05.08.2020

Состав для литья. Точное литье по выплавляемым моделям в домашних условиях: технология, преимущества и недостатки



К атегория:

Изготовление форм

Формовочные материалы и смеси

Формовочные материалы. Формовочные материалы, применяемые для изготовления литейных форм и стержней, делятся на следующие группы: пески, связующие, противопригарные, высокоогнеупорные, специальные и подсобные.

Цески (кварцевые, глинистые) образовались в результате разрушения горных пород (гранита, базолита и др.); они состоят из зерен минерала кварца (Si02) размером 0,06-1,6 мм с примесью глины и других минералов (окислы железа, полевые шпаты). Кварц обладает большой твердостью и высокой огнеупорностью (температура плавления 1713 °С).

Кварцевые пески содержат до 2% глины и незначительное количество посторонних примесей, глинистые содержат глины до 50%. Глинистые пески по содержанию глины разделяются на тощие (2-10%), полужирные (10-20%), жирные (20-30%) и очень жирные (30-50% глины).

Связующие материалы: формовочная глина, жидкое стекло, сульфитная барда, различные крепители, этилсиликат, пульвербакелит и др.

Формовочная глина обладает высокой огнеупорностью (температура плавления 1750-1787 °С) и состоит из очень мелких (0,001 мм) минеральных частиц, которые при взаимодействии с водой образуют клейкие растворы.

Жидкое стекло, сульфитная барда, крепители вводят в смеси, противопригарные краски и другие составы для придания им прочности.

Противопригарные материалы (графит, пылевидный кварц, тальк, каменный уголь и др.), а также приготовляемые из них литейные краски, пасты-натирки наносят на поверхность форм и стержней с целью предупреждения пригара формовочных материалов к поверхности отливок. Графит и пылевидный кварц -применяют как припыл и при приготовлении красок и натирок. Каменный уголь добавляется в состав формовочных смесей.

Высокоогнеупорные материалы (шамот, хромистый железняк, циркон, магнезит, асбест и др.) применяют при изготовлении литейных форм и стержней для очень крупных и массивных отливок из легированных (нержавеющих, жаропрочных и т. д.) сталей, а также многократно используемых форм.

Специальные материалы - чугунная дробь, каустическая сода, формалин, древесные опилки, торф и др. Чугунную дробь применяют при изготовлении отливок специальным методом литья как наполнитель. Древесные опилки, торф и др. вводят в смеси для повышения газопроницаемости и податливости высушиваемых форм и стержней.

Подсобные материалы - модельные пудры, разделительные жидкости, клей и др. Модельные пудры и разделительные жидкости применяют при изготовлении форм и стержней для того, чтобы при извлечении модели из формы, а также стержня из стержневого ящика не повредить их поверхность. Клей применяется при сборке стержней и форм для склеивания половинок.

Основные свойства формовочных материалов: теплопроводность, теплоемкость, газопроницаемость, прочность, текучесть и др.

Формовочные смеси. В настоящее время в литейных цехах применяют большое количество разнообразных формовочных смесей. Выбор состава смесей обусловливается характером (весом, размерами, формой, родом сплава) изготовляемых отливок, а также видом применяемых форм (сырые, сухие, поверхностно подсушенные, химически твердеющие).

В зависимости от назначения смеси разделяются на облицовочные, наполнительные и единые.

Облицовочная смесь имеет наиболее высокое качество и употребляется для покрытия рабочей поверхности формы, непосредственно соприкасающейся с расплавленным металлом. Толщина слоя облицовочной смеси зависит от рода и характера отливки (15-50 мм).

Наполнительная смесь насыпается поверх облицовочной, обладает меньшей прочностью и газопроницаемостью и дешевле. Приготавливается наполнительная смесь путем переработки бывшей в употреблении формовочной смеси с добавлением (3-5%) свежих материалов (песка и глины).

Единая смесь составляет весь объем формы и применяется при машинной формовке, на автоматах в условиях массового производства мелких и тонкостенных отливок. От наполнительной смеси она отличается большим содержанием свежих материалов и лучшими физико-механическими свойствами.

Стержневые смеси. Состав и свойства стержневых смесей обусловливаются главным образом классом изготавливаемых стержней.

