модель, которая показывает, какое ожидается изменение обстановки в ответ на это решение и к каким последствиям оно приведет спустя некоторое время. Следующее «текущее решение» принимается уже с учетом реальной новой обстановки и т.д. В результате многократного повторения такой процедуры руководитель как бы «набирает опыт», учится на своих и чужих ошибках и постепенно выучивается принимать правильные решения - если не оптимальные, то почти оптимальные.

1. Определение понятия «имитационное моделирование»

В современной литературе не существует единой точки зрения по вопросу о том, что понимать под имитационным моделированием. Так существуют различные трактовки:

В первой - под имитационной моделью понимается математическая модель в классическом смысле;

Во второй - этот термин сохраняется лишь за теми моделями, в которых тем или иным способом разыгрываются (имитируются) случайные воздействия;

В третьей - предполагают, что имитационная модель отличается от обычной математической более детальным описанием, но критерий, по которому можно сказать, когда кончается математическая модель и начинается имитационная, не вводится;

Имитационное моделированием применяется к процессам, в ход которых может время от времени вмешиваться человеческая воля. Человек, руководящий операцией, может в зависимости от сложившейся обстановки, принимать те или иные решения, подобно тому, как шахматист глядя на доску, выбирает свой очередной ход. Затем приводится в действие математическая модель, которая показывает, какое ожидается изменение обстановки, в ответ на это решение и к каким последствиям оно приведет спустя некоторое время. Следующее текущее решение принимается уже с учетом реальной новой обстановки и т. д. В результате многократного повторения такой процедуры руководитель как бы «набирает опыт», учится на своих и чужих ошибках и постепенно выучиваться принимать правильные решения - если не оптимальные, то почти оптимальные.

Попробуем проиллюстрировать процесс имитационного моделирования через сравнение с классической математической моделью.

Этапы процесса построения математической модели сложной системы:

1. Формулируются основные вопросы о поведении системы, ответы на которые мы хотим получить с помощью модели.

2. Из множества законов, управляющих поведением системы, выбираются те, влияние которых существенно при поиске ответов на поставленные вопросы.

3. В пополнение к этим законам, если необходимо, для системы в целом или отдельных ее частей формулируются определенные гипотезы о функционировании.

Критерием адекватности модели служит практика.

Трудности при построении математической модели сложной системы:

Если модель содержит много связей между элементами, разнообразные нелинейные ограничения, большое число параметров и т. д.

Реальные системы зачастую подвержены влиянию случайных различных факторов, учет которых аналитическим путем представляет весьма большие трудности, зачастую непреодолимые при большом их числе;

Возможность сопоставления модели и оригинала при таком подходе имеется лишь в начале.

Эти трудности и обуславливают применение имитационного моделирования.

Оно реализуется по следующим этапам:

1. Как и ранее, формулируются основные вопросы о поведении сложной системы, ответы на которые мы хотим получить.

2. Осуществляется декомпозиция системы на более простые части-блоки.

3. Формулируются законы и «правдоподобные» гипотезы относительно поведения как системы в целом, так и отдельных ее частей.

4. В зависимости от поставленных перед исследователем вопросов вводится так называемое системное время, моделирующее ход времени в реальной системе.

5. Формализованным образом задаются необходимые феноменологические свойства системы и отдельных ее частей.

6. Случайным параметрам, фигурирующим в модели, сопоставляются некоторые их реализации, сохраняющиеся постоянными в течение одного или нескольких тактов системного времени. Далее отыскиваются новые реализации.

2. Имитационное моделирование воспроизводственных процессов в нефтегазовой промышленности

Современный этап развития нефтяной и газовой промышленности характеризуется усложнением связей и взаимодействия природных, экономических, организационных, экологических и прочих факторов производства как на уровне отдельных предприятий и нефтегазодобывающих районов, так и на общеотраслевом уровне. В нефтегазовой промышленности производство отличается длительными сроками, эшелонированием производственно - технологического процесса во времени (поиски и разведка, разработка и обустройство, добыча нефти, газа и конденсата), наличием лаговых смещений и запаздываний, динамичностью используемых ресурсов и другими факторами, значения многих из которых носят вероятностный характер.

Значения этих факторов систематически изменяются вследствие ввода в эксплуатацию новых месторождений, а также не подтверждения ожидаемых результатов по находящимся в разработке. Это вынуждает предприятия нефтегазовой промышленности периодически пересматривать планы воспроизводства основных фондов и перераспределять ресурсы с целью оптимизации результатов производственно - хозяйственной деятельности. При составлении планов существенную помощь лицам, готовящим проект хозяйственного решения, может оказать использование методов математического моделирования, в том числе имитационных. Суть этих методов заключается в многократном воспроизводстве вариантов плановых решений с последующим анализом и выбором наиболее рационального из них по установленной системе критериев. С помощью имитационной модели можно создать единую структурную схему, интегрирующую функциональные элементы управления (стратегическое, тактическое и оперативное планирование) по основным производственным процессам отрасли (поиски, разведка, разработка, добыча, транспорт, нефтегазопереработка).

3. Метод Монте-Карло как разновиднос ть имитационного моделирования

Датой рождения метода Монте-Карло принято считать 1949 г., когда появилась статья под названием «The Monte Carlo method». Создателями этого метода считают американских математиков Дж. Неймана и С. Улама. В СССР первые статьи о методе Монте-Карло были опубликованы в 1955--1956гг.

Любопытно, что теоретическая основа метода была известна давно. Более того, некоторые задачи статистики рассчитывались иногда с помощью случайных выборок, т. е. фактически методом Монте-Карло. Однако до появления электронных вычислительных машин (ЭВМ) этот метод не мог найти сколько-нибудь широкого применения, ибо моделировать случайные величины" вручную--очень трудоемкая работа. Таким образом, возникновение метода Монте-Карло как весьма универсального численного метода стало возможным только благодаря появлению ЭВМ.

Само название «Монте-Карло» происходит от города Монте-Карло в княжестве Монако, знаменитого своим игорным домом.

Идея метода чрезвычайно проста и состоит она в следующем. Вместо того, чтобы описывать процесс с помощью аналитического аппарата (дифференциальных или алгебраических уравнений), производится «розыгрыш» случайного явления с помощью специально организованной процедуры, включающей в себя случайность и дающей случайный результат. В действительности конкретное осуществление случайного процесса складывается каждый раз по-иному; так же и в результате статистического моделирования мы получаем каждый раз новую, отличную от других реализацию исследуемого процесса. Что она может нам дать? Сама по себе ничего, так же как, скажем, один случай излечения больного с помощью какого-либо лекарства. Другое дело, если таких реализаций получено много. Это множество реализаций можно использовать как некий искусственно полученный статистический материал, который может быть обработан обычными методами математической статистики. После такой обработки могут быть получены любые интересующие нас характеристики: вероятности событий, математические ожидания и дисперсии случайных величин и т. д. При моделировании случайных явлений методом Монте-Карло мы пользуемся самой случайностью как аппаратом исследования, заставляем ее «работать на нас».

Нередко такой прием оказывается проще, чем попытки построить аналитическую модель. Для сложных операций, в которых участвует большое число элементов (машин, людей, организаций, подсобных средств), в которых случайные факторы сложно переплетены, где процесс -- явно немарковскпй, метод статистического моделирования, как правило, оказывается проще аналитического (а нередко бывает и единственно возможным).

В сущности, методом Монте-Карло может быть решена любая вероятностная задача, но оправданным он становится только тогда, когда процедура розыгрыша проще, а не сложнее аналитического расчета. Приведем пример, когда метод Монте-Карло возможен, но крайне неразумен. Пусть, например, по какой-то цели производится три независимых выстрела, из которых каждый попадает в цель с вероятностью 1/2. Требуется найти вероятность хотя бы одного попадания. Элементарный расчет дает нам вероятность хотя бы одного попадания равной 1 -- (1/2)3 = 7/8. Ту же задачу можно решить и «розыгрышем», статистическим моделированием. Вместо «трех выстрелов» будем бросать «три монеты», считая, скажем, герб--за попадание, решку -- за «промах». Опытсчитается«удачным», если хотя бы на одной из монетвыпадет герб. Произведем очень-очень много опытов, подсчитаем общее количество «удач» и разделим на число N произведенных опытов. Таким образом, мы получим частоту события, а она при большом числе опытов близка к вероятности. Ну, что же? Применить такой прием мог бы разве человек, вовсе не знающий теории вероятностей, тем не менее, в принципе, он возможен.

Метод Монте-Карло- это численный метод решения математических задач при помощи моделирования случайных величин.

Рассмотрим простой пример иллюстрирующий метод.

Пример 1. Предположим, что нам нужно вычислить площадь плоской фигуры S. Это может быть произвольная фигура с криволинейной границей, заданная графически или аналитически, связная или состоящая из нескольких кусков. Пусть это будет фигура изображенная на рис. 1, и предположим, что она вся расположена внутри единичного квадрата.

Выберем внутри квадрата N случайных точек. Обозначим через F число точек, попавших при этом внутрь S. Геометрически очевидно, что площадь S приближенно равна отношению F/N. Чем больше N, тем больше точность этой оценки.

Две особенности метода Монте-Карло.

Первая особенность метода - простая структура вычислительного алгоритма.

Вторая особенность метода - погрешность вычислений, как правило, пропорциональна D/N2, где D - некоторая постоянная, N - число испытаний. Отсюда видно, что для того, чтобы уменьшить погрешность в 10 раз (иначе говоря, чтобы получить в ответе еще один верный десятичный знак), нужно увеличить N (т. е. объем работы) в 100 раз.

Ясно, что добиться высокой точности таким путем невозможно. Поэтому обычно говорят, что метод Монте-Карло особенно эффективен при решении тех задач, в которых результат нужен с небольшой точностью (5-10%). Способ применения метода Монте-Карло по идее довольно прост. Чтобы получить искусственную случайную выборку из совокупности величин, описываемой некоторой функцией распределения вероятностей, следует:

1. Построить график или таблицу интегральной функции распределения на основе ряда чисел, отражающего исследуемый процесс (а не на основе ряда случайных чисел), причем значения случайной переменной процесса откладываются по оси абсцисс (х), а значения вероятности (от 0 до 1) - по оси ординат (у).

2.С помощью генератора случайных чисел выбрать случайное десятичное число в пределах от 0 до 1 (с требуемым числом разрядов).

3. Провести горизонтальную прямую от точки на оси ординат соответствующей выбранному случайному числу, до пересечения с кривой распределения вероятностей.

4. Опустить из этой точки пересечения перпендикуляр на ось абсцисс.

б. Повторить шаги 2-5 для всех требуемых случайных переменных, следуя тому порядку, в котором они были записаны. Общий смысл легко понять с помощью простого примера: количество звонков на телефонную станцию в течение 1 минуты соответствует следующему распределению:

Кол - во звонков Вероятность Кумулятивная вероятность О 0,10 0,10

Предположим, что мы хотим провести мысленный эксперимент для пяти периодов времени.

Построим график распределения кумулятивной вероятности. С помощью генератора случайных чисел получим пять чисел, каждое из которых используем для определения количества звонков в данном интервале времени.

Период времени Случайное число Количество звонков

Взяв еще несколько таких выборок, можно убедиться в том, что если используемые числа действительно распределены равномерно, то каждое из значений исследуемой величины будет появляться с такой же частотой, как ирреальном мире», и мы получим результаты, типичные для поведения исследуемой системы.

Вернемся к примеру. Для расчета нам нужно было выбирать случайные точки в единичном квадрате. Как это сделать физически?

Представим такой эксперимент. Рис.1. (в увеличенном масштабе) с фигурой S и квадратом повешен на стену в качестве мишени. Стрелок, находившийся на некотором расстоянии от стены, стреляет N раз, целясь в центр квадрата.

Конечно, все пули не будут ложиться точно в центр: они пробьют на мишени N случайных точек. Можно ли по этим точкам оценить площадь S.

Ясно, что при высокой квалификации стрелка результат опыта будет очень плохим, так как почти все пули будут ложиться вблизи центра и попадут в S.

Нетрудно понять, что наш метод вычисления площади будет справедлив только тогда, когда случайные точки будут не просто «случайными», а еще и «равномерно разбросанными» по всему квадрату.

В задачах исследования операций метод Монте-Карло применяется в трех основных ролях:

1) при моделировании сложных, комплексных операций, где присутствует много взаимодействующих случайных факторов;

2) при проверке применимости более простых, аналитических методов и выяснении условий их применимости;

3) в целях выработки поправок к аналитическим формулам типа «эмпирических формул» в технике.

4. Пример . Оценка геологических запасов

Для оценки величины извлекаемых запасов необходимо, прежде всего, определить величину суммарных или геологических запасов.

Анализ структурных ловушек.

Для оценки содержания в структурной ловушке нефти и/или газа, поисковые и промысловые геологи и геофизики должны изучить характер структурной ловушки. Такое исследование необходимо для определения возможной величины геологических запасов. Область изменения запасов определяется комбинацией следующих оценочных показателей: объем осадочных пород (RV), пористости (F), перовой водонасыщенности (Sw), эффективная мощность (NP) g.

Определение вероятных значений параметра.

На этом этапе геологи должны оценить значение вероятностей для параметров, используемых при подсчете геологических запасов. Каждому параметру приписываются интервальные значения вероятностей, исходя из экспертных оценок геологов

Анализ графиков вероятности.

Графики накопленной вероятности. Непрерывная кривая представляет вероятность того, что величина рассматриваемого параметра будет «равна или больше» чем величина в той точке горизонтальной оси, которая пересекается вертикальной линией, проектируемой от кривой, с перпендикуляром к вертикальной оси для любых значений от 0 до 100 %. Кривая построена по данным гистограмм, которые показаны как заштрихованные столбики. Гистограммы представляют собой экспертную оценку поисковых и промысловых геологов и геофизиков, которые обеспечивают информацию в следующей форме:

По нашему мнению, вероятность того, что объем пород залежи находиться в интервале от 0 до 390 тыс. футов составляет 10%;

По нашей оценке вероятность того, что объем пород равен от 380 до 550 куб. футов, составляет 15% и так далее.

Эти оценки геологов накапливаются, и в итоге получается обобщенная кривая вероятности. На основании этой кривой можно экстраполировать значения ожидаемых вероятностей для изучаемых параметров.

Подсчет геологических запасов.

Объем геологических запасов вычисляется с помощью следующей формулы:

RVxFx(l-Sw)x NPx --, где Fv - коэффициент приведения нефти к поверхностным условиям.

Использование средних величин для получения приблизительной оценки геологических запасов.

При оценке приблизительного количества нефти в месторождении будем использовать следующие значения параметров:

Среднее значение объема пород составляет 1,35 млн. акрофутов (1 акрофут = 7760 баррелей или около 1230 м3)

Средняя пористость - 17%

Средняя водонасыщенность - 20%

Средняя эффективная мощность - 75%

Коэффициент приведения - 1,02 (в пластовых условиях нет свободного газа). Теперь подставим эти значения в формулу

(1,35 х 1 0) х (1 7%) х (1 - 20%) х (75%) х (,т.е.:1350000x0,17x0,8x0,75x0,98) = 134946 акрофутов или 134946x7760 = 1047413760,

т. е. приблизительно 1,047 млрд. баррелей нефти (165 млн. м3, 141 млн.т).

Более распространенный способ: метод Монте-Карло.

Прежде всего, необходимо построить гистограммы и кривые накопленной вероятности для каждого параметра.

Для каждой из этих кривых случайным образом необходимо выбрать точку, соответствующую вероятности от 0 до 100 %. После этого надо подставить значение параметра, соответствующее этой вероятности в уравнение. Затем можно подсчитать геологические запасы при этих значениях параметров и вычислить полную вероятность

Например:

Для 50%-ой накопленной вероятности имеем 25%-ю вероятность того, что объем пород составит 690000 акрофутов

Для 20%-ой накопленной вероятности имеем 35%-ю вероятность того, что пористость составит 21%

Для 25%-ой накопленной вероятности имеем 25%-ю вероятность того, что водосодержание равно 33%

80%-я накопленная вероятность показывает 32%-ю вероятность того, что эффективная мощность составит 74%.

