05.08.2020

Соединения инертных газов. Соединения инертных газов Фториды инертных газов


Шел 1896-й год. Только что в лабораториях Рамзая и его последователей завершился первый этап экспериментов, возвестивший о полной химической недеятельности аргона и гелия. На этом фоне резким диссонансом прозвучало сообщение французского физика Вийара о полученном им кристаллическом, напоминающем спрессованный снег соединении аргона с водой состава Аr · 6Н2O. Притом получено оно было очень просто и в неожиданных условиях: Вийар сильно сжимал надо льдом при умеренно низких температурах.

Вообще говоря, о подобном, полученном в сходных условиях гидрате хлора Сl2 · 6Н2O сообщил еще в начале XIX в.; позднее стали известны гидраты большого числа газов и легко летучих веществ. Но были обычные для химика , а тут речь шла о соединении инертного аргона! Сообщение Вийара казалось неправдоподобным, и от него попросту отмахнулись; не нашлось даже охотников его проверить.

Вспомнили об открытии Вийара 29 лет спустя, когда Р. Фаркран сообщил о полученных им гексагидратах криптона и ксенона при соприкосновении этих газов со льдом под давлением. Еще через десять лет Б. А. Никитин — получил гексагидраты всех - исключая - инертных газов, а далее и соединения, состоящие из атома инертного газа и трех (в случае радона - двух) молекул фенола, толуола или n-хлорфенола. Позднее были описаны соединения с β -гидрохиноном, а также тройные соединения из криптона или ксенона, семнадцати молекул воды и одной молекулы ацетона, хлороформ или тетрахлорметана. Строение этих соединений был установлено только в 1940-е годы. К этому времени уже было выявлено большое число так называемых соединений включения; они занимают промежуточное положение между подлинно химическими Соединениями и твердыми растворами внедрения.

Выяснилось, что названные выше представляют собой клатратные соединения - разновидность «решетчатых» соединений включения. Их название происходит от латинского clatratus, что означает огороженный, замкнутый. Формируются клатраты так: нейтральная молекула инертного газа (ее место может занимать и другая молекула, например Cl2,H2S, SO2, CO2, СН4) плотно окружается, как бы берется в клещи полярными молекулами - воды, фенола, гидрохинона и т. п., которые соединены между собой водородными связями. Клатраты возникают в тех случаях, когда при кристаллизации растворителя молекулы его образуют ажурные конструкции с пустотами, способными вмещать чужеродные молекулы. Основное условие, необходимое для существования устойчивого клатратного соединения, - это возможно более полное совпадение пространственных размеров полости, образующейся между сцепившимися молекулами «хозяина», и размеров молекулы «гостя», проникшей в полость.

Если «гость» мал (скажем, молекула неона), он с трудом закрепляется в полости и обязательно при содействии низкой температуры и высокого давления, которые препятствуют бегству «гостя» и зачастую способствуют сжатию полости. Трудно приходится и чересчур громоздкой молекуле; в этом случае также необходимо повышенное давление, чтобы «протолкнуть» ее внутрь полости.

Формально клатраты можно отнести к химическим соединениям, так как большинство имеет строго постоянный состав. Но это соединения молекулярного типа, возникающие за счет вандерваальсовых сил стяжения молекул. в клатратах отсутствует, поскольку при их образовании не происходит спаривания валентных электронов и соответствующего пространственного перераспределения электронной плотности в молекуле.

Сами по себе вандерваальсовы силы очень малы, однако энергия связи в клатратной молекуле может оказаться не столь уж малой (порядка 5-10 ккал/моль) благодаря тесному соседству включенной молекулы с молекулами включающего , так как вандерваальсовы силы резко возрастают по мере сближения молекул, В целом же клатраты - малостойкие соединения; при нагревании и растворении они быстро распадаются на составные компоненты.

Крупный вклад в изучение клатратов инертных газов внес советский химик Б. А. Никитин. На протяжении 1936-1952 гг. он синтезировал и исследовал эти соединения, руководствуясь принципом В. Г. Хлопина об изоморфной сокристаллизации сходных по размерам и строению молекул. Никитин установил, что при низких температурах образуют изоморфные кристаллы с летучими гидридами - сероводородом, галогеноводо-родами, метаном, а также с двуокисями серы и углерода. Никитиным найдено, что клатраты инертных газов тем устойчивее и легче образуются, чем выше их молекулярные веса. Это согласуется с общей закономерностью действия вандерваальсовых сил. Гидрат радона (если отвлечься от быстрого радиоактивного распада радона) гораздо устойчивее гидрата неона, а феноляты прочнев соответствующих гидратов. Оттого и дейтери-рованные гидраты прочнее обыкновенных.