Ответственные стержни первого класса изготавливаются из стержневых смесей, состоящих целиком из кварцевого песка с добавлением крепителей. Крупные стержни изготавливают из более дешевых стержневых смесей, в них очень часто входит бывшая в употреблении смесь (20-35%), а связующим является формовочная глина, сульфитная барда, а в качестве органической добавки - древесные опилки.

Стержневые смеси должны обладать теми же свойствами, что и формовочные. Но учитывая, что большая часть стержня (кроме знаков) подвергается воздействию высокой температуры и давлению заливаемого металла в форму, их делают с более высоким показателями прочности, газопроницаемости, податливости и огне упорности.

В состав стержневых смесей чаще всего входит чистый кварцевый песок от 70 до 100%;, огнеупорная глина или бентонит и различного рода крепители. Такие смеси обладают высокой газопроницаемостью до 120, прочностью до 0,55 в сыром состоянии и до 12 кг/см2 в сухом. За последние годы широкое применение для изготовления стержней получили жидкие самотвердеющие смеси, обладающие хорошими технологическими свойствами.

Регенерация отработанных смесей. Регенерации подвергаются отработанные смеси, накапливающиеся в обрубно-очистном отделении (от выбивки стержней, от очистных машин), просыпи, собираемые с пола формовочного и стержневого отделений, сушильных камер и др. Такая смесь содержит в себе много пыли, золы от сгоревших опилок и угля, куски стержней и форм, различные металлические и неметаллические включения, а также до 60-80% зерен песка, пригодных к дальнейшему применению. Для извлечения зерен песка из этой смеси ее подвергают переработке: разминанию комьев, магнитной сепарации, просеиванию и обеспыливанию.

Получение высококачественных отливок в значительной степени зависит от качества формовочных материалов и смесей, из которых изготовлены формы и стержни.

Формовочные материалы разделяют на основные - пески, глины и вспомогательные, к которым относятся связующие, применяемые для приготовления стержневых смесей, противопригарные материалы (каменный уголь, графит, краски, хромистый железняк, циркон и др.), а также клей, замазки, припылы и т. п.

Формовочные пески

Формовочные пески поставляются в естественном и обогащенном состояниях. По ГОСТ 2138-74, пески в зависимости от содержания глинистой составляющей (так называются зерна с величиной в поперечнике менее 0,022 мм), кремнезема и вредных примесей делятся на классы, а в зависимости от величины зерен основной фракции - на группы.

Для определения группы песка его нужно просеять через стандартный набор сит и выяснить, на каких трех смежных ситах осталась наибольшая сумма остатков (в массовых единицах), называемых основной фракцией. Зная, на каких ситах располагается основная фракция песка, его можно отнести к группе, которая определяется средним номером сита.

Формовочные глины

Формовочные глины, применяемые в литейном производстве в качестве минеральных связующих в формовочных и стержневых смесях, классифицируются по минералогическому составу, по пределу прочности во влажном и сухом состояниях, по содержанию вредных примесей и по некоторым другим свойствам.

По минералогическому составу формовочные глины делятся на виды, по пределу прочности при сжатии во влажном состоянии - на группы, в сухом - на подгруппы. В зависимости от содержания вредных примесей формовочные глины делятся на группы.

Главное различие между формовочными глинами заключается в том, что они имеют разные кристаллические решетки, в связи с чем на поверхности могут образоваться водные пленки разной толщины. Наименьшее количество воды может удержаться на поверхности каолинитовых зерен, а наибольшее - на поверхности монтмориллонитовых зерен. Из этого следует, что монтмориллони-товые (бентонитовые) глины целесообразно использовать при формовке по сырому. Применение этих глин позволяет в 2-3 раза снизить содержание глинистой добавки в смесях, повысить их газопроницаемость, в ряде случаев заменить формовку по сухому формовкой по сырому, улучшить поверхность отливок и т. д. При формовке по сухому можно использовать глины любого вида.

При приготовлении формовочных и стержневых смесей все составные части, за исключением воды и жидких связующих, загружают в смесители в размолотом или сыпучем виде. Так как процесс получения глиняного порошка связан с обильным пылевыде-лением, то при изготовлении чугунных отливок по сырому вместо него применяют глиняные или глиняно-угольные суспензии.

3. Связующие материалы

Стержневые смеси, в которых связующим является формовочная глина, как правило, не обеспечивают таких качеств стержней, как прочность, газопроницаемость, выбиваемость. Вследствие этого глину приходится заменять материалами, обладающими высокой связующей способностью и придающими стержням значительную прочность при сохранении хорошей выбиваемости и газопроницаемости.