Коэффициент приведения нефти к поверхностным условиям принимаем равным 1,02.

Используя эти значения, вычислим геологические запасы:

(0,69 х 1 0) х (2 1 %) х (l - 33%) х (74%) х ---- решив, получим приблизительно:

521 млн. баррелей нефти (82 млн.м3, 70 млн.т). Результат этого вычисления значительно меньше, чем при использовании средних значений параметров. Нам нужно узнать вероятность этого результата. Для определения вероятности того, что геологические запасы составят 521 млн. баррелей нефти, вычислим полную вероятность:

0,25 х 0,35 х 0,20 х 0,35 х 1,0 = 0,006125,т.е. вероятность равна 0.6125% - не очень хорошая!

Эта процедура повторяется многократно, для чего мы использовали программу, составленную для ЭВМ. Это дает нам разумное вероятностное распределение геологических запасов. В результате выполнения программы прогнозировали объем геологических запасов нефти: наиболее вероятно, что объем нефти составит 84658 акрофутов или около 88,5 млн.тонн.

Использование распределения накопленной вероятности.

На следующем этапе, используя график, необходимо выбрать несколько оценок вместе с их вероятностями. Для каждого из этих значений вычисляются: динамика добычи, варианты проекта разработки. Эти расчеты могут затем использоваться для оценки капитальных эксплуатационных затрат для каждого значения запасов, выбранных из графика. Затем для каждого значения запасов анализируются экономические показатели. По прошествии некоторого времени, и после того, как будет пробурено некоторое количество скважин, рассчитывается коэффициент успешности по формуле.

Коэффициент успешности = кол-во скважин давш. нефть\ кол-во пробур. скважин

За период в течение нескольких лет составляется график вероятности достижения успеха. Например, для условной площади, график коэффициента успешности составлен по прошествии девяти лет эксплуатации. Через соответствующие значения успешности проводятся условные линии, затем через их центры проводится огибающая кривая. Крайние точки этих линий соответствует максимальному уровню успешности, а центральная кривая соответствует наиболее вероятному уровню достижения успеха Значения вероятностей определяется на основе субъективных суждений промысловых геологов.

Аналогично определяется уровень запасов на одну скважину. С помощью коэффициента успешности и средних запасов на одну скважину оценивается вероятность достижения определенного уровня запасов, необходимая для составления программы бурения и определения количества необходимых скважин.

Заключение

Основным недостатком аналитических моделей является то, что они неизбежно требуют каких-то допущений, в частности, о «марковости» процесса. Приемлемость этих допущений далеко не всегда может быть оценена без контрольных расчетов, а производятся они методом Монте-Карло. Образно говоря, метод Монте-Карло в задачах исследования операций играет роль своеобразного ОТК. Статистические модели не требуют серьезных допущений и упрощений. В принципе, в статистическую модель «лезет» что угодно -- любые законы распределения, любая сложность системы, множественность ее состояний. Главный же недостаток статистических моделей -- их громоздкость и трудоемкость. Огромное число реализации, необходимое для нахождения искомых параметров с приемлемой точностью, требует большого расхода машинного времени. Кроме того, результаты статистического моделирования гораздо труднее осмыслить, чем расчеты по аналитическим моделям, и соответственно труднее оптимизировать решение (его приходится «нащупывать» вслепую). Правильное сочетание аналитических и статистических методов в исследовании операций -- дело искусства, чутья и опыта исследователя. Нередко аналитическими методами удается описать какие-то «подсистемы», выделяемые в большой системе, а затем из таких моделей, как из «кирпичиков», строить здание большой, сложной модели.

Список используемой литературы

1. Вентцель Е.С. «Исследование операций», Москва «Советское радио» 1972

2. Соболь И.М. «Метод Монте-Карло», Москва «Наука»,1985 г.

3. «Экономико-математические методы и прикладные модели», под ред. Федосеева В.В., Москва «Юнити» 2001 г.

Подобные документы

    Понятие имитационного моделирования, применение его в экономике. Этапы процесса построения математической модели сложной системы, критерии ее адекватности. Дискретно-событийное моделирование. Метод Монте-Карло - разновидность имитационного моделирования.

    контрольная работа , добавлен 23.12.2013

    Статистическая модель случайного процесса. Численный метод Монте-Карло. Типы имитации, ее достоинства и возможности. Простая имитационная модель системы обработки документов. Использование для моделирования языка Siman. Его основные моделирующие блоки.

    презентация , добавлен 22.10.2014

    Расчет экономического эффекта работы банка. Имитационное моделирование на основании предварительно установленных зависимостей. Функция распределения экспоненциального закона. Корректировка времени обслуживания клиентов у касс и продвижения очереди.

    контрольная работа , добавлен 03.10.2008

    Расчет экономического эффекта работы банка. Алгоритм имитационного моделирования работы кассового зала. Функция распределения экспоненциального закона. Корректировка времени обслуживания клиентов у касс и продвижения очереди. Листинг программы.

    контрольная работа , добавлен 03.10.2008

    Имитационное моделирование как метод анализа экономических систем. Предпроектное обследование фирмы по оказанию полиграфических услуг. Исследование заданной системы с помощью модели типа "Марковский процесс". Расчет времени обслуживания одной заявки.

    курсовая работа , добавлен 23.10.2010

    Эффективность капитальных вложений. Статистические методы оценки целесообразности инвестиций с риском. Анализ чувствительности, сценариев. Установление номинальных и предельных значений неопределенных факторов. Имитационное моделирование Монте-Карло.

    контрольная работа , добавлен 27.10.2008

    Понятие равномерно распределенной случайной величины. Мультипликативный конгруэнтный метод. Моделирование непрерывных случайных величин и дискретных распределений. Алгоритм имитационного моделирования экономических отношений между кредитором и заемщиком.

    курсовая работа , добавлен 03.01.2011

    Обзор методов решения задачи. Расчет количества клиентов, выручки, средний размер очереди и количество отказов за период моделирования. Алгоритм моделирования процесса, разработка его программной реализации. Машинный эксперимент с разработанной моделью.

    курсовая работа , добавлен 15.01.2011

    Описание компьютерного моделирования. Достоинства, этапы и подходы к построению имитационного моделирования. Содержание базовой концепции структуризации языка моделирования GPSS. Метод оценки и пересмотра планов (PERT). Моделирование в системе GPSS.

    курсовая работа , добавлен 03.03.2011

    Метод имитационного моделирования в разработке экономико-математических моделей для учета неопределенности статистики предприятий. Функционирование имитационной модели изготовления малогабаритного стула: время работы и коэффициенты загрузки оборудования.

БЕЛКООПСОЮЗ

УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ

«БЕЛОРУССКИЙ ТОРГОВО-ЭКОНОМИЧЕСКИЙ

УНИВЕРСИТЕТ ПОТРЕБИТЕЛЬСКОЙ КООПЕРАЦИИ»

________________________________________________

Кафедра информационно-вычислительных систем

Имитационное моделирование экономических процессов

Лекции для студентов заочного отделения

Гомель 2007

Тема 1. Введение в
1.1. Имитационное моделирование как метод исследования сложных систем

Основным методом исследования сложных систем является метод моделирования. Моделирование – это способ изучения объекта через рассмотрение подобного ему и более простого объекта, т.е. его модели. Модель – это образ реального объекта, который отражает его основные свойства и замещает объект в ходе исследования. (Т.е. о моделировании можно говорить лишь при использовании модели для познания оригинала: в игре ребенка с моделью паровоза новое знание относительно паровоза не рождается).

Модели бывают материальные (физические) и математические. Среди математических моделей выделяют два типа: аналитические и имитационные (рис.1).
Модели


Физические

Математические



Аналитические

Имитационные

Рис1. Классификация моделей
В аналитических моделях поведение сложной системы описывается в виде алгебраических, интегральных, дифференциальных и иных соотношений и логических условий. Наиболее простым примером аналитической модели является соотношение
, где S – расстояние, v – скорость перемещения, t – время.

Аналитическая модель требует введения ряда упрощений. Часто такое упрощение получается слишком грубым приближением действительности и результаты не могут быть применены на практике. Например, та же формула
будет применима для самолета, который достиг заданной скорости, но не подходит для описания движения по автостраде в час пик. В этих случаях исследователь вынужден использовать имитационное моделирование.

Имитационной моделью сложной системы называется программа (или алгоритм), позволяющая имитировать на компьютере поведение отдельных элементов системы и связи между ними в течение заданного времени моделирования.

В ходе выполнения этой программы можно значения определенных переменных интерпретировать как состояние системы в соответствующий момент времени, т.е. имитация рассматривается как наблюдение во времени за характеристиками системы.

Имитационное моделирование состоит в исследовании системы с помощью компьютерных (вычислительных) экспериментов на имитационной модели. Этот метод наиболее эффективен для исследования сложных систем, на функционирование которых оказывает существенное влияние случайные факторы (стохастических систем). В этом случае результат одного эксперимента на имитационной модели может рассматриваться лишь как оценка истинных характеристик системы. Требуется проведение большого числа экспериментов и статистическая обработка их результатов. Поэтому иногда имитационное моделирование называется также методом статистического моделирования.

К достоинствам имитационного моделирования можно отнести:

1) свободу от каких-либо ограничений на класс решаемых задач;

2) наглядность;

3) возможность исследования системы на различных уровнях детализации;

4) возможность контроля над характеристиками системы в динамике.

Недостатки имитационного моделирования:


  1. дороговизна;

  2. большой расход машинного времени;

  3. результаты исследования обладают меньшей степенью общности по сравнению с аналитическими моделями;

  4. не существует надежных методов оценки адекватности имитационной модели.
Эти недостатки несколько смягчаются с развитием вычислительной техники и ряда программных продуктов для автоматизации разработки и исследования имитационных моделей. Таким образом, применение имитационного моделирования нужно сводить к разумному минимуму. Такое применение целесообразно:

  1. в случаях “безысходности”, когда сложность ситуации превосходит возможности аналитических методов;

  2. если не существует четкой постановки задачи исследования и идет процесс познания объекта моделирования (модель служит средством изучения явления);

  3. когда необходимо контролировать протекание процессов в системе путем замедления или ускорения явлений в ходе имитации;

  4. при подготовке специалистов и приобретении ими навыков в эксплуатации новой техники.
Метод имитационного моделирования разрабатывался прежде всего для исследования систем массового обслуживания (систем с очередями). Об этом свидетельствует содержание первой отечественной монографии по моделированию: Бусленко Н.П., Шрейдер Ю.А. Метод статистических испытаний и его реализация на электронных цифровых машинах. – М.:Наука, 1962., а также книга признанного классика GPSS Томаса Шрайбера: Моделирование на GPSS, 1980г.

Также одной из первых областей применения имитационного моделирования явилось управление запасами, что было обусловлено сложностью вероятностных задач этого вида и их практической важностью. Здесь можно упомянуть работы:

1957 – Робинсон – об иерархической системе складов нефтепродуктов;

1961 – Берман – о перераспределении запасов;

1964 – Джислер – о снабжении авиационных баз.

^ 1.2. Этапы имитационного моделирования

Трудоемкость имитационного моделирования делает особо важными вопросы технологии и организации работ. По оценкам специалистов США, разработка даже простых моделей оценивается в 5-6 человеко-месяцев (30 тыс. долларов), а сложных – на два порядка больше

В типичном случае процесс моделирования проходит следующие фазы:

1) Описание системы и разработка концептуальной модели.

2) Подготовка данных.

3) Разработка моделирующего алгоритма и построение имитационной модели.

4) Оценка адекватности.

5) Планирование экспериментов.

6) Планирование прогонов.

7) Машинный эксперимент.

8) Анализ и интерпретация результатов.

9) Принятие решений относительно исследуемого объекта.

10) Документирование.

Перечисленные этапы могут перекрываться по времени (например, документирование должно вестись с первых дней работы над проектом) и охвачены многочисленными обратными связями.

^ Описание системы включает уточнение ее границ с внешней средой, характеристики внешних воздействий, состава внешних и внутренних связей, выбор показателей эффективности, постановку задачи на исследование. Концептуальная модель представляет собой упрощенное математическое или алгоритмическое описание сложной системы.

^ Подготовка исходных данных состоит в сборе и обработке данных наблюдений за моделируемой системой. Обработка в типичном случае заключается в построении функций распределения соответствующих случайных величин или вычислении числовых характеристик распределений (среднего, дисперсии и т.п.). К подготовке исходных данных можно отнести и сбор информации о предполагаемых изменениях в нагрузке системы (или о прогнозируемой нагрузке).

^ Разработка имитационной модели заключается в записи ее на одном из языков программирования (общецелевом или специализированном), трансляции и отладке программы модели. Следует стремиться к блочному (модульному) построению программы, позволяющему независимо вносить изменения в отдельные модули и повторно использовать ранее созданные модули.

^ Оценка адекватности модели заключается в проверке:


  1. полноты учета основных факторов и ограничений, влияющих на работу системы;

  2. согласия постулируемых законов распределения с первичными данными;

  3. синтаксической корректности программы моделирования;

  4. соответствия результатов имитационного моделирования и известного аналитического решения (при условиях существования этого решения);

  5. осмысленности результатов в нормальных условиях и в предельных случаях.
^ Планирование экспериментов определяет совокупность исследуемых вариантов и стратегию их перебора. При этом учитываются: цель проекта (анализ или оптимизация); степень достоверности исходных данных (при малой достоверности необходимы дополнительные исследования чувствительности модели к изменению параметров); ресурсы календарного и машинного времени. На этом этапе полезно применение общей теории планирования экспериментов.

^ Планирование прогонов имеет целью получить возможно лучшие статистические оценки исследуемых показателей: несмещенные, с минимальной дисперсией. При этом объем вычислительных работ обычно ограничен (ограничено время на постановку экспериментов). Отдельным прогоном называется однократное выполнение программы имитационной модели, в котором модельное время монотонно возрастает.

Очень часто моделирование имеет целью получение стационарных характеристик, т.е. соответствующих типичным условиям работы. Поэтому важен вопрос определения длительности разгонного участка и времени вхождения в стационарный режим во время одного прогона. Этот момент обычно определяется экспериментально. Статистика, накопленная за время разгона, не должна учитываться в расчетах.

Важно правильно задать критерий останова прогона (например, рассчитать время моделирования, которое достаточно для получения достаточно точных характеристик системы). К этому этапу относятся вопросы уменьшения или исключения корреляции результатов, уменьшения дисперсии результатов, задания начальных условий моделирования.

Этапы 7-9 в дополнительных пояснениях не нуждаются.

Документирование должно сопровождать весь процесс разработки модели и хода экспериментов. Оно облегчает взаимодействие участников процесса моделирования, обеспечивает возможность использования модели в будущем в других разработках.
^ 1.3. Программное обеспечение имитационного моделирования

Одно из наиболее важных решений, которые приходится принимать разработчику имитационных моделей, касается выбора программного обеспечения. Если программное обеспечение недостаточно гибко или с ним сложно работать, то имитация может дать неправильные результаты или будет вообще невыполнима.

Программное обеспечение, используемое для создания имитационных моделей, можно классифицировать следующим образом (см.рис.2):


^ ПО имитационного моделирования


Универсальные языки программирования



^ Языки имитационного моделирования

Проблемно-ориентированные системы имитационного моделирования

Рис.2 . Классификация ПО имитационного моделирования

Универсальные языки моделирования позволяют достичь гибкости при разработке модели, а также их высокого быстродействия. Их знает большинство разработчиков. Однако затраты времени и средств на разработку и отладку модели гораздо выше, чем при использовании специальных систем имитационного моделирования. Обычно универсальные языки применяют для создания уникальных моделей, когда важна скорость выполнения программы (работа в реальном времени), например в оборонной сфере.

