20.09.2019

Основные законы и формулы электростатики. Электростатика


Электростатика - раздел физики изучающий электростатическое поле и электрические заряды.

Между одноимённо заряженными телами возникает электростатическое (или кулоновское) отталкивание, а между разноимённо заряженными - электростатическое притяжение. Явление отталкивания одноименных зарядов лежит в основе создания электроскопа - прибора для обнаружения электрических зарядов.

В основе электростатики лежит закон Кулона. Этот закон описывает взаимодействие точечных электрических зарядов.

Основание электростатики положили работы Кулона (хотя за десять лет до него такие же результаты, даже с ещё большей точностью, получил Кавендиш. Результаты работ Кавендиша хранились в семейном архиве и были опубликованы только спустя сто лет); найденный последним закон электрических взаимодействий дал возможность Грину, Гауссу и Пуассону создать изящную в математическом отношении теорию. Самую существенную часть электростатики составляет теория потенциала, созданная Грином и Гауссом. Очень много опытных исследований по электростатике было произведено Рисом книги которого составляли в прежнее время главное пособие при изучении этих явлений.

Опыты Фарадея, произведенные еще в первую половину тридцатых годов XIX века, должны были повлечь за собой коренное изменение в основных положениях учения об электрических явлениях. Эти опыты указали, что то, что считалось совершенно пассивно относящимся к электричеству, а именно, изолирующие вещества или, как их назвал Фарадей, диэлектрики, имеет определяющее значение во всех электрических процессах и, в частности, в самой электризации проводников. Эти опыты обнаружили, что вещество изолирующего слоя между двумя поверхностями конденсатора играет важную роль в величине электроёмкости этого конденсатора. Замена воздуха, как изолирующего слоя между поверхностями конденсатора, каким-либо другим жидким или твердым изолятором производит на величину электроемкости конденсатора такое же действие, какое оказывает соответствующее уменьшение расстояния между этими поверхностями при сохранении воздуха в качестве изолятора. При замене слоя воздуха слоем другого жидкого или твердого диэлектрика электроемкость конденсатора увеличивается в K раз. Эта величина K названа Фарадеем индуктивной способностью данного диэлектрика. Сегодня величину K называют обыкновенно диэлектрической проницаемось этого изолирующего вещества.

Такое же изменение электрической ёмкости происходит и в каждом отдельном проводящем теле, когда это тело из воздуха переносится в другую изолирующую среду. Но изменение электроемкости тела влечет за собой изменение величины заряда на этом теле при данном потенциале на нём, а также и обратно, изменение потенциала тела при данном заряде его. Вместе с этим оно изменяет и электрическую энергию тела. Итак, значение изолирующей среды, в которой помещены электризуемые тела или которая отделяет собой поверхности конденсатора, является крайне существенным. Изолирующее вещество не только удерживает электрический заряд на поверхности тела, оно влияет на само электрическое состояние последнего. Таково заключение, к какому привели Фарадея его опыты. Это заключение вполне соответствовало основному взгляду Фарадея на электрические действия.

Согласно гипотезе Кулона, электрические действия между телами рассматривались, как действия, которые происходят на расстоянии. Принималось, что два заряда q и q", мысленно сосредоточенные в двух точках, отстоящих друг от друга на расстояние r, отталкивают или притягивают один другого по направлению линии, соединяющей эти две точки, с силой, которая определяется формулой

Причем коэффициент C является зависящим исключительно только от единиц, служащих для измерения величин q, r и f. Природа среды, внутри которой находятся данные две точки с зарядами q и q", предполагалось, не имеет никакого значения, не влияет на величину f. Фарадей держался совершенно иного взгляда на это. По его мнению, наэлектризованное тело только кажущимся образом действует на другое тело, находящееся в некотором расстоянии от него; на самом деле электризуемое тело лишь вызывает особые изменения в соприкасающейся с ним изолирующей среде, которые передаются в этой среде от слоя к слою, достигают, наконец, слоя, непосредственно прилегающего к другому рассматриваемому телу и производят там то, что представляется непосредственным действием первого тела на второе через отделяющую их среду. При таком воззрении на электрические действия закон Кулона, выражающийся вышепривёденной формулой, может служить только для описания того, что даёт наблюдение, и нисколько не выражает истинного процесса, происходящего при этом. Тогда становится понятным, что вообще электрические действия меняются при перемене изолирующей среды, поскольку в этом случае должны изменяться и те деформации, какие возникают в пространстве между двумя, по-видимому, действующими друг на друга наэлектризованными телами. Закон Кулона, так сказать, описывающий внешним образом явление, должен быть заменен другим, в который входит характеристика природы изолирующей среды. Для изотропной и однородной среды закон Кулона, как показали дальнейшие исследования, может быть выражен следующей формулой:

Здесь K обозначает то, что выше названо диэлектрической постоянной данной изолирующей среды. Величина K для воздуха равна единице, т. е. для воздуха взаимодействие между двумя точками с зарядами q и q" выражается так, как принял это Кулон.