Бели бы экспериментаторы располагали значительными количествами радона, можно было бы наблюдать мгновенное образование осадка Rn(Н2О)6 при пропускании радона надо льдом при обычном давлении. Чтобы при 0° получить гидрат ксенона, достаточно приложить давление, несколько большее атмосферного. При этой температуре приходится сжимать до 14,5, до 150, а почти до 300 ат. Можно ожидать, что гидрат гелия удастся получить под давлением в несколько тысяч атмосфер.

Клатраты можно использовать как удобные формы для хранения инертных газов, а также для их разделения. Подвергнув перекристаллизации гидрат двуокиси серы в атмосфере из смеси инертных газов, Никитин обнаружил весь нераспавшийся в осадке, представлявшем изоморфную смесь из SО2 ·6H2О и Rn · 6H2О; же, и сохранились в газовой фазе. Аналогичным образом можно практически полностью перевести в осадок аргон и отделить его от оставшихся в виде газов неона и гелия.

С помощью клатратов инертных газов возможно решать некоторые исследовательские задачи. К ним относится, например, выявление характера связи в изучаемом соединении. Если оно образует с тяжелым инертным газом смешанные кристаллы, то его следует отнести к молекулярному типу (соединению включения); обратное свидетельствует о наличии связи иного типа.

Доктор химических наук В. И. Фельдман

Словосочетание „химия инертных газов“ звучит парадоксально. В самом деле, какая химия может быть у инертного вещества, если в его атомах заполнены все электронные оболочки и, стало быть, оно по определению ни с чем не должно взаимодействовать? Однако во второй половине XX века химикам удалось преодолеть оборону заполненных оболочек и синтезировать неорганические соединения инертных газов. А в XXI веке учёные из России и Финляндии получили вещества, которые состоят только из атомов инертного газа, углерода и водорода.

Всё начиналось со фторидов

Собственно говоря, о том, что химические соединения криптона, ксенона и радона с сильными окислителями вполне могут существовать, Лайнус Полинг упоминал ещё в 1933 году. Однако прошло около тридцати лет, прежде чем в 1962 году Нил Бартлетт синтезировал в Канаде первое из таких соединений - XePtF 6, при этом в реакции участвовали благородный газ и мощный окислитель, гексафторид платины. Соображения, на которые учёный опирался в своём поиске, были весьма простыми и интуитивно понятными каждому химику: если гексафторид платины столь силён, что отбирает электрон даже у молекулярного кислорода, то почему он не может это сделать с ксеноном? Ведь внешний электрон у атома этого газа привязан к ядру ничуть не сильнее, чем у кислорода, - об этом свидетельствуют почти одинаковые значения потенциала ионизации. После того как успешный синтез подтвердил гипотезу, было получено целое семейство соединений ксенона с сильными окислителями - фторидов, оксифторидов, оксидов, солей ксеноновой кислоты и многочисленные комплексы. Химики синтезировали также хлорид ксенона и фторсодержащие соединения со связями Xe–B и Xe–N.

В последующие двадцать лет интригующие события развернулись на стыке химии ксенона и органической химии. В семидесятые годы появилось сообщение о синтезе нестабильной молекулы FXeCF 3, а затем и Xe(CF 3) 2. В конце восьмидесятых получили уже стабильные ионные соли, в которых катион содержал связь Xe–C (в качестве аниона, как правило, выступал борфторид). Среди соединений такого типа особый интерес (почему - станет понятно позже) представляет соль алкинилксенония - + –, которую синтезировали В.В. Жданкин, П. Стэнг и Н.С. Зефиров в 1992 году. Вообще-то, подобные соединения можно считать как органическими, так и неорганическими, но в любом случае их получение стало большим шагом вперёд и для теоретической, и для синтетической химии.

Гораздо труднее сдавался криптон. Однако и его удалось сначала соединить со фтором, а затем встроить и в более сложные молекулы.

Не нужно думать, что все эти соединения - некая забавная экзотика. По крайней мере, один класс из них, фториды ксенона и, прежде всего, его дифторид, довольно часто применяют, если в лабораторных опытах нужно что-то профторировать. Работают они и для вскрытия минерального сырья, и, естественно, как промежуточные соединения при синтезе новых производных ксенона.

В целом „бартлеттовское“ направление в химии инертных газов имеет две главные особенности. Во-первых, оно принадлежит к ионной химии. Так, формулу первого соединения ксенона правильнее записывать как Xe + –. Во всех случаях инертный газ служит восстановителем. Это понятно из самых общих соображений: при всём желании атом с заполненной электронной оболочкой не способен принять ещё один электрон, а вот отдать - может. Главное, чтобы партнёр был агрессивен и настойчив, то есть обладал ярко выраженными окислительными свойствами. Неудивительно, что легче других расстаётся со своим „октетным благородством“ ксенон: у него электроны внешней оболочки расположены дальше от ядра и удерживаются слабее.

Во-вторых, современная химия инертных газов тесно привязана к химии фтора. В состав подавляющего большинства соединений входят атомы фтора, и даже в тех редких случаях, когда фтора нет, путь к их получению всё равно лежит через фториды.