^ Системы имитационного моделирования по сравнению с универсальными языками программирования имеют несколько преимуществ:


  1. Они автоматически предоставляют функциональные возможности, которые требуются для создания имитационных моделей:

  1. генераторы случайных чисел;

  2. продвижение модельного времени;

  3. добавление и удаление записей из списка событий;

  4. сбор выходных статистических данных и создание отчета с результатами

  5. и т.д.
Это позволяет сократить время, требуемое для программирования и общую стоимость проекта.

  1. Основные конструкции систем имитационного моделирования больше подходят для создания имитационных моделей, чем конструкции универсальных языков программирования (естественная среда моделирования).

  2. Системы имитационного моделирования обеспечивают более совершенный механизм обнаружения ошибок имитации.
Исторически системы имитационного моделирования разделились на два основных типа: языки имитационного моделирования и проблемно - ориентированные системы моделирования.

^ Языки моделирования по своей природе универсальны, они предполагают написание кода модели. Хотя некоторые языки могут быть ориентированы на решение конкретного вида задач (например, моделирование СМО), но при этом спектр решаемых задач достаточно широк.

^ Проблемно-ориентированные системы моделирования предназначены для решения определенной задачи. В них модель разрабатывается не с помощью программирования, а с использованием графики, диалоговых окон и раскрывающихся меню. Они проще для изучения, но не могут обеспечить достаточную гибкость моделирования.

Многообразие систем имитационного моделирования (сейчас их известно более 500) вызвано применением имитационного моделирования в различных предметных областях, ориентацией на различные типы систем (дискретные или непрерывные), использованием различных типов компьютеров и способов имитации.
Тема 2. Основные понятия имитационного моделирования
^ 2.1. Пример моделируемой системы

Основные понятия моделирования будем рассматривать на примере простой системы массового обслуживания с одним обслуживающим устройством и одной очередью. Таким обслуживающим устройством может быть продавец в маленьком магазине, билетер в театральной кассе, кладовщик на складе или центральный процессор в вычислительной системе. В литературе обслуживающее устройство может называться также прибором или каналом обслуживания. Пусть для определенности мы будем рассматривать парикмахерскую с одним креслом. Обслуживающим устройством является парикмахер. Клиенты приходят в парикмахерскую в случайные моменты времени, ждут своей очереди на обслуживание (если в этом возникает необходимость). Их обслуживают по принципу “первый пришел – первым обслужен”. После этого они уходят. Схематично структура этой системы показана на рис.3.


Приход

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО РЫБОЛОВСТВУ

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА

КАМЧАТСКИЙ ГOСУДАРСТВЕННЫЙ TЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

КАФЕДРА ИНФОРМАЦИОННЫХ СИСТЕМ

Тема: «ИМИТАЦИОННОЕ МОДЕЛИРОВАНИЕ ЭКОНОМИЧЕСКОЙ

ДЕЯТЕЛЬНОСТИ ПРЕДПРИЯТИЯ»

Курсовая работа

Руководитель: должность

Бильчинская С.Г. «__» ________2006г.

Разработчик: студент гр.

Житенева Д.С. 04 Пи1 «__» ________2006г.

Работа защищена «___» __________2006г. с оценкой______

Петропавловск- Камчатский, 2006 г.

Введение............................................................................................................................ 3

1. Теоретические основы имитационного моделирования.......................................... 4

1.1. Моделирование. Имитационное моделирование.......................................... 4

1.2. Метод Монте-Карло.......................................................................................... 9

1.3. Использование законов распределения случайных величин....................... 12

1.3.1. Равномерное распределение................................................................ 12

1.3.2. Дискретное распределение (общий случай)....................................... 13

1.3.3. Нормальное распределение.................................................................. 14

1.3.4. Экспоненциальное распределение...................................................... 15

1.3.5. Обобщенное распределение Эрланга................................................. 16

1.3.6. Треугольное распределение................................................................. 17

1.4. Планирование имитационного компьютерного эксперимента................... 18

1.4.1. Кибернетический подход к организации экспериментальных исследований сложных объектов и процессов....................................................................................................... 18

1.4.2. Регрессионный анализ и управление модельным экспериментом. 19

1.4.3. Ортогональное планирование второго порядка................................ 20

2. Практическая работа..................................................................................................... 22

3. Выводы по бизнес-модели «Эффективность производства»................................... 26

Заключение........................................................................................................................ 31

Список используемой литературы.................................................................................. 32

ПРИЛОЖЕНИЕ А............................................................................................................ 33

ПРИЛОЖЕНИЕ Б............................................................................................................. 34

ПРИЛОЖЕНИЕ В............................................................................................................. 35

ПРИЛОЖЕНИЕ Г............................................................................................................. 36

ПРИЛОЖЕНИЕ Д............................................................................................................. 37

ПРИЛОЖЕНИЕ Е............................................................................................................. 38

ВВЕДЕНИЕ

Моделирование в экономике начали применять еще задолго до того, как экономика окончательно оформилась как самостоятельная научная дисциплина. Математические модели использовались еще Ф. Кенэ (1758 г. Экономическая таблица), А. Смитом (классическая макроэкономическая модель), Д. Рикардо (модель международной торговли). В XIX веке большой вклад в моделирование внесла математическая школа (Л. Вальрас, О. Курно, В Парето, Ф. Эджворт и др.). В XX веке методы математического моделирования экономики применялись очень широко и с их использованием связаны выдающиеся работы лауреатов нобелевской премии по экономике (Д. Хикс, Р. Солоу, В. Леонтьев, П. Самуэльсон).

Курсовая работа по предмету «Имитационное моделирование экономических процессов» является самостоятельной учебно-исследовательской работой.

Целью написания данной курсовой работы является закрепление теоретических и практических знаний. Освещение подходов и способов применения имитационного моделирования в проектной экономической деятельности.

Главная задача – исследовать с помощью имитационного моделирования эффективность хозяйственной деятельности предприятия.


1. ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ИМИТАЦИОННОГО МОДЕЛИРОВАНИЯ

1.1. Моделирование. Имитационное моделирование

В процессе управления различными процессами постоянно возникает необходимость прогнозирования результатов в тех или иных условиях. Для ускорения принятия решения о выборе оптимального варианта управления и экономии средств на эксперимент используется моделирование процессов.

Моделированием является перенос свойств одной системы, которая называется объектом моделирования, на другую систему, которая называется модель объекта, воздействие на модель осуществляется с целью определения свойств объекта по характеру ее поведения.

Такую замену (перенос) свойств объекта приходится делать в тех случаях, когда непосредственное его изучение затруднено или даже невозможно. Как показывает практика моделирования, замена объекта его моделью дает часто положительные эффект.

Модель является представлением объекта, системы или понятия (идеи) в некоторой форме, отличной от формы их реального существования. Модель какого-либо объекта может быть или точной копией этого объекта (хотя и выполненной из другого материала и в другом масштабе), или отображать некоторые характерные свойства объекта в абстрактной форме.

Одновременно в процессе моделирования удается получить достоверную информацию об объекте с меньшими затратами времени, финансов, средств и других ресурсов.

Основными целями моделирования являются:

1) анализ и определение свойств объектов по модели;

2) проектирование новых систем и решение на модели оптимизационных задач (нахождение наилучшего варианта);

3) управление сложными объектами и процессами;

4) прогнозирование поведения объекта в будущем.

Наиболее распространены следующие виды моделирования:

1) математическое;

2) физическое;

3) имитационное.

При математическом моделировании исследуемый объект заменяется соответствующими математическими соотношениями, формулами, выражениями, с помощью которых решаются те или иные аналитические задачи (делается анализ), находятся оптимальные решения, а также делаются прогнозы.

Физические модели представляют собой реальные системы той же природы, что и исследуемый объект, либо иной. Наиболее типичным вариантом физического моделирования является использование макетов, установок или выбор фрагментов объекта для проведения ограниченных экспериментов. И наиболее широко оно нашло применение в сфере естественных наук, иногда в экономике.

Для сложных систем, к числу которых относятся экономические, социальные, информационные и другие социально-информационные системы, нашло широкое применение имитационное моделирование. Это распространенная разновидность аналогового моделирования, реализуемого с помощью набора математических инструментальных средств специальных имитирующих компьютерных программ и технологий программирования, позволяющих посредством процессов-аналогов провести целенаправленное исследование структуры и функций реального сложного процесса в памяти компьютера в режиме «имитации», выполнить оптимизацию некоторых его параметров.

Для получения необходимой информации или результатов необходимо осуществлять “прогон” имитационных моделей, а не “решать” их. Имитационные модели не способны формировать свое собственное решение в том виде, в каком это имеет место в аналитических моделях, а могут лишь служить в качестве средства для анализа поведения системы в условиях, которые определяются экспериментатором.

Следовательно, имитационное моделирование – не теория, а методология решения проблем. Более того, имитационное моделирование является только одним из нескольких имеющихся в распоряжении системного аналитика важнейших методов решения проблем. Поскольку необходимо приспосабливать средство или метод к решению задачи, а не наоборот, то возникает естественный вопрос: в каких случаях имитационное моделирование полезно?

Необходимость решения задач путем экспериментирования становится очевидной, когда возникает потребность получить о системе специфическую информацию, которую нельзя найти в известных источниках. Непосредственное экспериментирование на реальной системе устраняет много затруднений, если необходимо обеспечить соответствие между моделью и реальными условиями; однако недостатки такого экспериментирования иногда весьма значительны:

1) может нарушить установленный порядок работы фирмы;

2) если составной частью системы являются люди, то на результаты экспериментов может повлиять так называемый хауторнский эффект, проявляющийся в том, что люди, чувствуя, что за ними наблюдают, могут изменить свое поведение;

3) может оказаться сложным поддержание одних и тех же рабочих условий при каждом повторении эксперимента или в течение всего времени проведения серии экспериментов;

4) для получения одной и той же величины выборки (и, следовательно, статистической значимости результатов экспериментирования) могут потребоваться чрезмерные затраты времени и средств;

5) при экспериментировании с реальными системами может оказаться невозможным исследование множества альтернативных вариантов.

По этим причинам исследователь должен рассмотреть целесообразность применения имитационного моделирования при наличии любого из следующих условий:

1. Не существует законченной математической постановки данной задачи, либо еще не разработаны аналитические методы решения сформулированной математической модели. К этой категории относятся многие модели массового обслуживания, связанные с рассмотрением очередей.

2. Аналитические методы имеются, но математические процедуры столь сложны и трудоемки, что имитационное моделирование дает более простой способ решения задачи.

3. Аналитические решения существуют, но их реализация невозможна вследствие недостаточной математической подготовки имеющегося персонала. В этом случае следует сопоставить затраты на проектирование, испытания и работу на имитационной модели с затратами, связанными с приглашением специалистов со стороны.

4. Кроме оценки определенных параметров, желательно осуществить на имитационной модели наблюдение за ходом процесса в течение определенного периода.

5. Имитационное моделирование может оказаться единственной возможностью вследствие трудностей постановки экспериментов и наблюдений явлений в реальных условиях (напримером, изучение поведения космических кораблей в условиях межпланетных полетов).

6. Для долговременного действия систем или процессов может понадобиться сжатие временной шкалы. Имитационное моделирование дает возможность полностью контролировать время изучаемого процесса, поскольку явление может быть замедлено или ускорено по желанию (например, исследования проблем упадка городов).

Дополнительным преимуществом имитационного моделирования можно считать широчайшие возможности его применения в сфере образования и профессиональной подготовки. Разработка и использование имитационной модели позволяет экспериментатору видеть и испытывать на модели реальные процессы и ситуации. Это в свою очередь должно в значительной мере помочь понять и прочувствовать проблему, что стимулирует процесс поиска нововведений.

Имитационное моделирование реализуется посредством набора математических инструментальных средств, специальных компьютерных программ и приемов, позволяющих с помощью компьютера провести целенаправленное моделирование в режиме «имитации» структуры и функций сложного процесса и оптимизацию некоторых его параметров. Набор программных средств и приемов моделирования определяет специфику системы моделирования – специального программного обеспечения.

Имитационное моделирование экономических процессов обычно применяется в двух случаях:

1. для управления сложным бизнес-процессом, когда имитационная модель управляемого экономического объекта используется в качестве инструментального средства в контуре адаптивной системы управления, создаваемой на основе информационных технологий;

2. при проведении экспериментов с дискретно-непрерывными моделями сложных экономических объектов для получения и «наблюдения» их динамики в экстренных ситуациях, связанных с рисками, натурное моделирование которых нежелательно или невозможно.

Имитационное моделирование как особая информационная технология состоит из следующих основных этапов:

1. Структурный анализ процессов . На этом этапе производится анализ структуры сложного реального процесса и разложение его на более простые взаимосвязанные подпроцессы, каждый из которых выполняет определенную функцию. Выявленные подпроцессы могут подразделяться на другие более простые подпроцессы. Таким образом, структуру моделируемого процесса можно представить в виде графа, имеющего иерархическую структуру.

Структурный анализ особенно эффективен при моделировании экономических процессов, где многие составляющие подпроцессы протекают визуально и не имеют физической сущности.

2. Формализованное описание модели . Полученное графическое изображение имитационной модели, функции, выполняемые каждым подпроцессом, условия взаимодействия всех подпроцессов должны быть описаны на специальном языке для последующей трансляции.

Это можно сделать различными способами: описать вручную на каком-либо конкретном языке либо с помощью компьютерного графического конструктора.

3. Построение модели . Этот этап включает в себя трансляцию и редактирование связей, а также верификацию параметров.

4. Проведение экстремального эксперимента . На этом этапе пользователь может получить информацию о том, насколько близка созданная модель реально существующему явлению, и насколько пригодна данная модель для исследования новых, еще не опробованных значений аргументов и параметров системы.


1.2. Метод Монте-Карло

Статистические испытания по методу Монте-Карло представляют собой простейшее имитационное моделирование при полном отсутствии каких-либо правил поведения. Получение выборок по методу Монте-Карло - основной принцип компьютерного моделирования систем, содержащих стохастические или вероятностные элементы. Зарождение метода связано с работой фон Неймана и Улана в конце 1940-х гг., когда они ввели для него название «Монте-Карло» и применили его к решению некоторых задач экранирования ядерных излучений. Этот математический метод был известен и ранее, но свое второе рождение нашел в Лос-Аламосе в закрытых работах по ядерной технике, которые велись под кодовым обозначением «Монте-Карло». Применение метода оказалось настолько успешным, что он получил распространение и в других областях, в частности в экономике.

Поэтому многим специалистам термин «метод Монте-Карло» иногда представляется синонимом термина «имитационное моделирование», что в общем случае неверно. Имитационное моделирование - это более широкое понятие, и метод Монте-Карло является важным, но далеко не единственным методическим компонентом имитационного моделирования.

Согласно методу Монте-Карло проектировщик может моделировать работу тысячи сложных систем, управляющих тысячами разновидностей подобных процессов, и исследовать поведение всей группы, обрабатывая статистические данные. Другой способ применения этого метода заключается в том, чтобы моделировать поведение системы управления на очень большом промежутке модельного времени (несколько лет), причем астрономическое время выполнения моделирующей программы на компьютере может составить доли секунды.

При проведении анализа по методу Монте-Карло компьютер использует процедуру генерации псевдослучайных чисел для имитации данных из изучаемой генеральной совокупности. Процедура анализа по методу Монте-Карло строит выборки из генеральной совокупности в соответствии с указаниями пользователя, а затем производит следующие действия: имитирует случайную выборку из генеральной совокупности, проводит анализ выборки и сохраняет результаты. После большого числа повторений, сохраненные результаты хорошо имитируют реальное распределение выборочной статистики.

В различных задачах, встречающихся при создании сложных систем, могут использоваться величины, значения которых определяются случайным образом. Примерами таких величин являются:

1 случайные моменты времени, в которые поступают заказы на фирму;

3 внешние воздействия (требования или изменения законов, платежи по штрафам и др.);

4 оплата банковских кредитов;

5 поступление средств от заказчиков;

6 ошибки измерений.

В качестве соответствующих им переменных могут использоваться число, совокупность чисел, вектор или функция. Одной из разновидностей метода Монте-Карло при численном решении задач, включающих случайные переменные, является метод статистических испытаний, который заключается в моделировании случайных событий.