Согласно основной идее Фарадея, окружающая изолирующая среда или, лучше, те изменения (поляризация среды), какие под влиянием процесса, приводящего тела в электрическое состояние, являются в наполняющем эту среду эфире, представляют собою причину всех наблюдаемых нами электрических действий. По Фарадею самая электризация проводников на их поверхности - лишь следствие влияния на них поляризованной окружающей среды. Изолирующая среда при этом находится в напряженном состоянии. На основании весьма простых опытов Фарадей пришел к заключению, что при возбуждении электрической поляризации в какой-либо среде, при возбуждении, как говорят теперь, электрического поля, в этой среде должно существовать натяжение вдоль силовых линий (силовая линия - это линия, касательные к которой совпадают с направлениями электрических сил, испытываемых положительным электричеством, воображенным в точках, находящихся на этой линии) и должно существовать давление по направлениям, перпендикулярным к силовым линиям. Такое напряженное состояние может вызываться только в изоляторах. Проводники не способны испытывать подобное изменение своего состояния, в них не происходит никакого возмущения; и только на поверхности таких проводящих тел, т. е. на границе между проводником и изолятором, поляризованное состояние изолирующей среды становится заметным, оно выражается в кажущемся распределении электричества на поверхности проводников. Итак, наэлектризованный проводник как бы связан с окружающей изолирующей средой. С поверхности этого наэлектризованного проводника как бы распространяются силовые линии, и эти линии заканчиваются на поверхности другого проводника, который видимым образом представляется покрытым противоположным по знаку электричеством. Вот какова картина, которую рисовал себе Фарадей для разъяснения явлений электризации.

Учение Фарадея не скоро было принято физиками. Опыты Фарадея рассматривались даже в шестидесятых годах, как не дающие права на допущением какого-либо существенного значения изоляторов в процессах электризации проводников. Только позднее, после появления замечательных работ Максвелла, идеи Фарадея стали все более и более распространяться между учеными и, наконец,были признаны вполне отвечающими фактам.

Здесь уместно отметить, что еще в шестидесятых годах проф. Ф. H. Шведов, на основании произведенных им опытов, весьма горячо и убедительно доказывал верность основных положений Фарадея относительно роли изоляторов . На самом деле, однако, за много лет до работ Фарадея уже было открыто влияние изоляторов на электрические процессы. Еще в начале 70-х годов XVIII столетия Кавендиш наблюдал и весьма тщательно изучил значение природы изолирующего слоя в конденсаторе. Опыты Кэвендиша, как и впоследствии опыты Фарадея, показали увеличение электроемкости конденсатора, когда слой воздуха в этом конденсаторе заменяется такой же толщины слоем какого-либо твердого диэлектрика. Эти опыты дают даже возможность определить численные величины диэлектрических постоянных некоторых изолирующих веществ, причем эти величины получаются сравнительно немного отличающимися от тех, какие найдены в последнее время при употреблении более совершенных измерительных приборов. Но эта работа Кавендиша, как и другие его исследования по электричеству, приведшие его к установлению закона электрических взаимодействий, тождественного с законом, опубликованным в 1785 г. Кулоном, оставались неизвестными вплоть до 1879 г. Только в этом году мемуары Кавендиша были обнародованы Максвеллом , повторившим почти все опыты Кавендиша и сделавшим по поводу их многие, весьма ценные указания.

Потенциал

Как уже выше упомянуто, в основание электростатики, вплоть до появления работ Максвелла, был положен закон Кулона:

При допущении С = 1, т. е. при выражении количества электричества в так называемой абсолютной электростатической единице системы СГС, этот закон Кулона получает выражение:

Отсюда потенциальная функция или, проще, потенциал в точке, координаты которой (x, у, z), определяется формулой:

В которой интеграл распространяется на все электрические заряды в данном пространстве, а r обозначает расстояние элемента заряда dq до точки (x, у, z). Обозначая поверхностную плотность электричества на наэлектризованных телах через σ, а объемную плотность электричества в них через ρ, мы имеем

Здесь dS обозначает элемент поверхности тела, (ζ, η, ξ) - координаты элемента объема тела. Проекции на оси координат электрической силы F, испытываемой единицей положительного электричества в точке (x, у, z) находятся по формулам:

Поверхности, во всех точках которых V = пост., носят название эквипотенциальных поверхностей или, проще, поверхностей уровня. Линии, ортогональные к этим поверхностям, суть электрические силовые линии. Пространство, в котором могут быть обнаружены электрические силы, т. е. в котором могут быть построены силовые линии, носят название электрического поля. Сила, испытываемая единицей электричества в какой-либо точке этого поля, называется напряжением электрического поля в этой точке. Функция V обладает следующими свойствами: она однозначна, конечна, непрерывна. Её также можно задать так, чтобы она обращаалась в 0 в точках, отстоящих от данного распределения электричества на бесконечное расстояние. Потенциал сохраняет одну и ту же величину во всех точках какого-либо проводящего тела. Для всех точек земного шара, а также для всех проводников, металлически соединенных с землей, функция V равна 0 (при этом не обращается внимания на явление Вольты, о котором сообщено в статье Электризация). Обозначая через F величину электрической силы, испытываемой единицей положительного электричества в какой-нибудь точке на поверхности S, замыкающей собой часть пространства, и через ε - угол, образуемый направлением этой силы с внешней нормалью к поверхности S в той же точке, мы имеем