Связующие материалы подразделяются на органические и неорганические и на три класса:
А - органические неводные, Б - органические водные и В - неорганические водные.

Класс А объединяет связующие, которые обладают связующей способностью и не требуют добавления воды. Они не растворяются в воде, не смешиваются с ней и не смачиваются ею (масла, олифы, пеки, битумы, канифоль). В класс- Б входят связующие, растворяющиеся в воде, после чего они приобретают способность связывать песок (декстрин, сульфитно-спиртовые барда и бражка). К классу В относятся все неорганические связующие (формовочная глина, цемент, жидкое стекло), которые, так же как и связующие материалы класса Б, оказывают свое действие только после добавления к ним воды.

Для удобства пользования связующие каждого класса разбиты на три группы. В каждую из трех групп входят связующие, обладающие примерно одинаковыми физико-механическими и технологическими свойствами. Основным признаком отнесения связующего к той или иной группе является прочность (временное сопротивление разрыву, в кгс/см2, пробного образца в сухом состоянии), приходящаяся на 1% связующего материала, введенного в состав смеси.

Оценка связующих производится по технологической пробе в лабораторных условиях. Из полученной смеси со связующим изготовляют образцы для испытания прочности на сжатие всырую и на разрыв всухую, а также на газопроницаемость. Сушка образцов производится в соответствии с техническими условиями на данное связующее.

В большинстве случаев связующими являются побочные продукты, получаемые прн переработке нефти, горючих сланцев, древесины, хлопкового масла и др.

4. Противопригарные и другие вспомогательные материалы

В результате химического и механического взаимодействия формы или стержня с жидким сплавом, недостаточной огнеупорности и увеличенной пористости смесей, а также высокой температуры заливки на отливках образуется пригар. Для борьбы с ним применяют специальные противопригарные материалы.

Каменный уголь. При формовке по сырому в состав смеси вводят добавки каменного угля в измельченном состоянии следующего состава, в %: летучие вещества - не менее 30, сера - не более 2 и зола - не более 11, влага - не более 12. Каменный уголь может быть заменен эстонским сланцем в виде порошка.

При нагревании формы жидким сплавом частицы угольной либо сланцевой пыли выделяют летучие вещества и сгорают с образованием окиси углерода, при этом между сплавом и формой образуется газовая прослойка, которая исключает возможность смачивания зерен песка сплавом и образования пригара.

Пылевидный кварц. Различают два вида этого материала: естественный и искусственный. Наибольшее применение имеет искусственный пылевидный кварц, который получают путем размола кварцевого песка.

Пылевидный кварц используют при производстве стальных отливок в качестве добавки в облицовочные смеси. Это уменьшает пористость рабочего слоя формы или стержня, в результате чего уменьшается механический пригар.

При введении пылевидного кварца в состав краски для покрытия формы и стержня на поверхностях образуется высокоогнеупорный слой, защищающий их от влияния высокой температуры заливаемого сплава.

Циркон. При обогащении титаноцирконовых руд получают материал, называемый цирконом. Промышленность выпускает цир-коновый концентрат для приготовления облицовочных формовочных и стержневых смесей и цирконовый порошок для красок.

Циркон - высокоогнеупорный материал (температура его плавления 2190 °С), он не вступает в химическое соединение с железом и легирующими элементами и является хорошим противопригарным материалом.

Хромистый железняк. Продукт помола хромитовой руды - хромистый железняк характеризуется высокой огнеупорностью-Температура его плавления около 1850° С. Отсутствие сродства с окислами железа и постоянство объема при нагревании обеспечивают получение отливок высокого качества.

Применяют облицовочные формовочные и стержневые смеси следующего состава, в : хромистый железняк (просеивается через сито с ячейками 1,5×1,5 мм) -100 и сверх 100 сульфитно-спиртовая барда - 2-3.

Физико-механические свойства смеси: прочность на сжатие в сыром состоянии - 0,5-0,7 кгс/мм2; влажность - 5-6%.

Толщина облицовочного слоя должна быть 10-30 мм, а подслоя из песчано-глинистой смеси - 40-60 мм. Остальной объем опоки заполняется обычной наполнительной смесью, а стержни - стержневой опилочной смесью.