Метод Монте-Карло основан на статистических испытаниях и по природе своей является экстремальным, может применяться для решения полностью детерминированных задач, таких, как обращение матриц, решение дифференциальных уравнений в частных производных, отыскание экстремумов и численное интегрирование. При вычислениях методом Монте-Карло статистические результаты получаются путем повторяющихся испытаний. Вероятность того, что эти результаты отличаются от истинных не более чем на заданную величину, есть функция количества испытаний.

В основе вычислений по методу Монте-Карло лежит случайный выбор чисел из заданного вероятностного распределения. При практических вычислениях эти числа берут из таблиц или получают путем некоторых операций, результатами которых являются псевдослучайные числа с теми же свойствами, что и числа, получаемые путем случайной выборки. Имеется большое число вычислительных алгоритмов, которые позволяют получить длинные последовательности псевдослучайных чисел.

Один из наиболее простых и эффективных вычислительных методов получения последовательности равномерно распределенных случайных чисел r i , с помощью, например, калькулятора или любого другого устройства, работающего в десятичной системе счисления, включает только одну операцию умножения.

Метод заключается в следующем: если r i = 0,0040353607, то r i+1 ={40353607ri} mod 1, где mod 1 означает операцию извлечения из результата только дробной части после десятичной точки. Как описано в различных литературных источниках, числа r i начинают повторяться после цикла из 50 миллионов чисел, так что r 5oooooo1 = r 1 . Последовательность r 1 получается равномерно распределенной на интервале (0, 1).

Применение метода Монте-Карло может дать существенный эффект при моделировании развития процессов, натурное наблюдение которых нежелательно или невозможно, а другие математические методы применительно к этим процессам либо не разработаны, либо неприемлемы из-за многочисленных оговорок и допущений, которые могут привести к серьезным погрешностям или неправильным выводам. В связи с этим необходимо не только наблюдать развитие процесса в нежелательных направлениях, но и оценивать гипотезы о параметрах нежелательных ситуаций, к которым приведет такое развитие, в том числе и параметрах рисков.


1.3. Использование законов распределения случайных величин

Для качественной оценки сложной системы удобно использовать результаты теории случайных процессов. Опыт наблюдения за объектами показывает, что они функционируют в условиях действия большого количества случайных факторов. Поэтому предсказание поведения сложной системы может иметь смысл только в рамках вероятностных категорий. Другими словами, для ожидаемых событий могут быть указаны лишь вероятности их наступления, а относительно некоторых значений приходится ограничиться законами их распределения или другими вероятностными характеристиками (например, средними значениями, дисперсиями и т.д.).

Для изучения процесса функционирования каждой конкретной сложной системы с учетом случайных факторов необходимо иметь достаточно четкое представление об источниках случайных воздействий и весьма надежные данные об их количественных характеристиках. Поэтому любому расчету или теоретическому анализу, связанному с исследованием сложной системы, предшествует экспериментальное накопление статистического материала, характеризующего поведение отдельных элементов и системы в целом в реальных условиях. Обработка этого материала позволяет получить исходные данные для расчета и анализа.

Законом распределения случайной величины называют соотношение, позволяющее определить вероятность появления случайной величины в любом интервале. Его можно задать таблично, аналитически (в виде формулы) и графически.

Существует несколько законов распределения случайных величин.

1.3.1. Равномерное распределение

Данный вид распределения применяется для получения более сложных распределений, как дискретных, так и непрерывных. Такие распределения получаются с помощью двух основных приемов:

a) обратных функций;

b) комбинирования величин, распределенных по другим законам.

Равномерный закон – закон распределения случайных величин, имеющий симметричный вид (прямоугольник). Плотность равномерного распределения задается формулой:

т.е.на интервале, которому принадлежат все возможные значения случайной величины, плотность сохраняет постоянное значение (Рис.1).


Рис.1 Функция плотности вероятности и характеристики равномерного распределения

В имитационных моделях экономических процессов равномерное распределение иногда используется для моделирования простых (одноэтапных) работ, при расчетах по сетевым графикам работ, в военном деле – для моделирования сроков прохождения пути подразделениями, времени рытья окопов и строительства фортификационных сооружений.

Равномерное распределение используется, если об интервалах времени известно только то, что они имеют максимальный разброс, и ничего не известно о распределениях вероятностей этих интервалов.

1.3.2. Дискретное распределение

Дискретное распределение представлено двумя законами:

1) биноминальным, где вероятность наступления события в нескольких независимых испытаниях определяется по формуле Бернулли:

n – количество независимых испытаний

m – число появления события в n испытаниях.

2) распределением Пуассона, где при большом количестве испытаний вероятность наступления события очень мала и определяется по формуле:

k – число появлений события в нескольких независимых испытаниях

Среднее число появлений события в нескольких независимых испытаниях.

1.3.3. Нормальное распределение

Нормальное, или гауссово распределение, - это, несомненно, одно из наиболее важных и часто используемых видов непрерывных распределений. Оно симметрично относительно математического ожидания.

Непрерывная случайная величина t имеет нормальное распределение вероятностей с параметрами т и > О, если ее плотность вероятностей имеет вид (Рис.2, Рис.3):

где т - математическое ожидание M[t];


Рис.2, Рис.3 Функция плотности вероятности и характеристики нормального распределения

Любые сложные работы на объектах экономики состоят из многих коротких последовательных элементарных составляющих работ. Поэтому при оценках трудозатрат всегда справедливо предположение о том, что их продолжительность – это случайная величина, распределенная по нормальному закону.

В имитационных моделях экономических процессов закон нормального распределения используется для моделирования сложных многоэтапных работ.

1.3.4. Экспоненциальное распределение

Оно также занимает очень важное место при проведении системного анализа экономической деятельности. Этому закону распределения подчиняются многие явления, например:

1 время поступления заказа на предприятие;

2 посещение покупателями магазина-супермаркета;

3 телефонные разговоры;

4 срок службы деталей и узлов в компьютере, установленном, например, в бухгалтерии.

Функция экспоненциального распределения выглядит следующим образом:

F(x)= при 0

Параметр экспоненциального распределения, >0.

Экспоненциальное распределение являются частными случаями гамма - распределения.


На Рис.4 приведены характеристики гамма-распределения, а также график его функции плотности для различных значений этих характеристик.

Рис. 5 Функция плотности вероятности гамма-распределения

В имитационных моделях экономических процессов экспоненциальное распределение используется для моделирования интервалов поступления заказов, поступающих в фирму от многочисленных клиентов. В теории надежности применяется для моделирования интервала времени между двумя последовательными неисправностями. В связи и компьютерных науках – для моделирования информационных потоков.

1.3.5. Обобщенное распределение Эрланга

Это распределение, имеющее несимметричный вид. Занимает промежуточное положение между экспоненциальным и нормальным. Плотность вероятностей распределения Эрланга представляется формулой:

P(t)= при t≥0; где

K-элементарные последовательные составляющие, распределенные по экспоненциальному закону.

Обобщенное распределение Эрланга применяется при создании как математических, так и имитационных моделей.

Это распределение удобно применять вместо нормального распределения, если модель свести к чисто математической задаче. Кроме того, в реальной жизни существует объективная вероятность возникновения групп заявок в качестве реакции на какие-то действия, поэтому возникают групповые потоки. Применение чисто математических методов для исследования в моделях эффектов от таких групповых потоков либо невозможно из-за отсутствия способа получения аналитического выражения, либо затруднено, так как аналитические выражения содержат большую систематическую погрешность из-за многочисленных допущений, благодаря которым исследователь смог получить эти выражения. Для описания одной из разновидностей группового потока можно применить обобщенное распределение Эрланга. Появление групповых потоков в сложных экономических системах приводит к резкому увеличению средних длительностей различных задержек (заказов в очередях, задержек платежей и др.), а также к увеличению вероятностей рисковых событий или страховых случаев.

1.3.6. Треугольное распределение

Треугольное распределение является более информативным, чем равномерное. Для этого распределения определяются три величины - минимум, максимум и мода. График функции плотности состоит из двух отрезков прямых, одна из которых возрастает при изменении X от минимального значения до моды, а другая убывает при изменении X от значения моды до максимума. Значение математического ожидания треугольного распределения равно одной трети суммы минимума, моды и максимума. Треугольное распределение используется тогда, когда известно наиболее вероятное значение на некотором интервале и предполагается кусочно-линейный характер функции плотности.



На Рис.5 приведены характеристики треугольного распределения и график его функции плотности вероятности.

Рис.5 Функция плотности вероятности и характеристики треугольного распределения.

Треугольное распределение легко применять и интерпретировать, однако для его выбора необходимы веские основания.

В имитационных моделях экономических процессов такое распределение иногда используется для моделирования времени доступа к базам данных.


1.4. Планирование имитационного компьютерного эксперимента

Имитационная модель независимо от выбранной системы моделирования (например, Pilgrim или GPSS) позволяет получить два первых момента и информацию о законе распределения любой величины, интересующей экспериментатора (экспериментатор – это субъект, которому нужны качественные и количественные выводы о характеристиках исследуемого процесса).

1.4.1. Кибернетический подход к организации экспериментальных исследований сложных объектов и процессов.

Планирование эксперимента можно рассматривать как кибернетический подход к организации и проведению экспериментальных исследований сложных объектов и процессов. Основная идея метода состоит в возможности оптимального управления экспериментом в условиях неопределенности, что родственно тем предпосылкам, на которых базируется кибернетика. Целью большинства исследовательских работ является определение оптимальных параметров сложной системы или оптимальных условий протекания процесса:

1. определение параметров инвестиционного проекта в условиях неопределенности и риска;

2. выбор конструкционных и электрических параметров физической установки, обеспечивающих наиболее выгодный режим ее работы;

3. получение максимально возможного выхода реакции путем варьирования температуры, давления и соотношения реагентов – в задачах химии;

4. выбор легирующих компонентов для получения сплава с максимальным значением какой-либо характеристики (вязкость, сопротивление на разрыв и пр.) – в металлургии.

При решении задач такого рода приходится учитывать влияние большого количества факторов, часть из которых не поддается регулированию и контролю, что чрезвычайно затрудняет полное теоретическое исследование задачи. Поэтому идут по пути установления основных закономерностей с помощью проведения серии экспериментов.

Исследователь получил возможность путем несложных вычислений выражать результаты эксперимента в удобной для их анализа и использования форме.

1.4.2. Регрессионный анализ и управление модельным экспериментом


Если рассмотреть зависимость одной из характеристик системы η v (x i) , как функцию только одной переменной x i (Рис.7), то при фиксированных значениях x i будем получать различные значения η v (x i) .

Рис.7 Пример усреднения результатов эксперимента

Разброс значений η v в данном случае определяется не только ошибками измерения, а главным образом влиянием помех z j . Сложность задачи оптимального управления характеризуется не только сложностью самой зависимости η v (v = 1, 2, …, n) , но и влиянием z j , что вносит элемент случайности в эксперимент. График зависимости η v (x i) определяет корреляционную связь величин η v и x i , которая может быть получена по результатам эксперимента с помощью методов математической статистики. Вычисление таких зависимостей при большом числе входных параметров x i и существенном влиянии помех z j и является основной задачей исследователя-экспериментатора. При этом чем сложнее задача, тем эффективнее становится применение методов планирования эксперимента.

Различают два вида эксперимента:

Пассивный;

Активный.

При пассивном эксперименте исследователь только ведет наблюдение за процессом (за изменением его входных и выходных параметров). По результатам наблюдений затем делается вывод о влиянии входных параметров на выходные. Пассивный эксперимент обычно выполняется на базе действующего экономического или производственного процесса, который не допускает активного вмешательства экспериментатора. Этот метод мало затратный, но требует большого времени.

Активный эксперимент проводится главным образом в лабораторных условиях, где экспериментатор имеет возможность изменять входные характеристики по заранее намеченному плану. Такой эксперимент быстрее приводит к цели.

Соответствующие методы приближения получили название регрессионного анализа. Регрессионный анализ является методическим инструментарием при решении задач прогнозирования, планирования и анализа хозяйственной деятельности предприятий.

Задачами регрессионного анализа являются установление формы зависимости между переменными, оценка функции регрессии и установление влияния факторов на зависимую переменную, оценка неизвестных значений (прогноз значений) зависимой переменной.

1.4.3. Ортогональное планирование второго порядка.

Ортогональное планирование эксперимента (по сравнению с неортогональным) уменьшает число опытов и существенно упрощает расчеты при получении уравнения регрессии. Однако такое планирование осуществимо только при возможности проведения активного эксперимента.

Практичным средством отыскания экстремума является факторный эксперимент. Основные достоинства факторного эксперимента - простота и возможность отыскания экстремальной точки (с какой-то погрешностью), если неизвестная поверхность достаточно гладкая и нет локальных экстремумов. Следует отметить два основных недостатка факторного эксперимента. Первый заключается в невозможности поиска экстремума при наличии ступенчатых разрывов неизвестной поверхности и локальных экстремумов. Второй - в отсутствии средств описания характера поверхности вблизи экстремальной точки из-за использования простейших линейных уравнений регрессии, что сказывается на инертности системы управления, так как в процессе управления необходимо проводить факторные эксперименты для выбора управляющих воздействий.

Для целей управления наиболее подходит ортогональное планирование второго порядка. Обычно эксперимент состоит из двух этапов. Сначала с помощью факторного эксперимента отыскивается область, где существует экстремальная точка. Затем в районе существования экстремальной точки проводится эксперимент для получения уравнения регрессии 2-го порядка.

Уравнение регрессии 2-го порядка позволяет сразу определять управляющие воздействия, без проведения дополнительных опытов или экспериментов. Дополнительный эксперимент потребуется только в случаях, когда поверхность отклика существенно изменится под воздействием неконтролируемых внешних факторов (например, существенное изменение налоговой политики в стране серьезным образом повлияет на поверхность отклика, отображающую производственные затраты предприятия


2. ПРАКТИЧЕСКАЯ РАБОТА.

В данном разделе мы рассмотрим, как можно применить вышеизложенные теоретические знания к конкретным экономическим ситуациям.

Главная задача нашей курсовой работы – определить эффективность предприятия, занимающегося коммерческой деятельностью

Для реализации проекта мы выбрали пакет Pilgrim. Пакет Pilgrim обладает широким спектром возможностей имита­ции временной, пространственной и финансовой динамики модели­руемых объектов. С его помощью можно создавать дискретно-непрерывные модели. Разрабатываемые модели имеют свойство коллективного управления процессом моделирования. В текст моде­ли можно вставлять любые блоки с помощью стандартного языка C++. Пакет Pilgrim обладает свойством мобильности, т.е. переноса на лю­бую другую платформу при наличии компилятора C++. Модели в системе Pilgrim компилируются и поэтому имеют высокое быстро­действие, что очень важно для отработки управленческих решений и адаптивного выбора вариантов в сверхускоренном масштабе време­ни. Полученный после компиляции объектный код можно встраи­вать в разрабатываемые программные комплексы или передавать (продавать) заказчику, так как при эксплуатации моделей инстру­ментальные средства пакета Pilgrim не используются.

Пятая версия Pilgrim - это программный продукт, соз­данный в 2000 г. на объектно-ориентированной основе и учитываю­щий основные положительные свойства прежних версий. Достоин­ства этой системы:

Ориентация на совместное моделирование материальных, ин­формационных и «денежных» процессов;

Наличие развитой CASE-оболочки, позволяющей конструиро­вать многоуровневые модели в режиме структурного системного анализа;

Наличие интерфейсов с базами данных;

Возможность для конечного пользователя моделей непосредст­венно анализировать результаты благодаря формализованной техно­логии создания функциональных окон наблюдения за моделью с по­мощью Visual C++, Delphi или других средств;

Возможность управления моделями непосредственно в процес­се их выполнения с помощью специальных окон диалога.

Таким образом, пакет Pilgrim является хорошим средством создания как дискретных, так и непрерывных моделей, имеет много достоинств и значительно упрощает создание модели.