В этой формуле интеграл распространяется на всю поверхность S, a Q обозначает алгебраическую сумму количества электричества, заключающихся внутри замкнутой поверхности S. Равенство (4) выражает собой теорему, известную под названием теоремы Гаусса. Одновременно с Гауссом такое же равенство было получено Грином, почему некоторые авторы эту теорему называют теоремой Грина. Из теоремы Гаусса могут быть выведены как следствия,

здесь ρ обозначает объемную плотность электричества в точке (x, у, z);

такое уравнение относится ко всем точкам, в которых не имеется электричества

Здесь Δ - оператор Лапласа, n1 и n2 обозначают нормали в точке какой-либо поверхности, в которой поверхностная плотность электричества σ, нормали, проведенные в ту и в другую сторону от поверхности. Из теоремы Пуассона следует, что для проводящего тела, в котором во всех точках V = пост., должно быть ρ = 0. Поэтому выражение потенциала принимает вид

Из формулы, выражающей граничное условие, т. е. из формулы (7), следует, что на поверхности проводника

Причем n обозначает нормаль к этой поверхности, направленную от проводника внутрь изолирующей среды, прилегающей к этому проводнику. Из этой же формулы вывыводится

Здесь Fn обозначает силу, испытываемую единицей положительного электричества, находящегося в точке, бесконечно близко лежащей к поверхности проводника, имеющей в этом месте поверхностную плотность электричества, равную σ. Сила Fn направлена по нормали к поверхности в этом месте. Сила, испытываемая единицей положительного электричества, находящегося в самом электрическом слое на поверхности проводника и направленная по внешней нормали к этой поверхности, выражается через

Отсюда электрическое давление, испытываемое по направлению внешней нормали каждой единицей поверхности наэлектризованного проводника, выражается формулой

Приведенные уравнения и формулы дают возможность делать немало выводов, относящихся к вопросам, рассматриваемым в Э. Но все они могут быть заменены еще более общими, если воспользоваться тем, что содержится в теории электростатики, данной Максвеллом.

Электростатика Максвелла

Как уже упомянуто выше, Максвелл явился истолкователем идей Фарадея. Он облек эти идеи в математическую форму. Основание теории Максвелла заключается не в законе Кулона, а в принятии гипотезы, которая выражается в следующем равенстве:

Здесь интеграл распространяется по какой угодно замкнутой поверхности S, F обозначает величину электрической силы, которую испытывает единица электричества в центре элемента этой поверхности dS, ε обозначает угол, образуемый этой силой с внешней нормалью к элементу поверхности dS, К обозначает диэлектрический коэффициент среды, прилегающей к элементу dS, и Q обозначает алгебраическую сумму количеств электричества, заключающихся внутри поверхности S. Следствиями выражения (13) являются нижеследующие уравнения:

Эти уравнения более общи, чем уравнения (5) и (7). Они относятся к случаю каких угодно изотропных изолирующих сред. Функция V, являющаяся общим интегралом уравнения (14) и удовлетворяющая вместе с этим уравнению (15) для всякой поверхности, которая отделяет собой две диэлектрические среды с диэлектрическими коэффициентами K 1 и K 2 , а также условию V = пост. для каждого, находящегося в рассматриваемом электрическом поле проводника, представляет собой потенциал в точке (x, у, z). Из выражения (13) также следует, что кажущееся взаимодействие двух зарядов q и q 1 , находящихся в двух точках, расположенных в однородной изотропной диэлектрической среде на расстоянии r друг от друга, может быть представлено формулой

Т. е. это взаимодействие обратно пропорционально квадрату расстояния, как это должно быть согласно закону Кулона. Из уравнения (15) мы получаем для проводника:

Формулы эти более общие, чем вышеприведенные (9), (10) и (12).

представляет собой выражение потока электрической индукции через элемент dS. Проведя через все точки контура элемента dS линии, совпадающие с направлениями F в этих точках, мы получаем (для изотропной диэлектрической среды) трубку индукции. Для всех сечений такой трубки индукции, не заключающей внутри себя электричества, должно быть, как это следует из уравнения (14),

KFCos ε dS = пост.