А может ли быть иначе? Существуют ли соединения инертных газов не только без фтора, но и без каких-либо других окислителей? Например, в виде нейтральных стабильных молекул, где атом инертного газа связан с водородом и ни с чем больше? До недавнего времени такой вопрос, повидимому, даже не приходил в голову ни теоретикам, ни экспериментаторам. Между тем именно о таких молекулах речь пойдёт дальше.

Лирическое отступление о роли благородства

Прежде чем говорить о гидридах инертных газов, давайте вернёмся к самому началу, а именно - к инертности благородных газов. Несмотря на всё сказанное выше, элементы главной подгруппы восьмой группы вполне оправдывают своё групповое название. И человек использует их естественную инертность, а не вынужденную реакционную способность.

Например, физико-химики любят применять такой метод: заморозить смесь инертного газа с молекулами какого-либо вещества. Остыв до температуры между 4 и 20К, эти молекулы оказываются в изоляции в так называемой матрице твёрдого инертного газа. Далее можно действовать светом или ионизирующим излучением и смотреть, что за промежуточные частицы получаются. В других условиях такие частицы не видны: они слишком быстро вступают в реакции. А с инертным газом, как считалось в течение многих лет, прореагировать очень непросто. Такими исследованиями на протяжении многих лет занимались в наших лабораториях - в Научно-исследовательском физико-химическом институте им. Л.Я. Карпова, а затем и в Институте синтетических полимерных материалов РАН, причём использование матриц с различными физическими свойствами (аргона, криптона, ксенона) рассказало много нового и интересного о влиянии окружения на радиационно-химические превращения изолированных молекул. Но это - тема для отдельной статьи. Для нашей же истории важно, что такая матричная изоляция неожиданно для всех привела в совершенно новую область химии инертных газов. И случилось это в результате одной встречи на международной конференции по матричной изоляции в США, которая произошла в 1995 году. Именно тогда научный мир впервые узнал о существовании новых необычных соединений ксенона и криптона.

Гидриды выходят на сцену

Финские химики из Университета Хельсинки Мика Петтерсон, Ян Лунделл и Маркку Расанен наполняли твёрдые матрицы инертных газов галогеноводородами (HCl, HBr, HI) и смотрели, как эти вещества распадаются под действием света. Как оказалось, если ксеноновую матрицу после лазерного фотолиза, который проводили при температуре ниже 20К, нагреть до 50К, то в ней появляются новые и очень интенсивные полосы поглощения в ИК-спектре в области между 2000 и 1000 см –1. (В классической колебательной спектроскопии, в „среднем“ и „дальнем“ ИК-диапазонах, традиционно используют шкалу волновых чисел - эквивалентов частот колебаний, выраженных в обратных сантиметрах. Именно в таком виде характеристики колебательных спектров приведены почти во всех учебниках, справочниках и статьях.) В криптоновой матрице этот же эффект проявлялся после нагрева до 30К, а в аргоновой никаких новых полос заметно не было.

Исследователи из Хельсинки сделали смелое предположение: поглощение обусловлено валентными колебаниями связей H–Xe и H–Kr. То есть при нагреве облучённых образцов возникают новые молекулы, содержащие атомы инертных газов. Эксперименты с изотопным замещением и квантово-химические расчёты полностью подтвердили эту догадку. Таким образом, семейство соединений инертных газов пополнилось сразу несколькими новыми членами весьма необычного вида - HXeCl, HXeBr, HXeI, HKrCl и HXeH. Последняя из перечисленных формул произвела особенно сильное впечатление на химиков, воспитанных на классических традициях: только ксенон и водород, никаких сильных окислителей!

Здесь важно отметить: для того чтобы новое соединение появилось на химической карте мира, необходимо его однозначно идентифицировать. Расанен и его коллеги решились поверить своим глазам, рискнули высказать смелое предположение и смогли доказать его. Между тем подобные эксперименты с инертными матрицами проводили и другие учёные. Вполне вероятно, что они наблюдали полосы поглощения гидридов ксенона и криптона, но не смогли их опознать. Во всяком случае, дигидрид ксенона несомненно получался в наших экспериментах, только мы об этом не подозревали. Зато, рассматривая вместе с финскими коллегами наш стенд на той самой конференции, где были впервые представлены сенсационные данные хельсинкской группы, мы сразу же это соединение смогли обнаружить. В отличие от финских коллег, мы в ксеноне замораживали углеводороды, а потом облучали их быстрыми электронами. Гидрид же возникал при нагреве до 40К.

Образование нового, столь необычного соединения инертного газа именно при нагреве означает: всё дело во вторичных реакциях. Но какие частицы в них участвуют? На этот вопрос первые эксперименты ответа не давали.