Графит. Широко применяемый в чугунолитейном производстве графит является высокоогнеупорным материалом. Различают графит кристаллический - в виде серебристых чешуек и скрытокри-сталлический (аморфный) - в виде черного порошка.

Припылы и краски. При формовке по сырому поверхности форм покрывают различными припылами (серебристым графитом, сланцем, цементом и др.). Для улучшения поверхностной прочности формы наряду с припылом применяют опрыскивание поверхностей сульфитно-спиртовой бардой (плотностью 1,1) или патокой (плотностью 1,28).

Для покрытия форм и стержней по сухому используют краски и натирки. В состав их входят противопригарные материалы (аморфный графит, пылевидный кварц, тальк, молотый кокс и др.) и связующие вещества (бентонитовая глина, сульфитная барда, патока и Др.) Для предохранения красок от брожения в них вводят формалин.

Натирочные пасты, замазка и клей. Натирочные пасты применяют в тех случаях, когда образуемые стержнями полости в дальнейшем не подвергаются механической обработке и требуют большой точности размеров и чистоты поверхности. Для особо ответственных стержней для чугунных отливок используют пасты следующего состава: серебристый графит - 1 часть; аморфный графит - 1 часть; сульфитно-спиртовая барда -- до получения однородной пасты в виде густой сметаны.

Стержневые клеи служат для склеивания и ремонта стержней. Сульфитный клей состоит из 5 частей сульфитно-спиртовой барды, 5 частей формовочной глины и 2 частей воды. Клей наносят ровным слоем на склеиваемые поверхности половинок стержней.

При спаривании крупных и средних стержней швы заделывают специальными замазками, в состав которых входят, в %:
мелкий кварцевый песок - 60, черный графит - 25 и формовочная глина - 15.

5. Основные свойства формовочных материалов и смесей

Формовочные материалы и смеси, из которых изготовляют литейные формы и стержни, должны обладать определенными свойствами, обеспечивающими получение высококачественных форм, стержней и отливок.

Влажность влияет на все свойства формовочных смесей и главным образом на газопроницаемость, прочность и текучесть. Пониженная влажность повышает осыпаемость смеси и затрудняет формовку, а повышенная снижает прочность всырую, увеличивает прилипаемость смеси к модели и снижает газопроницаемость, вследствие чего возникает опасность образования вскипа отливки.

Газопроницаемость - очень важное свойство формовочных материалов и смесей. Низкая газопроницаемость смесей может быть причиной образования газовых раковин в отливках. Газопроницаемость зависит от формы зерен, однородности зерновых составляющих смеси, от содержания в ней глинистых веществ и ряда других причин. Для повышения газопроницаемости мелкого песка его необходимо смешивать с 50-60% крупного песка.

Прочность. Недостаточная прочность формовочных смесей ведет к деформации форм и стержней, искажению отливок, вызывает распоры и обвалы. Прочность зависит от влажности смеси, количества глинистой составляющей, зернистости песка и степени уплотнения. Она регулируется дозировкой глины.

Прочность формовочных смесей в сухом состоянии возрастает с увеличением в них содержания глины и влаги. Более высокая прочность может быть достигнута при использовании специальных связующих материалов.

Прочность стержневых смесей зависит от вида и количества применяемого связующего и должна находиться в определенных пределах.

Твердость характеризует степень и равномерность уплотнения формовочных смесей. Переуплотнение, так же как и недостаточное уплотнение смеси, вызывает дефекты отливок: распоры, вскип, газовые и земляные раковины, пригар и др.

Определение этих и других свойств формовочных материалов и смесей производится в цеховых лабораториях.

6. Формовочные смеси

В литейном производстве наибольшее применение имеют песчано-глинистые смеси, которые классифицируются по способу формовки и по роду сплава, заливаемого в формы.

Смеси разделяются на единые облицовочные и наполнительные. Единой называют смесь, используемую для набивки всей формы (в основном при машинной формовке). Облицовочными смесями оформляют только ту часть формы, которая соприкасается с жидким сплавом. Наполнительную смесь наносят на слой облицовочной, ею заполняют и остальную часть формы.

По состоянию формы перед заливкой различают смеси для формовки по сырому и по сухому. По роду сплава, заливаемого в формы, различают формовочные смеси для чугунных, стальных и цветных отливок.

Состав смеси для чугунного литья зависит от массы отливки, толщины стенок и технологии изготовления формы.