Не трудно доказать, что если в какой-либо системе тел электрические заряды находятся в равновесии, когда плотности электричества соответственно суть σ1 и ρ1 или σ 2 и ρ 2 , то заряды будут в равновесии и тогда, когда плотности будут σ = σ 1 + σ 2 и ρ = ρ 1 + ρ 2  (принцип сложения зарядов, находящихся в равновесии). Равным образом легко доказать, что при данных условиях может быть только одно распределение электричества в телах, составляющих собой какую-либо систему.

Весьма важным оказывается свойство проводящей замкнутой поверхности, находящейся в соединении с землей. Такая замкнутая поверхность является экраном, защитой для всего пространства, заключенного внympu неё, от влияния каких угодно электрических зарядов, расположенных с внешней стороны поверхности. Вследствие этого электрометры и другие измерительные электрические приборы окружаются обыкновенно металлическими футлярами, соединяемыми с землей. Опыты показывают, что для таких электрич. экранов нет надобности употреблять сплошного металла, вполне достаточно эти экраны устраивать из металлических сеток или даже металлических решеток.

Система наэлектризованных тел обладает энергией, т. е. обладает способностью совершить определенную работу при полной потере своего электрического состояния. B электростатике выводится следующее выражение для энергии системы наэлектризованных тел:

В этой формуле Q и V обозначают соответственно какое-либо количество электричества в данной системе и потенциал в том месте, где находится это количество; знак ∑ указывает, что надо взять сумму произведений VQ для всех количеств Q данной системы. Если система тел представляет собой систему проводников, то для каждого такого проводника потенциал имеет одну и ту же величину во всех точках этого проводника, а потому в данном случае выражение для энергии получает вид:

Здесь 1, 2.. n суть значки разных проводников, входящих в состав системы. Это выражение может быть заменено другими, а именно, электрическая энергия системы проводящих тел может быть представлена или в зависимости от зарядов этих тел, или же в зависимости от потенциалов их, т. е. для этой энергии могут быть применены выражения:

В этих выражениях различные коэффициенты α и β зависят от параметров, определяющих собой положения проводящих тел в данной системе, а также формы и размеры их. При этом коэффициенты β с двумя одинаковыми значками, как то β11, β22, β33 и т. д. представляют собой электроемкости (см. Электроемкость) тел, отмеченных этими значками, коэффициенты β с двумя различными значками, как то β12, β23, β24, и т. д., представляют собой коэффициенты взаимной индукции двух тел, значки которых стоят у данного коэффициента. Имея выражение электрической энергии, мы получаем выражение для силы, какую испытывает какое-либо тело, значок которого i, и от действия которой параметр si, служащий для определения положения этого тела, получает приращение. Выражение этой силы будет

Электрическая энергия может быть представлена еще иначе, а именно, через

В этой формуле интегрирование распространяется по всему беспредельному пространству, F обозначает величину электрической силы, испытываемой единицей положительного электричества в точке (x, у, z), т. е. напряжение электрического поля в этой точке, а K обозначает диэлектрический коэффициент в этой же точке. При таком выражении электрической энергии системы проводящих тел эту энергию можно рассматривать распределенной только в изолирующих средах, причем на долю элемента dxdyds диэлектрика приходится энергий

Выражение (26) вполне соответствует взглядам на электрические процессы, которые были развиваемы Фарадеем и Максвеллом.

Чрезвычайно важной формулой в электростатике является формула Грина, а именно:

В этой формуле оба тройные интеграла распространяются на весь объем какого-либо пространства А, двойные - на все поверхности, ограничивающие это пространство, ∆V и ∆U обозначают суммы вторых производных от функций V и U по x, у, z; n - нормаль к элементу dS ограничивающей поверхности, направленную внутрь пространства A.

Примеры

Пример 1

Как частный случай формулы Грина получается формула, выражающая вышеприведенную теорему Гаусса. В Энциклопедическом Словаре не уместно касаться вопросов о законах распределения электричества на различных телах. Эти вопросы представляют собой весьма трудные задачи математической физики и для решения таких задач употребляются различные способы. Приведем здесь только для одного тела, а именно, для эллипсоида с полуосями а, b, с, выражение поверхностной плотности электричества σ в точке (x, у, z). Мы находим:

Здесь Q обозначает все количество электричества, находящееся на поверхности этого эллипсоида. Потенциал такого эллипсоида в какой-нибудь точке его поверхности, когда вокруг эллипсоида находится однородная изотропная изолирующая среда с диэлектрическим коэффициентом K, выражается через

Электроемкость эллипсоида получится из формулы

Пример 2

Пользуясь уравнением (14), полагая только в нем ρ = 0 и K = пост., и формулой (17), мы можем найти выражение для электроемкости плоского конденсатора с охранным кольцом и охранной коробкой, изолирующей слой в котором имеет диэлектрический коэффициент K. Это выражение имеет вид

Здесь S обозначает величину собирательной поверхности конденсатора, D - толщину изолирующего слоя его. Для конденсатора без охранного кольца и охранной коробки формула (28) будет давать только приближенное выражение электроемкости. Для электроемкости такого конденсатора дана формула Кирхгофом. И даже для конденсатора с охранными кольцом и коробкой формула (29) не представляет вполне строгого выражения электроемкости. Максвелл указал ту поправку, какую надо сделать в этой формуле, чтобы получить более строгий результат.