Метастабильная связь в газовом льду

Следуя „ионной традиции“ в химии ксенона, финские исследователи предположили, что и здесь предшественниками служат ионные частицы - протоны и соответствующие анионы. Проверить это предположение, опираясь только на данные ИК-спектроскопии, было невозможно, ведь полосы в спектрах при нагреве появлялись внезапно, как будто из ничего. Однако в нашем распоряжении был ещё метод электронного парамагнитного резонанса (ЭПР). С его помощью удаётся определить, что за атомы и радикалы возникают при облучении и как быстро они исчезают. В частности, атомы водорода в ксеноновой матрице дают прекрасные сигналы ЭПР, которые ни с чем нельзя спутать вследствие характерного взаимодействия неспаренного электрона с магнитными ядрами изотопов ксенона (129Xe и 131Xe).

Примерно так выглядят блуждания атомов водорода по энергетическим ямам: глобальный минимум, отвечающий молекуле HY, лежит намного ниже, но барьер между двумя состояниями оказывается достаточно большим, чтобы обеспечить относительную устойчивость промежуточного соединения с участием инертного газа.

Благодаря завершенности внешнего электронного уровня благородные газы химически инертны. До 1962 г. считалось, что они вообще не образуют химических соединений. В Краткой химической энциклопедии (М., 1963, т. 2) написано: «Соединений с ионной и ковалентной связями инертные газы не дают». К этому времени были получены некоторые соединения клатратного типа, в которых атом благородного газа механически удерживается в каркасе, образованном молекулами другого вещества. Например, при сильном сжатии аргона над переохлажденной водой был выделен кристаллогидрат Аг 6Н 2 0. В то же время все попытки заставить благородные газы вступать в реакции даже с самыми энергичными окислителями (такими, как фтор) заканчивались безрезультатно. И хотя теоретики во главе с Лайнусом Полингом предсказывали, что молекулы фторидов и оксидов ксенона могут быть устойчивы, экспериментаторы говорили: «Этого не может быть».

Везде на протяжении этой книги мы стараемся подчеркивать две важных идеи:

  • 1) в науке нет незыблемых истин;
  • 2) в химии возможно АБСОЛЮТНО ВСЕ, даже то, что на протяжении десятков лет кажется невозможным или нелепым.

Эти идеи прекрасно подтвердил канадский химик Нил Бартлетт, когда в 1962 г. получил первое химическое соединение ксенона. Вот как это было.

В одном из экспериментов с гексафторидом платины PtF 6 Бартлетт получил красные кристаллы, которые по результатам химического анализа имели формулу 0 2 PtF 6 и состояли из ионов 0 2 и PtF 6 . Это означало, что PtF 6 - настолько сильный окислитель, что отнимает электроны даже у молекулярного кислорода! Бартлетт решил окислить еще какое-нибудь эффектное вещество и сообразил, что отнять электроны у ксенона еще легче, чем у кислорода (потенциалы ионизации 0 2 12,2 эВ и Хе 12,1 эВ). Он поместил в сосуд гексафторид платины, запустил туда точно измеренное количество ксенона и через несколько часов получил гексафтороплатинат ксенона.

Сразу вслед за этой реакцией Бартлетт осуществил реакцию ксенона с фтором. Оказалось, что при нагревании в стеклянном сосуде ксенон реагирует с фтором, при этом образуется смесь фторидов.

Фторид ксенона^ II) XeF 2 образуется под действием дневного света на смесь ксенона с фтором при обычной температуре

или при взаимодействии ксенона и F 2 0 2 при -120 °С.

Бесцветные кристаллы XeF 2 растворимы в воде. Молекула XeF 2 - линейная. Раствор XeF 2 в воде - очень сильный окислитель, особенно в кислой среде. В щелочной среде XeF 2 гидролизуется:

Фторид ксенона(Ч) XeF 4 образуется при нагревании смеси ксенона с фтором до 400 °С.

XeF 4 образует бесцветные кристаллы. Молекула XeF 4 - квадрат с атомом ксенона в центре. XeF 4 - очень сильный окислитель, используется как фторирующий агент.

При взаимодействии с водой XeF 4 диспропорционирует.

Фторид ксенона(Ч1) XeF 6 образуется из элементов при нагревании и повышенном давлении фтора.

XeF 6 - бесцветные кристаллы. Молекула XeF 6 представляет собой искаженный октаэдр с атомом ксенона в центре. Подобно другим фторидам ксенона, XeF 6 - очень сильный окислитель и может использоваться как фторирующий агент.

XeF 6 частично разлагается водой:

Оксид ксенона(У I) Хе0 3 образуется при гидролизе XeF 4 (см. выше). Это белое, нелетучее, очень взрывоопасное вещество, хорошо растворимое в воде, причем раствор имеет слабокислую реакцию из-за протекания следующих реакций:

При действии озона на щелочной раствор Хе0 3 образуется соль ксеноновой кислоты, в которой ксенон имеет степень окисления +8.