Объектом наблюдения является предприятие, которое занимается реализацией выпускаемого товара. Для статистического анализа данных функционирования предприятия и сравнения полученных результатов сопоставлялись все факторы, влияющие на процесс выпуска и реализации товара.

Предприятие занимается выпуском товара небольшими партиями (размер этих партии известен). Имеется рынок, где эта продукция продается. Размер партии покупаемого товара в общем случае - случайная величина.

Структурная схема бизнес-процесса содержит три слоя. На двух слоях расположены автономные процессы «Производство» (Приложение А) и «Сбыт» (Приложение Б), схемы которых независимы друг от друга т.к. нет путей для передачи транзактов. Опосредованное взаимодействие этих процессов осуществляется только через ресурсы: материальные ресурсы (в виде готовой продукции) и денежные ресурсы (в основном через расчетный счет).

Управление денежными ресурсами происходит на отдельном слое - в процессе «Денежные операции» (Приложение В).

Введем целевую функцию: время задержки платежей с расчетного счета Трс.

Основные управляющие параметры:

1 цена единицы продукции;

2 объем выпускаемой партии;

3 сумма кредита, запрашиваемого в банке.

Зафиксировав все остальные параметры:

4 время выпуска партии;

5 число производственных линий;

6 интервал поступления заказа от покупателей;

7 разброс размеров продаваемой партии;

8 стоимость комплектующих изделий и материалов для выпуска партии;

9 стартовый капитал на расчетном счете;

можно минимизировать Трс для конкретной рыночной ситуации. Минимум Трс достигается при одном из максимумов среднего размера денежной суммы на расчетном счете. Причем вероятность рискового события – неуплаты долгов по кредитам - близка к минимуму (это можно доказать во время статистического эксперимента с моделью).

Первый процесс «Производство » (Приложение А) реализует основные элементарные процессы. Узел 1 имитирует поступления распоряжений на изготовление партий продукции от руководства компании. Узел 2 – попытка получить кредит. В этом узле появляется вспомогательный транзакт – запрос в банк. Узел 3 – ожидание кредита этим запросом. Узел 4 – это администрация банка: если предыдущий кредит возвращен, то предоставляется новый (в противном случае запрос ждет в очереди). Узел 5 осуществляет перечисление кредита на расчетный счет компании. В узле 6 вспомогательный запрос уничтожается, но информация о том, что кредит предоставлен, - это «шлагбаум» на пути следующего запроса на получение другого кредита (операция hold).

Основной транзакт-распоряжение проходит через узел 2 без задержки. В узле 7 производится оплата комплектующих, если на расчетном счете есть достаточная сумма (даже если кредит не получен). В противном случае происходит ожидание либо кредита, либо оплаты продаваемой продукции. В узле 8 транзакт становится в очередь, если все производственные линии заняты. В узле 9 осуществляется изготовление партии продукции. В узле 10 возникает дополнительная заявка на возврат кредита, если ссуда ранее была выделена. Эта заявка поступает в узел 11, где происходит перечисление денег с расчетного счета компании в банк; если денег нет, то заявка ожидает. После возврата кредита эта заявка уничтожается (в узле 12); в банке появилась информация о том, что кредит возвращен, и компании можно выдать следующий кредит (операция rels).

Транзакт-распоряжение проходит узел 10 без задержки, а в узле 13 он уничтожается. Далее считается, что партия изготовлена и поступила на склад готовой продукции.

Второй процесс «Сбыт » (Приложение Б) имитирует основные функции по реализации продукции. Узел 14 - это генератор транзактов-покупателей продукции. Эти транзакты обращаются на склад (узел 15), и если там есть запрашиваемое количество товара, то товар отпускается покупателю; в противном случае покупатель ждет. Узел 16 имитирует отпуск товара и контроль очереди. После получения товара покупатель перечисляет деньги на расчетный счет компании (узел 17). В узле 18 покупатель считается обслуженным; соответствующий ему транзакт больше не нужен и уничтожается.

Третий процесс «Денежные операции » (приложение В) имитирует проводки в бухгалтерии. Запросы на проводки поступают с первого слоя из узлов 5, 7, 11 (процесс «Производство») и из узла 17 (процесс «Сбыт»). Пунктирными линиями показано движение денежных сумм по Счету 51 («Расчетный счет», узел 20), счету 60 («Поставщики, подрядчики», узел 22), счету 62 («Покупатели, заказчики», узел 21) и по счету 90 («Банк», узел 19). Условные номера примерно соответствуют плану счетов бухгалтерского учета.

Узел 23 имитирует работу финансового директора. Обслуженные транзакты после бухгалтерских проводок попадают обратно в те узлы, откуда они поступили; номера этих узлов находятся в параметре транзакта t→updown.

Исходный код модели представлен в Приложении Г. Данный исходный текст строит саму модель, т.е. создает все узлы (представленные в структурной схеме бизнес-процесса) и связи между ними. Код может быть сгенерирован конструктором Pilgrim (Gem), в котором строятся процессы в объектном виде (Приложение Е).

Модель создаётся с помощью Microsoft Developer Studio. Microsoft Developer Studio – пакет программ для разработки приложений, базирующийся на языке С++.



Рис .8 Загрузочная форма Microsoft Developer Studio

После присоединения к проекту дополнительных библиотек (Pilgrim.lib, comctl32.lib) и файлов ресурсов (Pilgrim.res), компилируем данную модель. После компиляции получаем уже готовую модель.

Автоматически создается файл отчета, в котором хранятся результаты моделирования, полученные после одного запуска модели. Файл отчета представлен в Приложении Д.


3. ВЫВОДЫ ПО БИЗНЕС-МОДЕЛИ «ЭФФЕКТИВНОСТЬ ПРОИЗВОДСТВА»

1) № узла;

2) Наименование узла;

3) Тип узла;

5) M(t) среднее время ожидания;

6) Счетчик входов;

7) Осталось транзактов;

8) Состояние узла в этот момент.

Модель состоит из трех независимых процессов: основного производственного процесса (Приложение А) , процесса реализации продукции (Приложение Б) и процесса управления денежными потоками (Приложение В).

Основной производственный процесс.

За период моделирования бизнес-процесса в узле 1 («Заказы») было сформировано 10 заявки на изготовление продукции. Среднее время формирования заказов – 74 дня, вследствие этого, один транзакт не вошел в рамки времени процесса моделирования. Остальные 9 транзактов вошли в узел 2 («Развилка1»), где было создано соответствующее число запросов в банк на получение кредита. Среднее время ожидания – 19 дней, это время моделирования, за которое были удовлетворены все транзакты.

Далее видно, что 8 запросов получили положительный ответ в узле 3 («Разрешение выдачи»). Среднее время получения разрешения – 65 дней. Загрузка данного узла составила в среднем 70,4%. Состояние узла на момент окончания времени моделирования закрытое, это обусловлено тем, что этот узел предоставляет новый кредит только в случае возврата предыдущего, следовательно, кредит на момент окончания моделирования не был погашен (это видно из узла 11).

Узел 5 осуществляет перевод кредита на расчетный счет предприятия. И, как видно из таблицы результатов, банк перевел на счет компании 135000 руб. В узле 6 все 11 запроса на кредит были уничтожены.

В узле 7 («Плата поставщикам») была произведена оплата комплектующих в размере всего полученного ранее кредита (135000 руб.).

В узле 8 мы видим, что 9 транзактов стоят в очереди. Это происходит, когда все производственные линии заняты.

В узле 9 («Выполнение заказа») осуществляется непосредственное изготовление продукции. На изготовление одной партии продукции уходит 74 дня. За период моделирования был выполнен 9 заказов. Загрузка данного узла составила 40%.

В узле 13, заявок на изготовление продукции были уничтожены в количестве 8 шт. с расчетом, что партии изготовлены и поступили на склад. Среднее время изготовления – 78 дней.

В узле 10 («Развилка 2») было создано 0 дополнительных заявок на возврат кредита. Эти заявки поступили в узел 11 («Возврат»), где банку был возвращен кредит в размере 120000 руб. После возврата кредита заявки на возврат были уничтожены в узле 12 в количестве 7 шт. со средним временем –37 дней.

Процесс реализации продукции.

В узле 14 («Клиенты») было порождено 26 транзактов-покупателей продукции со средним временем 28 дней. Один транзакт ожидает в очереди.

Далее 25 транзактов-покупателей «обратились» на склад (узел 15) за товаром. Загрузка склада за период моделирования составила 4,7%. Продукция со склада выдавалась немедленно – без задержек. В результате выдачи продукции покупателям на складе осталось 1077 ед. продукции, в очереди получение товара не ожидается, следовательно, при получении заказа предприятие может выдать нужное количество товара прямо со склада.

Узел 16 имитирует отпуск продукции 25 клиентам (1 транзакт в очереди). После получения товара клиенты без задержки оплатили полученный товар в сумме 119160 руб. В узле 18 все обслуженные транзакты были уничтожены.

Процесса управления денежными потоками.

В этом процессе мы имеем дело со следующими бухгалтерскими проводками (запросы, на выполнение которых поступают из узлов 5, 7, 11 и 17 соответственно):

1 выдан кредит банком – 135000 руб.;

2 оплата поставщикам за комплектующие – 135000 руб.;

3 возврат банковского кредита – 120000 руб.;

4 на расчетный счет поступили средства от продажи продукции – 119160 руб.

В итоге выполнения этих проводок мы получили следующие данные о распределении средств по счетам:

1) Сч. 90: Банк. 9 транзактов было обслужено, один ожидает в очереди.

Остаток средств – 9970000 руб. Требуется – 0 руб.

2) Сч. 51: Р/счет. 17 транзактов обслужено, один ожидает в очереди.

Остаток средств –14260 руб. Требуется - 15000 руб.

Следовательно, при продлении времени моделирования транзакт, находящийся в очереди, сразу обслужен быть не может, вследствие нехватки средств на счете компании.

3) Сч. 61: Клиенты. 25 транзактов обслужено.

Остаток средств – 9880840 руб. Требуется - 0 руб.

4) Сч. 60: Поставщики. 0 транзактов обслужено (процесс «Поставка товаров» не рассматривался в рамках данного эксперимента).

Остаток средств – 135000 руб. Требуется - 0 руб.

Узел 23 имитирует работу финансового директора. Им было обслужено 50 транзактов

Анализ графика «Динамика задержек».

В результате прогона модели кроме файла, содержащего табличную информацию, мы получаем график динамики задержек в очереди (Рис.9).

График динамики задержек в очереди в узле «Расч. счет 51» свидетельствует о том, что задержка со временем возрастает. Время задержки платежей с расчетного счета предприятия ≈ 18 дней. Это достаточно высокий показатель. В результате, чего предприятие все реже осуществляет платежи, и вскоре возможно время задержки превысит время ожидания кредитора - это может привести к банкротству предприятия. Но, к счастью, эти задержки не частые, а следовательно, это плюс к данной модели.

Разрешить сложившуюся ситуацию можно с помощью минимизации времени задержки платежей для конкретной рыночной ситуации. Минимум времени задержки будет достигнут при одном из максимумов среднего размера денежной суммы на расчетном счете. В этом случае вероятность неуплаты долгов по кредитам будет близка к минимуму.



Рис.9 График задержек в узле «Расчетный счет».

Оценка эффективности модели.

На основании описания процессов мы можем сделать вывод, что процессы производства и реализации продукции в целом работают эффективно. Основной проблемой модели является процесс управления денежными потоками. Главная проблема этого процесса – это долги по погашению банковского кредита, тем самым вызывается нехватка средств на расчетном счете, что не позволит свободно манипулировать полученными денежными средствами, т.к. их необходимо направлять на погашение кредита. Как нам стало известно из анализа графика «Динамики задержек», в будущем предприятие сможет вовремя погашать кредиторскую задолженность, но не всегда в чётко указанные строки

Следовательно, можно сделать вывод, что на данный момент модель достаточно эффективна, но требует мельчайших доработок.

Обобщение результатов статистической обработки информации осуществлялось путем анализа результатов эксперимента.

График задержек в узле «Расчетный счет» показывает, что, на протяжении всего периода моделирования, время задержек в узле держится, в основном, на одном уровне, хотя изредка появляются задержки. Отсюда следует, что увеличение вероятности появления ситуации, когда предприятие может оказаться на грани банкротства, крайне низко. Следовательно, модель вполне приемлема, но, как указывалось выше, требует мелких доработок.


ЗАКЛЮЧЕНИЕ

Сложные по внутренним связям и большие по количеству эле­ментов системы экономически трудно поддаются прямым способам моделирования и зачастую для построения и изучения переходят к имитационным методам. Появление новейших информационных технологий увеличивает не только возможности моделирующих систем, но и позволяет применять большее многообразие моделей и способов их реализации. Совершенствование вычислительной и телекоммуникационной техники привело к разви­тию методов машинного моделирования, без которых невозможно изучение процессов и явлений, а также построение больших и слож­ных систем.

На основании проделанной работы можно сказать, что значение моделирования в экономике очень велико. Поэтому современный экономист должен хорошо разбираться в экономико-математических методах, уметь их практически применять для моделирования реальных экономических ситуаций. Это позволяет лучше усвоить теоретические вопросы современной экономики, способствует повышению уровня квалификации и общей профессиональной культуры специалиста.

С помощью различных бизнес-моделей можно описать экономические объекты, закономерности, связи и процессы не только на уровне отдельно взятой фирмы, но и на уровне государства. А это весьма важный факт для любой страны: можно предсказать подъемы и спады, кризисы и застои в экономике.


СПИСОК ЛИТЕРАТУРЫ

1. Емельянов А.А., Власова Е.А. Компьютерное моделирование – М.: Московский гос. Университет экономики, статистики и информатики, 2002.

2. Замков О.О., Толстопятенко А.В., Черемных Ю.Н. Математические методы в экономике, М., Дело и сервис, 2001.

3. Колемаев В.А., Математическая экономика, М., ЮНИТИ, 1998.

4. Нейлор Т. Машинные имитационные эксперименты с моделями экономических систем. – М.: Мир, 1975. – 392 с.

5. Советов Б.Я., Яковлев С.А. Моделирование систем. – М.: Высш. Шк., 2001.

6. Шеннон Р.Е. Имитационное моделирование систем: наука и искусство. - М.: Мир, 1978.