Энергия плоского конденсатора (с охранными кольцом и коробкой) выражается через

Здесь V1 и V2 суть потенциалы проводящих поверхностей конденсатора.

Пример 3

Для сферического конденсатора получается выражение электроемкости:

В котором R 1 и R 2 обозначают соответственно радиусы внутренней и внешней проводящей поверхности конденсатора. При помощи выражения для электрической энергии (формула 22) нетрудно устанавливается теория абсолютного и квадрантного электрометров

Нахождение величины диэлектрического коэффициента K какого-либо вещества, коэффициента, входящего почти во все формулы, с которыми приходится иметь дело в электростатике, может быть произведено весьма различными способами. Наиболее употребительные способы суть нижеследующие.

1) Сравнение электро емкостей двух конденсаторов, имеющих одинаковые размеры и форму, но у которых у одного изолирующим слоем является слой воздуха, у другого - слой испытуемого диэлектрика.

2) Сравнение притяжений между поверхностями конденсатора, когда этим поверхностям сообщается определенная разность потенциалов, но в одном случае между ними находится воздух (сила притяжения = F 0), в другом случае - испытуемый жидкий изолятор (сила притяжения = F). Диэлектрический коэффициент находится по формуле:

3) Наблюдения электрических волн (см. Электрические колебания), распространяющихся вдоль проволок. По теория Максвелла скорость распространения электрических волн вдоль проволок выражается формулой

В которой K обозначает диэлектрический коэффициент среды, окружающей собой проволоку, μ обозначает магнитную проницаемость этой среды. Можно положить для огромного большинства тел μ = 1, а потому получается

Обыкновенно сравнивают длины стоячих электрических волн, возникающих в частях одной и той же проволоки, находящихся в воздухе и в испытуемом диэлектрике (жидком). Определив эти длины λ 0 и λ, получают K = λ 0 2 / λ 2. По теории Максвелла следует, что при возбуждении электрического поля в каком-либо изолирующем веществе внутри этого вещества возникают особые деформации. Вдоль трубок индукции изолирующая среда является поляризованной. В ней возникают электрические смещения, которые можно уподобить перемещениям положительного электричества по направлению осей этих трубок, причем через каждое поперечное сечение трубки проходит количество электричества, равное

Теория Максвелла дает возможность найти выражения тех внутренних сил (сил натяжения и давления), которые являются в диэлектриках при возбуждении в них электрического поля. Этот вопрос был впервые рассмотрен самим Максвеллом, а позже и более обстоятельно Гельмгольцем . Дальнейшее развитие теории этого вопроса и тесно соединенной с этим теории электрострикции (т. е. теории, рассматривающей явления, зависящие от возникновения особых напряжений в диэлектриках при возбуждении в них электрического поля) принадлежит работам Лорберга, Кирхгофа, Дюгема, Н. Н. Шиллера и некоторых др.

Граничные условия

Закончим краткое изложение наиболее существенного из отдела электрострикции рассмотрением вопроса о преломлении трубок индукции. Представим себе в электрическом поле два диэлектрика, отделяющихся друг от друга какой-нибудь поверхностью S, с диэлектрическими коэффициентами К 1 и К 2 . Пусть в точках Р 1 и Р 2 , расположенных бесконечно близко к поверхности S по ту и по другую её сторону, величины потенциалов выражаются через V 1 и V 2 , а величины сил, испытываемых помещенной в этих точках единицей положительного электричества чрез F 1 и F 2 . Тогда для точки Р, лежащей на самой поверхности S, должно быть V 1 = V 2 ,


если ds представляет бесконечно малое перемещение по линии пересечения касательной плоскости к поверхности S в точке Р с плоскостью, проходящей через нормаль к поверхности в этой точке и через направление электрической силы в ней. С другой стороны, должно быть

Обозначим через ε 2 угол, составляемый силой F 2 с нормалью n 2 (внутрь второго диэлектрика), и через ε 1 угол, составляемый силой F 1 с той же нормалью n 2 Тогда, пользуясь формулами (31) и (30), найдем

Итак, на поверхности, отделяющей друг от друга два диэлектрика, электрическая сила претерпевает изменение в своем направлении подобно световому лучу, входящему из одной среды в другую. Это следствие теории оправдывается на опыте.

Материал из Википедии - свободной энциклопедии

Ещё в Древней Греции было замечено, что натёртый мехом янтарь начинает притягивать мелкие частички – пыль и крошки. Долгое время (вплоть до середины 18 века) не могли дать серьёзного обоснования данного явления. Только в 1785 г. Кулон, наблюдая за взаимодействием заряженных частиц, вывел основной закон их взаимодействия. Примерно через полвека Фарадей исследован и систематизировал действие электрических токов и магнитных полей, а ещё через тридцать лет Максвелл обосновал теорию электромагнитного поля.