Оксид ксенона(У1Н) Хе0 4 может быть получен при взаимодействии перксената бария с безводной серной кислотой при низких температурах.

Хе0 4 - бесцветный газ, очень взрывоопасен и разлагается при температурах выше О °С.

Из соединений других благородных газов известны KrF 2 , KrF 4 , RnF 2 , RnF 4 , RnF 6 , Rn0 3 . Считается, что аналогичные соединения гелия, неона и аргона вряд ли будут когда-нибудь получены в виде индивидуальных веществ.

Выше мы утверждали, что в химии «возможно все». Сообщим поэтому, что соединения гелия, неона и аргона существуют в виде так называемых эксимерных молекул, т.е. молекул, у которых устойчивы возбужденные электронные состояния и неустойчиво основное состояние. Например, при электрическом возбуждении смеси аргона и хлора может протекать газофазная реакция с образованием эксимерной молекулы АгС1.

Аналогично при реакциях возбужденных атомов благородных газов можно получить целый набор двухатомных молекул, таких как Не 2 , HeNe, Ne 2 , NeCl, NeF, HeCl, ArF и т. д. Все эти молекулы неустойчивы и не могут быть выделены в виде индивидуальных веществ, однако их можно зарегистрировать и изучить их строение с помощью спектроскопических методов. Более того, электронные переходы в эксимерных молекулах используются для получения УФ-излучения в мощных эксимерных УФ-лазерах.

Криптон, ксенон и радон характеризуются меньшими значениями ионизационных потенциалов, чем типические элементы (Не, Ne, Лг), поэтому они способны давать соединения обычного типа. Лишь в 1962 г. Н. Бартлетту удалось получить первое такое соединение - гексафторплатинат ксенона Xe + |PtF 6 |. Вслед за этим были получены фториды криптона, радона и их многочисленные производные. Сведения о некоторых соединениях ксенона приведены в табл. 17.2.

Таблица 17.2

Характеристика соединений ксенона

окисления

соединения

молекулы

Структура

Некоторые свойства

вещество

Асимметричная

антипризма

Устойчив к нагреванию до 400°С

Бесцветная

жидкость

Квадратная пирамида

Устойчив

Бесцветные

кристаллы

Пирамидальная

Взрывчатый, гигроскопичен, устойчив в растворах

Бесцветный

Тетраэдрическая

Взрывчатый

Бесцветные

Октаэдрическая

Соответствует 11,ХеО г; , существуют и кислые анионы: Хе0 8 ~, Н 2 ХеО|" и Н 3 ХеО с

Условия получения соединений благородных газов не совсем простые с точки зрения обычных представлений.

Дифторид ксенона XeF 2 получают при взаимодействии Хе с F 2 при высоком давлении. Вещество растворимо в воде. В присутствии кислот процесс гидролиза протекает медленно, а в присутствии щелочей гидролиз усиливается:

XeF 2 - сильный окислитель, например при взаимодействии с НС1 протекает реакция

Тетрафторид ксенона XeF 4 образуется при длительном нагревании и высоком давлении (400°С и 607 кПа) из ксенона и фтора в соотношении 1:5. По свойствам тстрафторид ксенона идентичен XeF„ но устойчив к гидролизу. Во влажном воздухе подвергается диспропорционированию:

Гексафторид ксенона XeF 6 можно получать из XeF 4:

или непосредственно из Хе и F 2 при 250°С и давлении более 5065 кПа. Эго соединение обладает высокой реакционной способностью, что видно на примере его взаимодействия с кварцем:

Как кислота Льюиса, XeF (i легко реагирует с фторидами щелочных металлов (кроме LiF), образуя гептафтор- и октафторксенат-аниопы:

Гидролиз XcF 6 может сопровождаться образованием Хе0 3 и соответствующей ему неустойчивой кислоты Льюиса XeOF 4:

Фториды ксенона являются окислителями:

Гексафторплатинат ксенона Xe получают взаимодействием PtF 6 и Хе при комнатной температуре, т.е. из двух газообразных веществ образуется твердое вещество оранжево-желтого цвета, устойчивое при обычных условиях:

Хе[ PtF c | возгоняется без разложения. При действии воды гидролизуется:

Позднее были получены еще несколько соединений ксенона с гексафторидами рутения, родия п плутония: Xe, Xe, Xe.

Оксотетрафторид ксенона XeOF 4 обладает амфотерными признаками, о чем можно судить по соответствующим катионным комплексам, например .

Оксид ксенона(У1) Хе0 3 представляет собой белое, нелетучее соединение, образующее устойчивые водные растворы. Молекула Хе0 3 имеет структуру тригоналыюй пирамиды. В щелочной среде образует ксенат(У1)-ион:

НХе0 4 вследствие диспропорционирования постепенно превращается в перксенат(УШ)-ион:

Оксид ксенона(УШ) Хе0 4 имеет форму тетраэдра с атомом Хе в центре. Получают Хе0 4 из оксоксената бария действием H 2 S0 4:

Перксенат-ион ХеОф образует устойчивые соли - перксенаты, среди них Na 4 Xe0 8 -6H 2 0, Na 4 Xe0 G -8H 2 0, Ba 2 XeO G -1,5Н 2 0 устойчивы, в воде плохо растворимы.