7. www.thrusta.narod.ru


ПРИЛОЖЕНИЕ А

Схема бизнес-модели «Эффективность предприятия»

ПРИЛОЖЕНИЕ Б

Процесс реализации продукции бизнес-модели «Эффективность предприятия»


ПРИЛОЖЕНИЕ В

Процесс управления денежными потоками бизнес-модели «Эффективность предприятия»


ПРИЛОЖЕНИЕ Г

Исходный код модели

ПРИЛОЖЕНИЕ Д

Файл отчета модели


ПРИЛОЖЕНИЕ Е

  • Емельянов А.А., Власова Е.А., Дума Р.В. Имитационное моделирование экономических процессов. М.: Финансы и статистика, 2002.
  • Александровский Н.М., Егоров С.В., Кузин Р.Е. Адаптивные системы управления сложными технологическими процессами. М.: НРЕ, 1973.
  • Бусленко Н.П. Моделирование сложных систем. М.: Наука, 1978.
  • ГОСТ 24.702 ? 85. Эффективность АСУ. Основные положения. ? М.: Издательство стандартов, 1985.
  • Емельянов А.А., Власова Е.А., Дума Р.В. Имитационное моделирование в экономических информационных системах. Учебное пособие. - М.: МЭСИ, 1996.
  • Емельянов А.А. Техника разработки и анализа управляемых программ. М.: Издательство «АтомИнформ», 1984.
  • Емельянов А.А. Системы имитационного моделирования дискретных и дискретно-непрерывных процессов (ПИЛИГРИМ). 10785338.00027-01 92 01-ЛУ. Тверь: Мобильность, 1992.
  • Липаев В.В., Яшков С.Ф. эффективность методов организации вычислительного процесса АСУ. М.: Финансы и статистика, 1975.
  • Назин А.В., Позняк А.С. Адаптивный выбор вариантов. М.: Наука, 1986.
  • Прицкер А. введение в имитационное моделирование и язык СЛАМ П. М.: Мир, 1987.
  • Роберте Ф.С. Дискретные математические модели с приложениями к социальным биологическим и экологическим задачам. М.: Наука, 1986.
  • Шеннон Р. имитационное моделирование систем: наука и искусство. М.: Мир, 1978.
  • Имитационное моделирование случайных факторов [Текст] : метод. указания к практическим занятиям по курсу «Имитационное моделирование экономических процессов» / Воронеж. гос. технол. акад.; сост. А. С. Дуб-ровин, М. Е. Семенов. Воронеж, 2005. 32 с.
  • Афанасьев, М. Ю. Исследование операций в экономике: модели, задачи, решения [Текст] : учеб. пособие / М. Ю. Афанасьев, Б. П. Суворов. – М. : ИНФРА-М, 2003. – 444 с. (Серия. Высшее образование).
  • Варфоломеев, В. И. Алгоритмическое моделирование элементов экономи-ческих систем [Текст] : практикум: учеб. пособие / В. И. Варфоломеев, С. В. Назаров; Под ред. С. В. Назарова. – М. : Финансы и статистика, 2004. – 264 с.
  • Емельянов, А. А. Имитационное моделирование в экономических инфор-мационных системах [Текст] / А. А. Емельянов, Е. А. Власова, Р. В. Дума; Под ред. А. А. Емельянова. – М. : Финансы и статистика, 2002.
  • Максимей, И. В. Имитационное моделирование на ЭВМ [Текст] / И. В. Максимей. – М. : Радио и связь, 1988. – 232 с.
  • Нейлор, Т. Машинные имитационные эксперименты с моделями экономи-ческих систем [Текст] / Т. Нейлор. – М. : Мир, 1975.
  • Фомин, Г. П. Системы и модели массового обслуживания в коммерческой деятельности [Текст] : учеб. пособие / Г. П. Фомин. – М. : Финансы и ста-тистика, 2000.
  • Бусленко, Н. П. Моделирование сложных систем [Текст] / Н. П. Бусленко. – М. : Наука, 1978.
  • Новиков, О. А. Прикладные вопросы теории массового обслуживания [Текст] / О. А. Новиков, С. И. Петухов. – М. : Советское радио, 1969. – 400 с.
  • Риордан, Дж. Вероятностные системы обслуживания [Текст] / Дж. Риор-дан. – М. : Связь, 1966. – 184 с.
  • Советов, Б. Я. Моделирование систем [Текст] : учебник для вузов / Б. Я. Советов, С. А. Яковлев. – М. : Высшая школа, 1998.
  • Шеннон, Р. Имитационное моделирование систем – искусство и наука [Текст] / Р. Шеннон. – М. : Мир, 1978.
  • Хемди А. Таха Глава 18. Имитационное моделирование // Введение в исследование операций = Operations Research: An Introduction. - 7-е изд. - М.: «Вильямс», 2007.
  • Строгалев В. П., Толкачева И. О. Имитационное моделирование. - МГТУ им. Баумана, 2008.
  • Лоу А., Кельтон В. Имитационное моделирование . СПб.: Издательство:Питер, 2004. – 848 с.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Курсовой проект

По предмету: «Моделирование производственных и экономических процессов»

На тему: «Имитационное моделирование экономических процессов»

Введение

1.1 Понятие моделирования

1.2 Понятие модели

IV. Практическая часть

4.1 Постановка задачи

4.2 Решение задачи

Заключение

Приложение

Введение

Имитационные моделирование, линейное программирование и регрессионный анализ по диапазону и частоте использования давно занимают три первых места среди всех методов исследования операций в экономике. При имитационном моделировании реализующий модель алгоритм воспроизводит процесс функционирования системы во времени и пространстве, причем имитируются составляющие процесс элементарные явления с сохранением его логической временной структуры.

В настоящее время моделирование стало достаточно эффективным средством решения сложных задач автоматизации исследований, экспериментов, проектирования. Но освоить моделирование как рабочий инструмент, его широкие возможности и развивать методологию моделирования дальше можно только при полном овладении приемами и технологией практического решения задач моделирования процессов функционирования систем на ЭВМ. Эту цель и преследует данный практикум, в котором основное внимание уделено методам, принципам и основным этапам моделирования в рамках общей методологии моделирования, а также рассматриваются вопросы моделирования конкретных вариантов систем и прививаются навыки использования технологии моделирования при практической реализации моделей функционирования систем. Рассматриваются проблемы систем массового обслуживания, на которых основываются имитационные модели экономических, информационных, технологических, технических и других систем. Изложены методы вероятностного моделирования дискретных и случайных непрерывных величин, которые позволяют учитывать при моделировании экономических систем случайные воздействия на систему.

Требования, предъявляемые современным обществом к специалисту в области экономики, неуклонно растут. В настоящее время успешная деятельность практически во всех сферах экономики не возможна без моделирования поведения и динамики развития процессов, изучения особенностей развития экономических объектов, рассмотрения их функционирования в различных условиях. Программные и технические средства должны стать здесь первыми помощниками. Вместо того, чтобы учиться на своих ошибках или на ошибках других людей, целесообразно закреплять и проверять познание реальной действительности полученными результатами на компьютерных моделях.

Имитационное моделирование является наиболее наглядным, используется на практике для компьютерного моделирования вариантов разрешения ситуаций с целью получить наиболее эффективные решения проблем. Имитационное моделирование разрешает осуществить исследование анализируемой или проектируемой системы по схеме операционного исследования, которое содержит взаимосвязанные этапы:

· разработка концептуальной модели;

· разработка и программная реализация имитационной модели;

· проверка правильности, достоверности модели и оценка точности результатов моделирования;

· планирование и проведение экспериментов;

· принятие решений.

Это позволяет использовать имитационное моделирование как универсальный подход для принятия решений в условиях неопределенности с учетом в моделях трудно формализуемых факторов, а также применять основные принципы системного подхода для решения практических задач.

Широкому внедрению этого метода на практике препятствует необходимость создания программных реализаций имитационных моделей, которые воссоздают в модельном времени динамику функционирования моделируемой системы.

В отличие от традиционных методов программирования разработка имитационной модели требует перестройки принципов мышления. Недаром принципы, положенные в основу имитационного моделирования, дали толчок к развитию объектного программирования. Поэтому усилия разработчиков программных средств имитации направлены на упрощение программных реализаций имитационных моделей: для этих целей создаются специализированные языки и системы.

Программные средства имитации в своем развитии изменялись на протяжении нескольких поколений, начиная с языков моделирования и средств автоматизации конструирования моделей до генераторов программ, интерактивных и интеллектуальных систем, распределенных систем моделирования. Основное назначение всех этих средств - уменьшение трудоемкости создания программных реализаций имитационных моделей и экспериментирование с моделями.

Одним из первых языков моделирования, облегчающих процесс написания имитационных программ, был язык GPSS, созданный в виде конечного продукта Джеффри Гордоном в фирме IBM в 1962 году. В настоящее время есть трансляторы для операционных систем DOS - GPSS/PC, для OS/2 и DOS - GPSS/H и для Windows - GPSS World. Изучение этого языка и создание моделей позволяют понять принципы разработки имитационных программ и научиться работать с имитационными моделями.

GPSS (General Purpose Simulation System - система моделирования общего назначения) - язык моделирования, который используется для построения событийных дискретных имитационных моделей и проведения экспериментов с помощью персонального компьютера.

Система GPSS представляет собой язык и транслятор. Как каждый язык он содержит словарь и грамматику, с помощью которых могут быть разработаны модели систем определенного типа.

I. Основные понятия теории моделирования экономических систем и процессов

1.1 Понятие моделирования

Под моделированием понимается процесс построения, изучения и применения моделей. Оно тесно связано с такими категориями, как абстракция, аналогия, гипотеза и др. Процесс моделирования обязательно включает и построение абстракций, и умозаключения по аналогии, и конструирование научных гипотез.

Главная особенность моделирования в том, что это метод опосредованного познания с помощью объектов-заместителей. Модель выступает как своеобразный инструмент познания, который исследователь ставит между собой и объектом, и с помощью которого изучает интересующий его объект. Любая социально-экономическая система представляет собой сложную систему, в которой взаимодействуют десятки и сотни экономических, технических и социальных процессов, постоянно изменяющихся под воздействием внешних условий, в том числе и научно-технического прогресса. В таких условиях управление социально-экономическими и производственными системами превращается в сложнейшую задачу, требующую специальных средств и методов. Моделирование представляет собой один из основных методов познания, является формой отражения действительности и заключается в выяснении или воспроизведении тех или иных свойств реальных объектов, предметов и явлений с помощью других объектов, процессов, явлений, либо с помощью абстрактного описания в виде изображения, плана, карты, совокупности уравнений, алгоритмов и программ.

В самом общем смысле под моделью понимают логическое (словесное) или математическое описание компонентов и функций, отображающих существенные свойства моделируемого объекта или процесса, обычно рассматриваемых как системы или элементы системы с определенной точки зрения. Модель используется как условный образ, сконструированный для упрощения исследования объекта. В принципе, в экономике применимы не только математические (знаковые), но и материальные модели, однако материальные модели имеют лишь демонстрационное значение.

Существуют две точки зрения на существо моделирования:

* это исследование объектов познания на моделях;

* это построение и изучение моделей реально существующих предметов и явлений, а также предполагаемых (конструируемых) объектов.

Возможности моделирования, то есть перенос результатов, полученных в ходе построения и исследования модели, на оригинал основаны на том, что модель в определенном смысле отображает (воспроизводит, моделирует, описывает, имитирует) некоторые интересующие исследователя черты объекта. Моделирование как форма отражения действительности широко распространено, и достаточно полная классификация возможных видов моделирования крайне затруднительна, хотя бы в силу многозначности понятия «модель», широко используемого не только в науке и технике, но и в искусстве, и в повседневной жизни.

Слово «модель» произошло от латинского слова «modulus», означает «мера», «образец». Его первоначальное значение было связано со строительным искусством, и почти во всех европейских языках оно употреблялось для обозначения образа или прообраза, или вещи, сходной в каком-то отношении с другой вещью.

Среди социально-экономических систем целесообразно выделить производственную систему (ПС), которая, в отличие от систем других классов, содержит в качестве важнейшего элемента сознательно действующего человека, выполняющего функции управления (принятие решений и их контроль). В соответствии с этим в качестве ПС могут рассматриваться различные подразделения предприятий, сами предприятия, научно-исследовательские и проектные организации, объединения, отрасли и, в отдельных случаях, народное хозяйство в целом.

Различается характер подобия между моделируемым объектом и моделью:

* физическое -- объект и модель имеют одинаковую или сходную физическую природу;

* структурное -- наблюдается сходство между структурой объекта и структурой модели; * функциональное -- объект и модель выполняют сходные функции при соответствующем воздействии;

* динамическое -- существует соответствие между последовательно изменяющимися состояниями объекта и модели;

* вероятностное -- существует соответствие между процессами вероятностного характера в объекте и модели;

* геометрическое -- существует соответствие между пространственными характеристиками объекта и модели.

Моделирование -- один из наиболее распространенных способов изучения процессов и явлений. Моделирование основывается на принципе аналогии и позволяет изучать объект при определенных условиях и с учетом неизбежной односторонней точки зрения. Объект, трудно доступный для изучения, изучается не непосредственно, а через рассмотрение другого, подобного ему и более доступного -- модели. По свойствам модели обычно оказывается возможным судить о свойствах изучаемого объекта. Но не обо всех свойствах, а лишь о тех, которые аналогичны и в модели, и в объекте и при этом важны для исследования.

Такие свойства называются существенными. Есть ли необходимость в математическом моделировании экономики? Для того чтобы убедиться в этом, достаточно ответить на вопрос: можно ли выполнить технический проект, не имея плана действий, т. е. чертежей? Та же самая ситуация имеет место и в экономике. Требуется ли доказывать необходимость использования экономико-математических моделей для принятия управленческих решений в сфере экономики?

Экономико-математическая модель оказывается в этих условиях основным средством экспериментального исследования экономики, т. к. обладает следующими свойствами:

* имитирует реальный экономический процесс (или поведение объекта);

* обладает относительно низкой стоимостью;

* может многократно использоваться;

* учитывает различные условия функционирования объекта.

Модель может и должна отражать внутреннюю структуру экономического объекта с заданных (определенных) точек зрения, а если она неизвестна, то лишь его поведение, используя при этом принцип «Черного ящика».

Принципиально любая модель может быть сформулирована тремя способами:

* в результате прямого наблюдения и изучения явлений действительности (феноменологический способ);

* вычленения из более общей модели (дедуктивный способ);

* обобщения более частных моделей (индуктивный способ, т. е. доказательство по индукции).

Модели, бесконечные в своем многообразии, можно классифицировать по самым различным признакам. В первую очередь все модели можно подразделить на физические и описательные. И с теми, и с другими мы постоянно имеем дело. В частности, к описательным относятся модели, в которых моделируемый объект описывается с помощью слов, чертежей, математических зависимостей и т. д. К таким моделям можно отнести литературу, изобразительное искусство, музыку.

В управлении хозяйственными процессами широко используются экономико-математические модели. В литературе нет устоявшегося определения экономико-математической модели. Возьмем за основу следующее определение. Экономико-математическая модель -- математическое описание экономического процесса или объекта, осуществленное в целях их исследования или управления ими: математическая запись решаемой экономической задачи (поэтому часто термины задача и модель употребляются как синонимы).

Модели можно также классифицировать и по другим признакам:

* Модели, в которых описывается моментное состояние экономики, называются статическими. Модели, которые показывают развитие объекта моделирования, называются динамическими.

* Модели, которые могут строиться не только в виде формул (аналитическое представление), но и в виде числовых примеров (численное представление), в форме таблиц (матричное представление), в форме особого рода графов сетевое представление).

1.2 Понятие модели

В настоящее время нельзя назвать область человеческой деятельности, в которой в той или иной степени не использовались бы методы оделирования. Между тем общепризнанного определения понятия модели не существует. На наш взгляд, заслуживает предпочтения следующее определение: модель - объект любой природы, который создается исследователем с целью получения новых знаний об объекте оригинале и отражает только существенные (с точки зрения разработчика) свойства оригинала.

Анализируя содержание этого определения, можно сделать следующие выводы:

1) любая модель субъективна, она несет на себе печать индивидуальности исследователя;

2) любая модель гомоморфна, т.е. в ней отражаются не все, а только существенные свойства объекта-оригинала;

3) возможно существование множества моделей одного и того же объекта-оригинала, отличающихся целями исследования и степенью адекватности.

Модель считается адекватной объекту-оригиналу, если она с достаточной степенью приближения на уровне понимания моделируемого процесса исследователем отражает закономерности процесса функционирования реальной системы во внешней среде.

Математические модели можно разделить на аналитические, алгоритмические (имитационные) и комбинированные. Для аналитического моделирования характерно то, что для описания процессов функционирования системы используются системы алгебраических, дифференциальных, интегральных или конечно-разностных уравнений. Аналитическая модель может быть исследована следующими методами:

а) аналитическим, когда стремятся получить в общем виде явные зависимости для искомых характеристик;

б) численным, когда, не умея решать уравнения в общем виде, стремятся получить числовые результаты при конкретных начальных данных;

в) качественным, когда, не имея решения в явном виде, можно найти некоторые свойства решения (например, оценить устойчивость решения). При алгоритмическом (имитационном) моделировании описывается процесс функционирования системы во времени, причем имитируются элементарные явления, составляющие процесс, с сохранением их логической структуры и последовательности протекания во времени. Имитационные модели также могут быть детерминированными и статистическими.

Общая цель моделирования в процессе принятия решения была сформулирована ранее - это определение (расчет) значений выбранного показателя эффективности для различных стратегий проведения операции (или вариантов реализации проектируемой системы). При разработке конкретной модели цель моделирования должна уточняться с учетом используемого критерия эффективности. Таким образом, цель моделирования определяется как целью исследуемой операции, так и планируемым способом использования результатов исследования.