Электрический заряд

Впервые термин «электрический» и «электризация», как производные от латинского слова «electri» – янтарь, были введены в 1600 г. английским учёным У. Гильбертом для объяснения явлений, которые возникают при натирании янтаря мехом или стекла кожей. Таким образом, тела, которые обладают электрическими свойствами стали называть электрически заряженными, то есть им был передан электрический заряд.

Из выше сказанного следует, что электрический заряд – это количественная характеристика, показывающая степень возможного участия тела в электромагнитном взаимодействии. Заряд обозначается q или Q и имеет разрядность Кулон (Кл)

В результате многочисленных опытов были выведены основные свойства электрических зарядов:

  • существуют заряды двух типов, которые условно названы положительным и отрицательным;
  • электрические заряды могут передаваться от одного тела к другому;
  • одноимённые электрические заряды отталкиваются друг от друга, а разноимённые – притягиваются друг к другу.

Кроме того был установлен закон сохранения заряда: алгебраическая сумма электрических зарядов в замкнутой (изолированной) системе остаётся постоянной

В 1749 г. американский изобретатель Бенджамин Франклин выдвигает теорию электрических явлений, согласно которой электричество есть заряженная жидкость, недостаток которой он определил как отрицательное электричество, а избыток – положительное электричество. Так возник знаменитый парадокс электротехники: согласно теории Б.Франклина электричество течет от положительного к отрицательному полюсу.

Согласно современной теории строения веществ, все вещества состоят из молекул и атомов, которые в свою очередь состоят из ядра атома и вращающихся вокруг него электронов «e». Ядро является неоднородным и состоит в свою очередь из протонов «р» и нейтронов «n». Причем электроны являются отрицательно заряженными частицами, а протоны положительно заряженными. Так как расстояние между электронами и ядром атома значительно превышают размеры самих частиц, то электроны могут, отщепляются от атома, тем самым обуславливается перемещение электрических зарядов между телами.

Кроме вышеописанных свойств электрический заряд обладает свойством деления, но существует величина минимально возможного неделимого заряда, равного по абсолютной величине заряду электрона (1,6*10 -19 Кл), называемого также элементарным зарядом. В настоящее время доказано существование частиц с электрическим зарядом меньше элементарного, которые называются кварки, но время их существования незначительно и в свободном состоянии они не обнаружены.

Закон Кулона. Принцип суперпозиции

Взаимодействие неподвижных электрических зарядов изучает раздел физики названный электростатикой, в основе которой фактически лежит закон Кулона, который был выведен на основе многочисленных опытов. Данный закон, также как и единица электрического заряда были названы в честь французского физика Шарля Кулона.

Кулон проводя свои опыты установил, что сила взаимодействия между двумя небольшими электрическим зарядами подчиняется следующим правилам:

  • сила пропорциональна величине каждого заряда;
  • сила обратно пропорциональна квадрату расстояний между ними;
  • направление действия силы направленно вдоль прямой соединяющей заряды;
  • сила представляет собой притяжение, если тела заряжены противоположно, и отталкивание в случае одноимённых зарядов.

Таким образом, закон Кулона выражается следующей формулой

где q1, q2 – величина электрических зарядов,

r – расстояние между двумя зарядами,

k – коэффициент пропорциональности, равный k = 1/(4πε 0) = 9 * 10 9 Кл 2 /(Н*м 2), где ε 0 – электрическая постоянная, ε 0 = 8,85 * 10 -12 Кл 2 /(Н*м 2).

Замечу, что ранее электрическая постоянная ε0 называлась диэлектрической постоянной или диэлектрической проницаемостью вакуума.

Закон Кулона проявляется, нет только при взаимодействии двух зарядов, но и что чаще встречается системы из нескольких зарядов. В этом случае закон Кулона дополняется ещё одним существенным фактором, который называется «принципом наложения» или принципом суперпозиции.

В основе принципа суперпозиции лежит два правила:

  • воздействие на заряженную частицу нескольких сил есть векторная сумма воздействий этих сил;
  • любое сложное движение состоит из нескольких простых движений.

Принцип суперпозиции, на мой взгляд, проще всего изобразить графически

На рисунке показаны три заряда: -q 1 , +q 2 , +q 3 . Для того чтобы вычислить силу F общ, которая действует на заряд -q 1 , необходимо вычислить по закону Кулона силы взаимодействия F1 и F2 между -q 1 , +q 2 и -q 1 , +q 3 . Затем получившиеся силы сложить по правилу сложения векторов. В данном случае F общ вычисляется как диагональ параллелограмма по следующему выражению

где α – угол между векторами F1 и F2.