Криптон образует соединения, которые но составу, структуре и свойствам молекул идентичны соединениям ксенона. Так, кристаллический дифторид криптона получают под воздействием тихого электрического разряда на реакционную смесь при -183°С и давлении -2,7 кПа.

Фторид криптона(Н), или дифторид криптона, KrF 2 при комнатной температуре неустойчив, но при -78°С его можно хранить длительное время. KrF 2 - очень сильный окислитель. При действии на НС1 он вытесняет хлор, а из воды - кислород. Получены также соединения криптона с переходными металлами: KrFMeF 6 . Аналогичного типа соединения получены и с мышьяком, и сурьмой: Kr 2 F 3 AsF 6 , Kr 2 F 3 SbF G и KrFSb 2 F u .

В настоящее время описано значительное число соединений ксенона. Также успешно развивается химия соединений криптона. Что касается радона, то вследствие его высокой а-радиоактивности получение и изучение свойств его производных крайне затруднены.

Применение благородных газов. Гелий благодаря таким свойствам, как инертность, легкость, подвижность и высокая теплопроводность, находит широкое применение. Например, передавливание легковоспламеняющихся веществ из одного сосуда в другой безопасно произвести с помощью гелия.

Фундаментальный вклад в изучении свойств жидкого гелия внесли выдающиеся российские физики, лауреаты Нобелевской премии Л. Д. Ландау и П. Л. Капица.

Биологические исследования показали, что гелиевая атмосфера не влияет на генетический аппарат человека, так как не действует на развитие клеток и частоту мутаций. Дыхание гелиевым воздухом (воздух, в котором азот частично или полностью заменен на гелий) усиливает обмен кислорода в легких, предотвращает азотную эмболию (кессонную болезнь).

Неон часто используют в технике вместо гелия. Широко применяют его для изготовления газосветных неоновых ламп.

Аргон более доступен, чем гелий и неон. Этот газ широко используют в металлургии, обычно им пользуются при горячей обработке титана, ниобия, гафния, урана, тория, щелочных металлов, где исключается контакт с кислородом, азотом, водой и оксидом углерода(1У). Широкое внедрение нашел метод дуговой электросварки в среде аргона.

Криптон главным образом используют при производстве электроламп.

Ксенон широко применяют в производстве ксеноновых ламп, характеризующихся правильной цветопередачей. Ксенон является рентгеноконтрастным веществом, широко используемым при рентгеноскопии головного мозга.

В виде фторидов ксенона удобно хранить и транспортировать ксенон и высокоагрессивный фтор, что имеет важное экологическое значение. Оксиды ксенона могут использоваться как взрывчатые вещества или как сильные окислители.

Радон хотя и радиоактивен, но в ультрамикродозах оказывает положительное влияние на центральную нервную систему, поэтому его используют в курортологии и физиотерапии (радоновые ванны).

Резюме

Электронная оболочка гелия (она единственная) имеет конфигурацию Is 2 , а у остальных элементов наружный энергетический уровень завершен и содержит восемь электронов (конфигурация ...ns 2 np c>), чем объясняется их чрезвычайно низкая активность. Эти элементы объединяют общим термином «благородные газы». Старое название элементов данной группы «инертные газы» применимо фактически только к гелию и неону, поскольку электронное строение их атомов не допускает никакой возможности образования ковалентных соединений, в отличие от остальных, для которых удалось получить химические соединения.

Вопросы и задания

  • 1. Приведите электронные конфигурации благородных газов и исходя из этого объясните, почему благородные газы нс образуют двухатомных молекул.
  • 2. Почему гелий и неон нс способны к образованию соединений с другими элементами?
  • 3. Каков предполагаемый механизм формирования связей с участием криптона и ксенона?
  • 4. Охарактеризуйте известные вам соединения ксенона.

ПОДГРУППА VIIIA (ГЕЛИЙ, НЕОН, АРГОН, КРИПТОН, КСЕНОН, РАДОН)

1. Характерные степени окисления и важнейшие соединения. Наибольшее значение имеют соединения ксенона. Для него характерны степени окисления +2 (XeF2), +4 (XeF4), +6 (XeF6, ХеО3, XeOF4, Ва3ХеО6), +8 (Nа4ХеО6*6Н2О).

2. Природные ресурсы. Благородные газы находятся преимущественно в атмосфере; их содержание составляет Не - 5,24*10-4% (об); Ne-1,8*10-3%; Аr - 0,93%, Кr-3*10-3%, Хе-0,39*10-4%.