Например, проблемная ситуация, требующая принятия решения, формулируется следующим образом: найти вариант построения вычислительной сети, который обладал бы минимальной стоимостью при соблюдении требований производительности и надежности. В этом случае целью моделирования является отыскание параметров сети, обеспечивающих минимальное значение ПЭ, в роли которого выступает стоимость.

Задача может быть сформулирована иначе: из нескольких вариантов конфигурации вычислительной сети выбрать наиболее надежный. Здесь в качестве ПЭ выбирается один из показателей надежности (средняя наработка на отказ, вероятность безотказной работы и т.д.), а целью моделирования является сравнительная оценка вариантов сети по этому показателю.

Приведенные примеры позволяют напомнить о том, что сам по себе выбор показателя эффективности еще не определяет «архитектуру» будущей модели, поскольку на этом этапе не сформулирована ее концепция, или, как говорят, не определена концептуальная модель исследуемой системы.

II. Основные понятия теории моделирования экономических систем и процессов

2.1 Cовершенствование и развитие экономических систем

Имитационное моделирование - наиболее мощный и универсальный метод исследования и оценки эффективности систем, поведение которых зависит от воздействия случайных факторов. К таким системам можно отнести и летательный аппарат, и популяцию животных, и предприятие, работающее в условиях слаборегулируемых рыночных отношений.

В основе имитационного моделирования лежит статистический эксперимент (метод Монте-Карло), реализация которого практически невозможна без применения средств вычислительной техники. Поэтому любая имитационная модель представляет собой в конечном счете более или менее сложный программный продукт.

Конечно, как и любая другая программа, имитационная модель может быть разработана на любом универсальном языке программирования, даже на языке Ассемблера. Однако на пути разработчика в этом случае возникают следующие проблемы:

* требуется знание не только той предметной области, к которой относится исследуемая система, но и языка программирования, причем на достаточно высоком уровне;

* на разработку специфических процедур обеспечения статистического эксперимента (генерация случайных воздействий, планирование эксперимента, обработка результатов) может уйти времени и сил не меньше, чем на разработку собственно модели системы.

И наконец, еще одна, пожалуй, важнейшая проблема. Во многих практических задачах интерес представляет не только (и не столько) количественная оценка эффективности системы, сколько ее поведение в той или иной ситуации. Для такого наблюдения исследователь должен располагать соответствующими «смотровыми окнами», которые можно было бы при необходимости закрыть, перенести на другое место, изменить масштаб и форму представления наблюдаемых характеристик и т.д., причем не дожидаясь окончания текущего модельного эксперимента. Имитационная модель в этом случае выступает как источник ответа на вопрос: «что будет, если…».

Реализация таких возможностей на универсальном языке программирования - дело очень непростое. В настоящее время cсуществует довольно много программных продуктов, позволяющих моделировать процессы. К таким пакетам относятся: Pilgrim, GPSS, Simplex и ряд других.

Вместе с тем в настоящее время на российском рынке компьютерных технологий есть продукт, позволяющий весьма эффективно решать указанные проблемы, - пакет МАТLАВ, содержащий в своем составе инструмент визуального моделирования Simulink.

Simulink - это инструмент, позволяющий достаточно быстро смоделировать систему и получить показатели ожидаемого эффекта и сравнить их с затратами сил на их достижение.

Существует множество различных типов моделей: физические, аналоговые, интуитивные и т.д. Особое место среди них занимают математические модели, которые, по мнению академика А.А. Самарского, «являются самым большим дос-тижением научнотехнической революции XX века». Математические модели делятся на две группы: аналитические и алго-ритмические (которые иногда называют имитационными).

В настоящее время нельзя назвать область человеческой деятельности, в которой в той или иной степени не использовались бы методы моделирования. Не составляет исключения и экономическая деятельность. Однако в области имитационного моделирования экономических процессов до сих пор наблюдаются некоторые сложности.

На наш взгляд, это обстоятельство объясняется следующими причинами.

1. Экономические процессы происходят в значительной мере стихийно, неуправляемо. Они плохо поддаются попыткам волевого управления со стороны политических, государствен-ных и хозяйственных руководителей отдельных отраслей и экономики страны в целом. По этой причине экономические системы плохо поддаются изучению и формализованному описанию.

2. Специалисты в области экономики, как правило, имеют недостаточную математическую подготовку вообще и по вопросам математического моделирования в частности. Большинство из них не умеет формально описывать (формализовывать) наблюдаемые экономические процессы. Это, в свою очередь, не позволяет установить, адекватна ли та или иная математическая модель рассматриваемой экономической системе.

3. Специалисты в области математического моделирования, не имея в своем распоряжении формализованного описания экономического процесса, не могут создать адекватную ему математическую модель.

Существующие математические модели, которые принято называть моделями экономических систем, можно условно разделить на три группы.

К первой группе можно отнести модели, достаточно точно отражающие какую-либо одну сторону определенного экономического процесса, происходящего в системе сравнительно малого масштаба. С точки зрения математики они представляют собой весьма простые соотношения между двумя-тремя переменными. Обычно это алгебраические уравнения 2-й или 3-й степени, в крайнем случае система алгебраических уравнений, требующая для решения применения метода итераций (последовательных приближений). Они находят применение на практике, но не представляют инте-реса с точки зрения специалистов в области математического моделирования.

Ко второй группе можно отнести модели, которые описывают реальные процессы, протекающие в экономических системах малого и среднего масштаба, подверженные воздействию случайных и неопределенных факторов. Разработка таких моделей требует принятия допущений, позволяющих разрешить неопределенности. Например, требуется задать распределения случайных величин, относящихся к входным переменным. Эта искусственная операция в известной степе-ни порождает сомнение в достоверности результатов моделирования. Однако другого способа создания математической модели не существует.

Среди моделей этой группы наибольшее распространение получили модели так называемых систем массового обслуживания. Существуют две разновидности этих моделей: аналитические и алгоритмические. Аналитические модели не учитывают действие случайных факторов и поэтому могут использоваться только как модели первого приближения. С помощью алгоритмических моделей исследуемый процесс может быть описан с любой степенью точности на уровне его понимания постановщиком задачи.

К третьей группе относятся модели больших и очень больших (макроэкономических) систем: крупных торговых и промышленных предприятий и объединений, отраслей народного хозяйства и экономики страны в целом. Создание математической модели экономической системы такого масштаба представляет собой сложную научную проблему, решение которой под силу лишь крупному научно-исследовательскому учреждению.

2.2 Компоненты имитационной модели

Численное моделирование имеет дело с тремя видами значений: исходными данными, рассчитанными значениями переменных и со значениями параметров. На листе Excel массивы с этими значениями занимают обособленные области.

Исходные реальные данные, выборки или ряды чисел, получают при непосредственном натурном наблюдении или в опытах. В рамках процедуры моделирования они остаются неизменными (понятно, что при необходимости можно дополнить или уменьшить наборы значений) и играют двоякую роль. Часть из них (независимые переменные среды, Х) служат основой для расчета модельных переменных; чаще всего это характеристики природных факторов (ход времени, фотопериод, температуры, обилие корма, доза токсиканта, объемы сброса поллютантов и др.). Другая часть данных (зависимые переменные объекта, Y) представляет собой количественную характеристику состояния, реакций или поведения объекта исследований, которая была получена в тех или иных условиях, при действии зарегистрированных факторов среды. В биологическом смысле первая группа значений не зависит от второй; напротив, переменные объектов зависят от переменных окружения. На лист Excel данные вводят с клавиатуры или из файла в обычном режиме работы с электронной таблицей.

Модельные расчетные данные воспроизводят теоретически мыслимое состояние объекта, которое определяется предыдущим состоянием, уровнем наблюдаемых факторов среды и характеризуется ключевыми параметрами изучаемого процесса. В ординарном случае при расчете модельных значений (Y М i) для каждого временного шага (i) используются параметры (А), характеристика предыдущего состояния (Y М i -1) и текущие уровни факторов среды (Х i):

Y М i = f(A, Y М i-1 , Х i , i),

f() - принятая форма соотношения параметров и переменных среды, вид модели,

i = 1, 2, … Т или i =1, 2, … n.

Расчеты характеристик системы по модельным формулам для каждого временного шага (для каждого состояния) позволяют сформировать массив модельных явных переменных (Y М), который должен в точности повторять структуру массива реальных зависимых переменных (Y), что необходимо для последующей настройки модельных параметров. Формулы для расчета модельных переменных вводят в ячейки листа Excel вручную (см. раздел Полезные приемы).

Параметры модели (A) составляют третью группу значений. Все параметры можно представить как множество:

A = {a 1 , a 2 ,…, a j ,…, a m },

где j - номер параметра,

m ? общее число параметров,

и расположить в отдельном блоке. Понятно, что число параметров определяется структурой принятых модельных формул.

Занимая на листе Excel обособленное положение, они играют самую значительную роль в моделировании. Параметры призваны характеризовать самое существо, механизм осуществления наблюдаемых явлений. Параметры должны иметь биологический (физический) смысл. Для некоторых задач необходимо, чтобы параметры, рассчитанные для разных массивов данных, можно было сравнить. Значит, они иногда должны сопровождаться своими статистическими ошибками.

Отношения между компонентами имитационной системы формируют функциональное единство, ориентированное на достижение общей цели - оценку параметров модели (рис. 2.6, табл. 2.10). В осуществлении отдельных функций, обозначенных стрелками, одновременно участвуют по несколько элементов. С тем чтобы не загромождать картину, на схеме не отражены блоки графического представления и рандомизации. Имитационная система призвана обслуживать любые изменения конструкций модели, которые в случае необходимости могут быть внесены исследователем. Базовые конструкции имитационных систем, а также возможные пути их декомпозиции и интеграции представлены в разделе Фреймы имитационных систем.

моделирование имитационный экономический ряд

III. Основы имитационного моделирования

3.1 Имитационная модель и ее особенности

Имитационное моделирование -- разновидность аналогового моделирования, реализуемого с помощью набора математических инструментальных средств, специальных имитирующих компьютерных программ и технологий программирования, позволяющих посредством процессов-аналогов провести целенаправленное исследование структуры и функций реального сложного процесса в памяти компьютера в режиме «имитации», выполнить оптимизацию некоторых его параметров.

Имитационная модель является экономико-математической моделью, исследование которой проводится экспериментальными методами. Эксперимент состоит в наблюдении за результатами расчетов при различных задаваемых значениях вводимых экзогенных переменных. Имитационная модель является динамической моделью из-за того, что в ней присутствует такой параметр, как время. Имитационной моделью называют также специальный программный комплекс, который позволяет имитировать деятельность какого-либо сложного объекта. Появление имитационного моделирования было связано с «новой волной» в экономика-тематическом моделировании. Проблемы экономической науки и практики в сфере управления и экономического образования, с одной стороны, и рост производительности компьютеров, с другой, вызвали стремление расширить рамки «классических» экономико-математических методов. Наступило некоторое разочарование в возможностях нормативных, балансовых, оптимизационных и теоретико-игровых моделей, поначалу заслуженно привлекавших тем, что они вносят во многие проблемы управления экономикой обстановку логической ясности и объективности, а также приводят к «разумному» (сбалансированному, оптимальному, компромиссному) решению. Не всегда удавалось полностью осмыслить априорные цели и, тем более, формализовать критерий оптимальности и (или) ограничения на допустимые решения. Поэтому многие попытки все же применить такие методы стали приводить к получению неприемлемых, например, нереализуемых (хотя и оптимальных) решений. Преодоление возникших трудностей пошло по пути отказа от полной формализации (как это делается в нормативных моделях) процедур принятия социально-экономических решений. Предпочтение стало отдаваться разумному синтезу интеллектуальных возможностей эксперта и информационной мощи компьютера, что обычно реализуется в диалоговых системах. Одно течение в этом направлении -- переход к «полунормативным» многокритериальным человеко-машинным моделям, второе -- перенос центра тяжести с прескриптивных моделей, ориентированных на схему «условия -- решение», на дескриптивные модели, дающие ответ на вопрос «что будет, если...».

К имитационному моделированию обычно прибегают в тех случаях, когда зависимости между элементами моделируемых систем настолько сложны и неопределенны, что они не поддаются формальному описанию на языке современной математики, т. е. с помощью аналитических моделей. Таким образом, имитационное моделирование исследователи сложных систем вынуждены использовать, когда чисто аналитические методы либо неприменимы, либо неприемлемы (из-за сложности соответствующих моделей).

При имитационном моделировании динамические процессы системы оригинала подменяются процессами, имитируемыми моделирующим алгоритмом в абстрактной модели, но с соблюдением таких же соотношений длительностей, логических и временных последовательностей, как и в реальной системе. Поэтому метод имитационного моделирования мог бы называться алгоритмическим или операционным. Кстати, такое название было бы более удачным, поскольку имитация (в переводе с латинского -- подражание) -- это воспроизведение чего-либо искусственными средствами, т. е. моделирование. В связи с этим широко используемое в настоящее время название «имитационное моделирование» является тавтологическим. В процессе имитации функционирования исследуемой системы, как при эксперименте с самим оригиналом, фиксируются определенные события и состояния, по которым вычисляются затем необходимые характеристики качества функционирования изучаемой системы. Для систем, например, информационно-вычислительного обслуживания, в качестве таких динамических характеристик могут быть определены:

* производительность устройств обработки данных;

* длина очередей на обслуживание;

* время ожидания обслуживания в очередях;

* количество заявок, покинувших систему без обслуживания.

При имитационном моделировании могут воспроизводиться процессы любой степени сложности, если есть их описание, заданное в любой форме: формулами, таблицами, графиками или даже словесно. Основной особенностью имитационных моделей является то, что исследуемый процесс как бы «копируется» на вычислительной машине, поэтому имитационные модели, в отличие от моделей аналитических позволяют:

* учитывать в моделях огромное количество факторов без грубых упрощений и допущений (а следовательно, повысить адекватность модели исследуемой системе);

* достаточно просто учесть в модели фактор неопределенности, вызванный случайным характером многих переменных модели;

Все это позволяет сделать естественный вывод о том, что имитационные модели могут быть созданы для более широкого класса объектов и процессов.

3.2 Сущность имитационного моделирования

Сущность же имитационного моделирования состоит в целенаправленном экспериментировании с имитационной моделью путем «проигрывания» на ней различных вариантов функционирования системы с соответствующим экономическим их анализом. Сразу отметим, что результаты таких экспериментов и соответствующего им экономического анализа целесообразно оформлять в виде таблиц, графиков, номограмм и т. п., что значительно упрощает процесс принятия решения по результатам моделирования.

Перечислив выше целый ряд достоинств имитационных моделей и имитационного моделирования, отметим также и их недостатки, о которых необходимо помнить при практическом использовании имитационного моделирования. Это:

* отсутствие хорошо структурированных принципов построения имитационных моделей, что требует значительной проработки каждого конкретного случая ее построения;

* методологические трудности поиска оптимальных решений;

* повышенные требования к быстродействию ЭВМ, на которых имитационные модели реализуются;

* трудности, связанные со сбором и подготовкой репрезентативных статистических данных;

* уникальность имитационных моделей, что не позволяет использовать готовые программные продукты;

* сложность анализа и осмысления результатов, полученных в результате вычислительного эксперимента;

* достаточно большие затраты времени и средств, особенно при поиске оптимальных траекторий поведения исследуемой системы.

Количество и суть перечисленных недостатков весьма внушительно. Однако, учитывая большой научный интерес к этим методам и их чрезвычайно интенсивную разработку в последние годы, можно уверенно предположить, что многие из перечисленных выше недостатков имитационного моделирования могут быть устранены как в концептуальном, так и в прикладном плане.

Имитационное моделирование контролируемого процесса или управляемого объекта -- это высокоуровневая информационная технология, которая обеспечивает два вида действий, выполняемых с помощью компьютера:

1) работы по созданию или модификации имитационной модели;

2) эксплуатацию имитационной модели и интерпретацию результатов.