Электрическое поле. Напряженность электрического поля

Всякое взаимодействие между зарядами, называемое также кулоновским взаимодействием (по названию закона Кулона) происходит при помощи электростатического поля, которое является неизменяющимся по времени электрическим полем неподвижных зарядов. Электрическое поле является частью электромагнитного поля и создаётся оно электрическим зарядами или заряженными телами. Электрическое поле воздействует на заряды и заряженные тела независимо от того движутся ли они или находятся в состоянии покоя.

Одним из фундаментальных понятий электрического поля является его напряженность, которая определяется как отношение силы действующей на заряд в электрическом поле к величине этого заряда. Для раскрытия данного понятия необходимо ввести такое понятие как «пробный заряд».

«Пробным зарядом», называется такой заряд, который не участвует в создании электрического поля, а также имеет очень маленькую величину и поэтому своим присутствием не вызывает перераспределение зарядов в пространстве, тем самым не искажая электрическое поле создаваемое электрическим зарядами.

Таким образом, если внести «пробный заряд» q 0 в точку, находящуюся на некотором расстоянии от заряда q, то на «пробный заряд» q П будет действовать некоторая сила F, обусловленная присутствием заряда q. Отношение силы F 0 действующей на пробный заряд, в соответствии с законом Кулона, к величине «пробного заряда», называется напряженностью электрического поля. Напряженность электрического поля обозначается Е и имеет разрядность Н/Кл

Потенциал электростатического поля. Разность потенциалов

Как известно, если на тело действует какая-либо сила, то такое тело совершает определённую работу. Следовательно, и заряд, помещённый в электрическое поле, также будет выполнять работу. В электрическом поле выполненная зарядом работа не зависит от траектории движения, а определяется лишь положением, которое занимает частица в начале и конце перемещения. В физике поля подобные электрическому полю (где работа не зависит от траектории движения тела) называются потенциальными.

Выполненная телом работа определяется по следующему выражению

где F – сила, действующая не тело,

S – расстояние, пройденное телом по действие силы F,

α – угол между направлением движения тела и направлением действия силы F.

Тогда работа выполненная «пробным зарядом» в электрическом поле созданным зарядом q 0 определится из закона Кулона

где q П – «пробный заряд»,

q 0 – заряд создающий электрическое поле,

r 1 и r 2 – соответственно расстояние между q П и q 0 в начальном и конечном положении «пробного заряда».

Так как выполнение работы связано с изменением потенциальной энергии W P , тогда

И потенциальная энергия «пробного заряда» в каждой отельной точке траектории движения будет определяться из следующего выражения

Как видно из выражения с изменением величины «пробного заряда» q п значение потенциальной энергии W P будет изменяться пропорционально q п, поэтому для характеристики электрического поля была введена ещё один параметр названный потенциалом электрического поля φ, который является энергетической характеристикой и определяется следующим выражением

где k – коэффициент пропорциональности, равный k = 1/(4πε 0) = 9 * 10 9 Кл 2 /(Н*м 2), где ε 0 – электрическая постоянная, ε 0 = 8,85 * 10 -12 Кл 2 /(Н*м 2).

Таким образом, потенциалом электростатического поля является энергетической характеристикой, которая характеризует потенциальную энергию, которой обладает заряд, помещённый в данную точку электростатического поля.

Из вышесказанного можно сделать вывод, что работа совершённая при перемещении заряда из одной точки в другую может быть определена из следующего выражения

То есть работа, совершаемая силами электростатического поля при перемещении заряда из одной точки в другую, равна произведению заряда на разность потенциалов в начальной и конечной точках траектории.

При расчётах наиболее удобно знать разность потенциалов между точками электрического поля, а не конкретные значения потенциалов в данных точках, поэтому говоря о потенциале какой либо точки поля, подразумевают разность потенциалов между данной точкой поля и другой точкой поля, потенциал которой условились считать равным нулю.

Разность потенциалов определяется из следующего выражения и имеет размерность Вольт (В)

Продолжение читайте в следующей статье

Теория это хорошо, но без практического применения это просто слова.

В электростатике одним из основополагающих является закон Кулона. Он применяется в физике для определения силы взаимодействия двух неподвижных точечных зарядов или расстояния между ними. Это фундаментальный закон природы, который не зависит ни от каких других законов. Тогда форма реального тела не влияет на величину сил. В этой статье мы расскажем простым языком закон Кулона и его применение на практике.

История открытия

Ш.О. Кулон в 1785 г. впервые экспериментально доказал взаимодействия описанные законом. В своих опытах он использовал специальные крутильные весы. Однако еще в 1773 г. было доказано Кавендишем, на примере сферического конденсатора, что внутри сферы отсутствует электрическое поле. Это говорило о том, что электростатические силы изменяются в зависимости от расстояния между телами. Если быть точнее — квадрату расстояния. Тогда его исследования не были опубликованы. Исторически сложилось так, что это открытие было названо в честь Кулона, аналогичное название носит и величина, в которой измеряется заряд.