Радон образуется при радиоактивном распаде радия и в ничтожных количествах встречается в содержащих уран минералах, а также в некоторых природных водах. Гелий, являющийся продуктом радиоактивного распада альфа-излучаюших элементов, иногда в заметном количестве содержится в природном газе и газе, выделяющемся из нефтяных скважин. В огромных количествах этот элемент находится на Солнце и звездах. Это второй по распространенности (после водорода) из элементов космоса.

3. Получение. Благородные газы выделяют попутно при ректификации жидкого воздуха с целью получения кислорода. Аргон получают также при синтезе NН3 из непрореагировавшего остатка газовой смеси (N2 с примесью Аr). Гелий извлекают из природного газа глубоким охлаждением (СН4 и другие компоненты газовой смеси сжижаются, а Не остается в газообразном состоянии). В большом количестве производят Аr и Не, других благородных газов получают значительно меньше, они дороги.

4. Свойства. Благородные газы - бесцветные, газообразные при комнатной температуре вещества. Конфигурация внешнего электронного слоя атомов гелия 1s2 остальных элементов подгруппы VIIIA-ns2np8. Завершенностью электронных оболочек объясняется одноатомность молекул благородных газов, весьма малая их поляризуемость, низкие т. пл., т. кип., и химическая инертность.

Рассматриваемые вещества при низкой температуре образуют друг с другом твердые растворы (исключением является гелий). Известны клатратные соединения благородных газов, в которых их атомы заключены в пустоты кристаллических решеток различных веществ. Такие соединения - гидраты благородных газов - образует лед (наиболее прочен клатрат с ксеноном). Состав гидратов отвечает формуле 8Э*46Н2О, или Э*5,75Н2О. Известны клатраты с фенолом, например Хе-ЗС6Н5ОН. Весьма прочны клатраты благородных газов с гидрохиноном С6Н4(ОН)2. Их получают, кристаллизуя гидрохинон под давлением благородного газа (4 МПа) Эти клатраты вполне стабильны при комнатной температуре. Не и Ne не образуют клатратов, так как их атомы слишком малы и «ускользают» из пустот кристаллических решеток.

Гелий обладает уникальными особенностями. При 101 кПа он не кристаллизуется (для этого необходимо давление, превышающее 2,5 МПа при Т = 1К). Кроме того, при Т = 2,19 К (при нормальном давлении) он переходит в низкотемпературную жидкую модификацию Не (II), обладающего поразительными особенностями" спокойным кипением, огромной способностью проводить теплоту и отсутствием вязкости (сверхтекучестью). Сверхтекучесть Не (II) была" открыта П. Л Капицей (1938 г.) и объяснена на основе квантово-механических представлений Л. Д. Ландау (1941 г.).

5. Соединения. Возможность существования соединений благородных газов (фторидов Кг и Хе). Сейчас известны соединения криптона, ксенона и радона. Соединения криптона немногочисленны, они существуют только при низкой температуре. Соединения радона должны быть наиболее многочисленны и прочны, но их получению и исследованию мешает очень высокая альфа-радиоактивность Rn, так как излучение разрушает образуемые им вещества. Поэтому данных о соединениях Rn мало.

Ксенон -непосредственно взаимодействует только с фтором и некоторыми фторидами, например PtF6. Фториды ксенона служат исходными веществами для получения других его соединений.

При нагревании с фтором при атмосферном давлении образутся в основном ХеF4 (т. пл. 135°С). При действии избытка фтора давлении 6 МПа получается XeF6 (т. пл. 49 °С). Действуя па Смесь Хе с F2 или CF4 электрическим разрядом или ультрафиолетовым излучением, синтезируют XeF2 (т. пл. 140 °С).

Все фториды ксенопа энергично реагируют с водой, подвергаясь гидролизу, который обычно сопровождается диспропорцнонированием. Гидролиз XeF4 в кислой среде происходит по схеме 3Хе(+4) => Хе°+2Хе(+5) а в щелочной среде так:

ZXе(+4) =>.Хе0+Xe(+8)

NH 3

Строение

Молекула полярная, имеет форму треугольной пирамиды с атомом азота в вершине, HNH = 107,3. Атом азота находится в sp 3 - гибридном состоянии; из четырех гибридных орбиталей азота три участвуют в образовании одинарных связей N-H, а четвертая связь занята неподеленной электронной парой.

Физические свойства

NH 3 - бесцветный газ, запах резкий, удушливый, ядовит, легче воздуха.

плотность по воздуху = MNH 3 / M ср.воздуха = 17 / 29 = 0,5862

t╟ кип.= -33,4C; tпл.= -78C.

Молекулы аммиака связаны слабыми водородными связями

Благодаря водородным связям, аммиак имеет сравнительно высокие tкип. и tпл., а также высокую теплоту испарения, он легко сжимается.