Имитационное моделирование экономических процессов обычно применяется в двух случаях:

* для управления сложным бизнес-процессом, когда имитационная модель управляемого экономического объекта используется в качестве инструментального средства%в контуре адаптивной системы управления, создаваемой на основе информационных технологий;

* при проведении экспериментов с дискретно-непрерывными моделями сложных экономических объектов для получения и отслеживания их динамики в экстренных ситуациях, связанных с рисками, натурное моделирование которых нежелательно или невозможно.

Можно выделить следующие типовые задачи, решаемые средствами имитационного моделирования при управлении экономическими объектами:

* моделирование процессов логистики для определения временных и стоимостных параметров;

* управление процессом реализации инвестиционного проекта на различных этапах его жизненного цикла с учетом возможных рисков и тактики выделения денежных сумм;

* анализ клиринговых процессов в работе сети кредитных организаций (в том числе применение к процессам взаимозачетов в условиях российской банковской системы);

* прогнозирование финансовых результатов деятельности предприятия на конкретный период времени (с анализом динамики сальдо на счетах);

* бизнес-реинжиниринг несостоятельного предприятия (изменение структуры и ресурсов предприятия-банкрота, после чего с помощью имитационной модели можно сделать прогноз основных финансовых результатов и дать рекомендации о целесообразности того или иного варианта реконструкции, инвестиций или кредитования производственной деятельности);

Система имитационного моделирования, обеспечивающая создание моделей для решения перечисленных задач, должна обладать следующими свойствами:

* возможностью применения имитационных программ совместно со специальными экономико-математическими моделями и методами, основанными на теории управления;

* инструментальными методами проведения структурного анализа сложного экономического процесса;

* способностью моделирования материальных, денежных и информационных процессов и потоков в рамках единой модели, в общем, модельном времени;

* возможностью введения режима постоянного уточнения при получении выходных данных (основных финансовых показателей, временных и пространственных характеристик, параметров рисков и др.) и проведении экстремального эксперимента.

Многие экономические системы представляют собой по существу системы массового обслуживания (СМО), т. е. системы, в которых, с одной стороны, имеют место требования по выполнению каких-либо услуг, а с другой -- происходит удовлетворение этих требований.

IV. Практическая часть

4.1 Постановка задачи

Исследовать динамику экономического показателя на основе анализа одномерного временного ряда.

В течение девяти последовательных недель фиксировался спрос Y(t) (млн руб.) на кредитные ресурсы финансовой компании. Временной ряд Y(t) этого показателя приведен в таблице.

Требуется:

1. Проверить наличие аномальных наблюдений.

2. Построить линейную модель Y(t) = a 0 + a 1 t, параметры которой оценить МНК (Y(t)) - расчетные, смоделированные значения временного ряда).

3. Оценить адекватность построенных моделей, используя свойства независимости остаточной компоненты, случайности и соответствия нормальному закону распределения (при использовании R/S-критерия взять табулированные границы 2,7-3,7).

4. Оценить точность моделей на основе использования средней относительной ошибки аппроксимации.

5. По двум построенным моделям осуществить прогноз спроса на следующие две недели (доверительный интервал прогноза рассчитать при доверительной вероятности p = 70%)

6. Фактические значения показателя, результаты моделирования и прогнозирования представить графически.

4.2 Решение задачи

1). Наличие аномальных наблюдений приводит к искажению результатов моделирования, поэтому необходимо убедиться в отсутствии аномальных данных. Для этого воспользуемся методом Ирвина и найдем характеристическое число () (таблица 4.1).

Расчетные значения сравниваются с табличными значениями критерия Ирвина, и если они оказываются больше табличных, то соответствующее значение уровня ряда считается аномальным.

Приложение 1 (Таблица 4.1)

Все полученные значения сравнили с табличными значениями, не превышает их, то есть, аномальных наблюдений нет.

2) Построить линейную модель, параметры которой оценить МНК (- расчетные, смоделированные значения временного ряда).

Для этого воспользуемся Анализом данных в Excel

Приложение 1 ((рис. 4.2).Рис 4.1)

Результат регрессионного анализа содержится в таблице

Приложение 1 (таблице 4.2 и 4.3.)

Во втором столбце табл. 4.3 содержатся коэффициенты уравнения регрессии а 0 , а 1 , в третьем столбце - стандартные ошибки коэффициентов уравнения регрессии, а в четвертом - t - статистика, используемая для проверки значимости коэффициентов уравнения регрессии.

Уравнение регрессии зависимости (спрос на кредитные ресурсы) от (время) имеет вид.

Приложение 1 (рис. 4.5)

3) Оценить адекватность построенных моделей.

3.1. Проверим независимость (отсутствие автокорреляции) с помощью d - критерия Дарбина - Уотсона по формуле:

Приложение 1 (Таблица 4.4)

Т.к. расчетное значение d попадает в интервал от 0 до d 1 , т.е. в интервал от 0 до 1,08, то свойство независимости не выполняется, уровни ряда остатков содержат автокорреляцию. Следовательно, модель по этому критерию неадекватна.

3.2. Проверку случайности уровней ряда остатков проведем на основе критерия поворотных точек. P >

Количество поворотных точек равно 6 .

Приложение 1 (рис.4.5)

Неравенство выполняется (6 > 2). Следовательно, свойство случайности выполняется. Модель по этому критерию адекватна.

3.3. Соответствие ряда остатков нормальному закону распределения определим при помощи RS - критерия:

Максимальный уровень ряда остатков,

Минимальный уровень ряда остатков,

Среднеквадратическое отклонение,

Расчетное значение попадает в интервал (2,7-3,7), следовательно, выполняется свойство нормальности распределения. Модель по этому критерию адекватна.

3.4. Проверка равенства нулю математического ожидания уровней ряда остатков.

В нашем случае, поэтому гипотеза о равенстве математического ожидания значений остаточного ряда нулю выполняется.

В таблице 4.3 собраны данные анализа ряда остатков.

Приложение 1 (Таблица 4.6)

4) Оценить точность модели на основе использования средней относительной ошибки аппроксимации.

Для оценки точности полученной модели будем использовать показатель относительной ошибки аппроксимации, который вычисляется по формуле:

Расчет относительной ошибки аппроксимации

Приложение 1 (Таблица 4.7)

Если ошибка, вычисленная по формуле, не превосходит 15%, точность модели считается приемлемой.

5) По построенной модели осуществить прогноз спроса на следующие две недели (доверительный интервал прогноза рассчитать при доверительной вероятности р = 70%).

Воспользуемся функцией Excel СТЬЮДРАСПОБР.

Приложение 1 (Таблица 4.8)

Для построения интервального прогноза рассчитаем доверительный интервал. Примем значение уровня значимости, следовательно, доверительная вероятность равна 70 %, а критерий Стьюдента при равен 1,12.

Ширину доверительного интервала вычислим по формуле:

(находим из таблицы 4.1)

Вычисляем верхнюю и нижнюю границы прогноза (таб. 4.11).

Приложение 1 (Таблица 4.9)

6) Фактические значения показателя, результаты моделирования и прогнозирования представить графически.

Преобразуем график подбора, дополнив его данными прогноза.

Приложение 1 (Таблица 4.10)

Заключение

Экономическая модель определяется как система взаимосвязанных экономических явлений, выраженных в количественных характеристиках и представленная в системе уравнений, т.е. представляет собой систему формализованного математического описания. Для целенаправленного изучения экономических явлений и процессов и формулирования экономических выводов -- как теоретических, так и практических, целесообразно использовать метод математического моделирования. Особый интерес проявляется к методам и средствам имитационного моделирования, что связано с совершенствованием информационных технологий, используемых в системах имитационного моделирования: развитием графических оболочек для конструирования моделей и интерпретации выходных результатов моделирования, применением мультимедийнных средств, Internet -- решений и др. В экономическом анализе имитационное моделирование является наиболее универсальным инструментом в области финансового, стратегического планирования, бизнес-планировании, управлении производством и проектировании. Математическое моделирование экономических систем Важнейшим свойством математического моделирования является его универсальность. Этот метод позволяет на этапах проектирования и разработки экономической системы формировать различные варианты ее модели, проводить многократные эксперименты с полученными вариантами модели с целью определения (на основе заданных критериев функционирования системы) параметров создаваемой системы, необходимых для обеспечения ее эффективности и надежности. При этом не требуется приобретения или производства какого-либо оборудования или аппаратных средств для выполнения очередного расчета: необходимо просто изменять числовые значения параметров, начальных условий и режимов работы исследуемых сложных экономических систем.

Методологически математическое моделирование включает три основных вида: аналитическое, имитационное и комбинированное (аналитико-имитационное) моделирование. Аналитическое решение, если оно возможно, дает более полную и наглядную картину, позволяющую получать зависимость результатов моделирования от совокупности исходных данных. В данной ситуации следует переходить к использованию имитационных моделей. Имитационная модель в принципе позволяет воспроизвести весь процесс функционирования экономической системы с сохранением логической структуры, связи между явлениями и последовательность протекания их во времени. Имитационное моделирование позволяет учесть большое количество реальных деталей функционирования моделируемого объекта и является незаменимым на финальных стадиях создания системы, когда все стратегические, вопросы уже решены. Можно отметить, что имитационное моделирование предназначено для решения задач расчета системных характеристик. Количество вариантов, подлежащих оценке, должно быть относительно небольшим, поскольку осуществление имитационного моделирования для каждого варианта построения экономической системы требует значительных вычислительных ресурсов. Дело в том, что принципиальной особенностью имитационного моделирования является тот факт, что для получения содержательных результатов необходимо использовать статистические методы. Данный подход требует многократного повторения имитируемого процесса при изменяющихся значениях случайных факторов с последующим статистическим усреднением (обработкой) результатов отдельных однократных расчетов. Применение статистических методов, неизбежное при имитационном моделировании, требует больших затрат машинного времени и вычислительных ресурсов.

Другим недостатком метода имитационного моделирования является тот факт, что для создания достаточно содержательных моделей экономической системы (а на тех этапах создания экономической системы, когда применяется имитационное моделирование, нужны весьма детальные и содержательные модели) требуются значительные концептуальные и программистские усилия. Комбинированное моделирование позволяет объединить достоинства аналитического и имитационного моделирования. Для повышения достоверности результатов следует применять комбинированный подход, основанный на сочетании аналитических и имитационных методов моделирования. При этом аналитические методы должны применяться на этапах анализа свойств и синтеза оптимальной системы. Таким образом, с нашей точки зрения необходима система комплексного обучения студентов средствам и методам как аналитического, так и имитационного моделирования. Организация практических занятий Студенты изучают способы решения оптимизационных задач, сводящихся к задачам линейного программирования. Выбор этого метода моделирования обусловлен простотой и ясностью как содержательной постановки соответствующих задач, так и способами их решения. В процессе выполнения лабораторных работ студенты решают следующие типовые задачи: транспортную задачу; задачу распределения ресурсов предприятия; задачу размещения оборудования и др. 2) Изучение основ имитационного моделирования производственных и непроизводственных систем массового обслуживания в среде GPSS World (General Purpose System Simulation World). Рассматриваются методологические и практические вопросы создания и использования имитационных моделей при анализе и проектировании сложных экономических систем и принятии решений при осуществлении коммерческой и маркетинговой деятельности. Изучаются способы описания и формализации моделируемых систем, этапы и технология построения и использования имитационных моделей, вопросы организации целенаправленных экспериментальных исследований на имитационных моделях.

Список использованной литературы

Основные

1. Акулич И.Л. Математическое программирование в примерах и задачах. - М.: Высшая школа, 1986 г.

2. Власов М.П., Шимко П.Д. Моделирование экономичексих процессов. - Ростов-на -Дону, Феникс - 2005 (электронный учебник)

3. Яворский В.В., Амиров А.Ж. Экономическая информатика и информационные системы (лабораторный практикум) - Астана, Фолиант, 2008 г.

4. Симонович С.В. Информатика, Питер, 2003 г.

5. Воробьев Н.Н. Теория игр для экономистов - кибернетиков. - М.: Наука, 1985 (электронный учебник)

6. Алесинская Т.В. Экономико-математические методы и модели. - Таган Рог, 2002 (электронный учебник)

7. Гершгорн А.С. Математическое программирование и его применение в экономических расчетах. -М. Экономика, 1968 г.

Дополнительно

1. Дарбинян М.М. Товарные запасы в торговле и их оптимизация. - М. Экономика, 1978 г.

2. Джонстон Д.Ж. Экономические методы. - М.: Финансы и статистика, 1960 г.

3. Епишин Ю.Г. Экономико-математические методы и планировании потребительской кооперации. - М.: Экономика, 1975 г.

4. Житников С.А., Биржанова З.Н., Аширбекова Б.М. Экономико-математические методы и модели: Учебное пособие. - Караганда, издательство КЭУ, 1998 г.

5. Замков О.О., Толстопятенко А.В., Черемных Ю.Н. Математические методы в экономике. - М.: ДИС, 1997 г.

6. Иванилов Ю.П., Лотов А.В. Математические методы в экономике. - М.: Наука, 1979 г.

7. Калинина В.Н., Панкин А.В. Математическая статистика. М.: 1998 г.

8. Колемаев В.А. Математическая экономика. М., 1998 г.

9. Кремер Н.Ш., Путко Б.А., Тришин И.М., Фридман М.Н. Исследование операции в экономике. Учебное пособие - М.: Банки и биржи, ЮНИТИ, 1997 г

10. Спирин А.А:, Фомин Г.П. Экономико-математические методы и модели в торговле. - М.: Экономика, 1998 г.

Приложение 1

Таблица 4.1

Таблица 4.2

Подобные документы

    Эконометрическое моделирование стоимости квартир в Московской области. Исследование динамики экономического показателя на основе анализа одномерного временного ряда. Параметры линейной парной регрессии. Оценка адекватности модели, осуществление прогноза.

    контрольная работа , добавлен 07.09.2011

    Эконометрическое моделирование стоимости квартир в московской области. Матрица парных коэффициентов корреляции. Расчет параметров линейной парной регрессии. Исследование динамики экономического показателя на основе анализа одномерного временного ряда.

    контрольная работа , добавлен 19.01.2011

    Изучение понятия имитационного моделирования. Имитационная модель временного ряда. Анализ показателей динамики развития экономических процессов. Аномальные уровни ряда. Автокорреляция и временной лаг. Оценка адекватности и точности трендовых моделей.

    курсовая работа , добавлен 26.12.2014

    Изучение и отработка навыков математического моделирования стохастических процессов; исследование реальных моделей и систем с помощью двух типов моделей: аналитических и имитационных. Основные методы анализа: дисперсионный, корреляционный, регрессионный.

    курсовая работа , добавлен 19.01.2016

    Сущность и содержание метода моделирования, понятие модели. Применение математических методов для прогноза и анализа экономических явлений, создания теоретических моделей. Принципиальные черты, характерные для построения экономико-математической модели.

    контрольная работа , добавлен 02.02.2013

    Разделение моделирования на два основных класса - материальный и идеальный. Два основных уровня экономических процессов во всех экономических системах. Идеальные математические модели в экономике, применение оптимизационных и имитационных методов.

    реферат , добавлен 11.06.2010

    Гомоморфизм - методологическая основа моделирования. Формы представления систем. Последовательность разработки математической модели. Модель как средство экономического анализа. Моделирование информационных систем. Понятие об имитационном моделировании.

    презентация , добавлен 19.12.2013

    Теоретические основы математического прогнозирования продвижения инвестиционных инструментов. Понятие системы имитационного моделирования. Этапы построения моделей экономических процессов. Характеристика ООО "Брянск-Капитал". Оценка адекватности модели.

    курсовая работа , добавлен 20.11.2013

    Имитационное моделирование как метод анализа экономических систем. Предпроектное обследование фирмы по оказанию полиграфических услуг. Исследование заданной системы с помощью модели типа "Марковский процесс". Расчет времени обслуживания одной заявки.

    курсовая работа , добавлен 23.10.2010

    Применение методов оптимизации для решения конкретных производственных, экономических и управленческих задач с использованием количественного экономико-математического моделирования. Решение математической модели изучаемого объекта средствами Excel.