Формулировка

Определение закона Кулона гласит: В вакууме F взаимодействия двух заряженных тел прямо пропорционально произведению их модулей и обратно пропорционально квадрату расстояния между ними.

Звучит кратко, но может быть не всем понятно. Простыми словами: Чем больший заряд имеют тела и чем ближе они находятся друг к другу, тем больше сила.

И наоборот: Если увеличить расстояние межу зарядами — сила станет меньше.

Формула правила Кулона выглядит так:

Обозначение букв: q — величина заряда, r — расстояние межу ними, k — коэффициент, зависит от выбранной системы единиц.

Величина заряда q может быть условно-положительной или условно-отрицательной. Это деление весьма условно. При соприкосновении тел она может передаваться от одного к другому. Отсюда следует, что одно и то же тело может иметь разный по величине и знаку заряд. Точечным называется такой заряд или тело, размеры которого много меньше, чем расстояние возможного взаимодействия.

Стоит учитывать что среда, в которой расположены заряды, влияет на F взаимодействия. Так как в воздухе и в вакууме она почти равна, открытие Кулона применимо только для этих сред, это одно из условий применения этого вида формулы. Как уже было сказано, в системе СИ единица измерения заряда — Кулон, сокращено Кл. Она характеризует количество электричества в единицу времени. Является производной от основных единиц СИ.

1 Кл = 1 А*1 с

Стоит отметить, что размерность 1 Кл избыточна. Из-за того что носители отталкиваются друг от друга их сложно удержать в небольшом теле, хотя сам по себе ток в 1А небольшой, если он протекает в проводнике. Например в той же лампе накаливания на 100 Вт течет ток в 0,5 А, а в электрообогревателе и больше 10 А. Такая сила (1 Кл) примерно равна действующей на тело массой 1 т со стороны земного шара.

Вы могли заметить, что формула практически такая же, как и в гравитационном взаимодействии, только если в ньютоновской механике фигурируют массы, то в электростатике — заряды.

Формула Кулона для диэлектрической среды

Коэффициент с учетом величин системы СИ определяется в Н 2 *м 2 /Кл 2 . Он равен:

Во многих учебниках этот коэффициент можно встретить в виде дроби:

Здесь Е 0 = 8,85*10-12 Кл2/Н*м2 — это электрическая постоянная. Для диэлектрика добавляется E — диэлектрическая проницаемость среды, тогда закон Кулона может применяться для расчетов сил взаимодействия зарядов для вакуума и среды.

С учетом влияния диэлектрика имеет вид:

Отсюда мы видим, что введение диэлектрика между телами снижает силу F.

Как направлены силы

Заряды взаимодействуют друг с другом в зависимости от их полярности — одинаковые отталкиваются, а разноименные (противоположные) притягиваются.

Кстати это главное отличие от подобного закона гравитационного взаимодействия, где тела всегда притягиваются. Силы направлены вдоль линии, проведенной между ними, называют радиус-вектором. В физике обозначают как r 12 и как радиус-вектор от первого ко второму заряду и наоборот. Силы направлены от центра заряда к противоположному заряду вдоль этой линии, если заряды противоположны, и в обратную сторону, если они одноименные (два положительных или два отрицательных). В векторном виде:

Сила, приложенная к первому заряду со стороны второго обозначается как F 12. Тогда в векторной форме закон Кулона выглядит следующим образом:

Для определения силы приложенной ко второму заряду используются обозначения F 21 и R 21 .

Если тело имеет сложную форму и оно достаточно большое, что при заданном расстоянии не может считаться точечным, тогда его разбивают на маленькие участки и считают каждый участок как точечный заряд. После геометрического сложения всех получившихся векторов получают результирующую силу. Атомы и молекулы взаимодействуют друг с другом по этому же закону.

Применение на практике

Работы Кулона очень важны в электростатике, на практике они применяется в целом ряде изобретений и устройств. Ярким примером можно выделить молниеотвод. С его помощью защищают здания и электроустановки от грозы, предотвращая тем самым пожар и выход из строя оборудования. Когда идёт дождь с грозой на земле появляется индуцированный заряд большой величины, они притягиваются в сторону облака. Получается так, что на поверхности земли появляется большое электрическое поле. Возле острия молниеотвода оно имеет большую величину, в результате этого от острия зажигается коронный разряд (от земли, через молниеотвод к облаку). Заряд от земли притягивается к противоположному заряду облака, согласно закону Кулона. Воздух ионизируется, а напряженность электрического поля уменьшается вблизи конца молниеотвода. Таким образом, заряды не накапливаются на здании, в таком случае вероятность удара молнии мала. Если же удар в здание и произойдет, то через молниеотвод вся энергия уйдет в землю.

В серьезных научных исследованиях применяют величайшее сооружение 21 века – ускоритель частиц. В нём электрическое поле выполняет работу по увеличению энергии частицы. Рассматривая эти процессы с точки зрения воздействия на точечный заряд группой зарядов, тогда все соотношения закона оказываются справедливыми.

Полезное