Хорошо растворим в воде: в 1V Н 2 O растворяется 750V NH 3 (при t=20C и p=1 атм).

В хорошей растворимости аммиака можно убедиться на следующем опыте. Сухую колбу наполняют аммиаком и закрывают пробкой, в которую вставлена трубка с оттянутым концом. Конец трубки опускают в воду и колбу немного подогревают. Объем газа увеличивается, и немного аммиака выйдет из трубки. Затем нагревание прекращают и, вследствие сжатия газа некоторое количество воды войдет через трубку в колбу. В первых же каплях воды аммиак растворится, в колбе создастся вакуум и вода, под влиянием атмосферного давления будет подниматься в колбу, - начнет "бить фонтан".

Получение

1. Промышленный способ

N 2 + 3H 2 = 2NH 3

(p=1000 атм; t= 500C; kat = Fe + алюмосиликаты; принцип циркуляции).

2. Лабораторный способ. Нагревание солей аммония со щелочами.

2NH 4 Cl + Ca(OH) 2 ═ t ═ CaCl 2 + 2NH 3 + 2Н 2 O

(NH 4) 2 SO 4 + 2KOH═ t ═ K 2 SO 4 + 2NH 3 + 2Н 2 O

Аммиак можно собирать только по методу (А), т.к. он легче воздуха и очень хорошо растворим в воде.

Химические свойства

Образование ковалентной связи по донорно-акцепторному механизму.

1. Аммиак - основание Льюиса. Его раствор в воде (аммиачная вода, нашатырный спирт) имеет щелочную реакцию (лакмус - синий; фенолфталеин - малиновый) из-за образования гидроксида аммония.

NH 3 + Н 2 O = NH 4 OH = NH 4 + + OH -

2. Аммиак реагирует с кислотами с образованием солей аммония.

NH 3 + HCl = NH 4 Cl

2NH 3 + H 2 SO 4 = (NH 4) 2 SO 4

NH 3 + H 2 O + CO 2 = NH 4 HCO 3

Аммиак - восстановитель (окисляется до N 2 O или NO)

1. Разложение при нагревании

2NH 3 ═ t ═ N 2 + 3H 2

2. Горение в кислороде

a) без катализатора

4NH 3 + 3O 2 = 2N 2 + 6Н 2 O

b) каталитическое окисление (kat = Pt)

4NH 3 + 5O 2 = 4NO + 6Н 2 O

3. Восстановление оксидов некоторых металлов

3CuO + 2NH 3 = 3Cu + N 2 + 3Н 2 O

Кроме NH3, известны два других водородных соединения азота - гидразин N 2Н4 и азотисто водородная кислота HN3 (есть еще несколько соединений азота с водородом, но они малоустойчивы и практически не используются)

Гидразин получают окислением аммиака в водном растворе гипохлоритом натрия (метод Рашига):

2NH3+NaOCl -> N2H3 + NaCl + Н2О

Гидразин - жидкость, т. пл 2°С, т. кип. 114°С с запахом, напоминающим запах NH3. Ядовит, взрывчат. Часто используют не безводный гидразин, а гидразин - гидрат N2H4-H2O, т. пл. -"52°С, т. кип. 119°С. Молекула N2H4 состоит из двух групп NН2,

Благодаря наличию двух неподеленных пар у атомов N гидразин способен к присоединению ионов водорода; легко образуются соединения гидразония: гидроксид.N2H5OH, хлорид N2Н5Сl, гидросульфат N2H5HSO4 и т. д. Иногда их формулы записывают N2H4-H2O, N2H4-HC1, N2H4-H2S04 и т. д и называют гидразингидрат, хлористоводородный гидразин, сернокислый гидразин и т. д. Большинство солей гидразония растворимо в воде.

Сравним силу основании, образуемых в водном растворе NH3, NH2OH и N2H4.

По устойчивости N2H4 значительно уступает NНз, так как связь N-N не очень прочна. Гидразин горит на воздухе:

N2H4 (ж) + О2 (г) = n2 (г) + 2Н2О (г);

В растворах гидразин обычно также окисляется до N2. Восстановить гидразин (до NH3) можно только сильными восстановителями, например, Sn2+, Ti3+, Zn:

N2H4 + Zn + 4HC1 => 2NH4C1 + ZnCl2

Азотистоводородную кислоту HN3 получают действием H2S04 на азид натрия NaNs, который синтезируют по реакции;

2NaNH2 + N2O -> NaNa + NaOH + NHa

HN3 - жидкость, т. пл. -80 °С, т. кип. 37 °С, с резким запахом. Очень легко взрывает с огромной силой, ее разбавленные водные растворы не взрывчаты.

Можно также представить строение HN3 наложением валентных схем

Н-N=N=N и h-n-n=n°!

НNз - слабая кислота (К = Ю- 5). Соли HN3-азиды обычно сильно взрывчаты (не взрывчаты только азиды щелочных металлов, за исключением LiN3).