Для стальных отливок формовочные смеси должны иметь более высокую огнеупорность и газопроницаемость, чем смеси для чугунного литья.

Для форм цветных отливок могут применяться смеси со значительно более низкой огнеупорностью, чем у смесей для чугунного и стального литья.

Для повышения чистоты поверхности отливок из сплавов на медной основе в состав формовочной смеси вводят глинистые пески класса П. Фтористая присадка, вводимая в формовочную смесь при литье из магниевых сплавов, дает возможность избежать окисления сплава в процессе заливки и затвердевания отливки. Она может быть заменена борной кислотой или серным цветом.

7. Быстроотверждающиеся, химически отверждающиеся и самоотверждающиеся пластичные и жидкие смеси

Наряду с обычными песчано-глинистыми получили распространение разработанные в нашей стране формовочные смеси с особыми свойствами.

Быстроотверждающиеся смеси.

Связующим материалом в них также является жидкое стекло. Однако процесс отверждения осуществляется не за счет продувки углекислым газом, а под действием добавки смесь отвердителя - шлака феррохромового производства. Живучесть пластичной смеси обычно равна 20- 25 мин, поэтому ее приготовляют в два этапа: основную жидко-стекольную смесь изготовляют в смесеприготовительном отделении, а ввод в нее шлака, просеянного через сито с ячейками 0,5 мм, производят непосредственно на участке формовки с перемешиванием в шнековом смесителе.

Облицовочную смесь наносят на модель слоем толщиной 50 мм и более, в зависимости от габаритов и толщины стенки отливки. Остальной объем опоки заполняют оборотной смесью. Продолжительность выдержки крупных форм - не менее 1 ч. После извлечения модели форму окрашивают самовысыхающей огнеупорной либо обычной водной краской. В последнем случае применяют поверхностную подсушку.

Жидкие самоотверждающиеся смеси (ЖСС ) отличаются от пластичных тем, что в их состав вводятся поверхностно-активные вещества (ПАВ ), которые при перемешивании смеси образуют на границах зерен пену. Пузырьки этой пены снижают силы трения между зернами песка, что придает смеси жидкоподвижность (текучесть). В качестве поверхностно-активного вещества чаще всего используют детергент советский рафинированный (ДС-РАС ).

ЖСС применяют при изготовлении крупных отливок и стержней, причем в отличие от всех смесей их «заливают«» в опоки и стержневые ящики. Время сохранения смесью текучести обычно составляет 9-10 мин, в течение которого она должна быть использована. Установка для приготовления ЖСС размещается непосредственно на формовочных или стержневых участках. Производительность установок -до 30 т/ч.

8. Стержневые смеси

9. Технология приготовления формовочных стержневых смесей

Технологический процесс приготовления формовочных и стержневых смесей состоит из трех этапов: подготовки свежих материа-н» подготовки отработанных смесей и изготовления смесей.

Подготовка свежих материалов заключается в их сушке, дроблении и просеивании.

Сушка песка и глины производится в барабанных сушилах производительностью от 3,2 до 29,2 т/ч для песка и 0,9-8 т/ч для глины, а также в установках для сушки и охлаждения песка в кипящем’слое производительностью 3-10 т/ч.

Для дробления и измельчения комьев песка и сухой глины, угля, комьев отработанной смеси, сухих бракованных стержней применяют размалывающие бегуны, валковые дробилки, шаровые мельницы мокрого измельчения угля.

Просеивание формовочных материалов перед употреблением осуществляют в передвижных землесеялках, а также в вибрационных и полигональных ситах производительностью от 5 до 125 т/ч и через плоские сита производительностью 50 т/ч.

Подотовка отработанной смеси заключается в магнитной сепарации ее для извлечения металлических включений. Смеси, применяемые при пескометной формовке, подвергаются двойной сепарации.

Приготовление смесей. Технологический процесс приготовления формовочных смесей состоит из дозирования сухих составляющих и загрузки их в бегуны в следующей последовательности: оборотная смесь+песок+глина в порошке или в виде эмульсии – каменный уголь (для чугунных отливок, формуемых по сырому) или опилки (для формовки по сухому); после предварительного перемешивания добавляются жидкие компоненты.

Для смешивания составляющих применяют бегуны периодического действия с вертикально вращающимися катками или центробежные с горизонтально вращающимися катками.

В литейных цехах серийного и массового производства создаются центральные смесеприготовительные отделения, оснащенные высокопроизводительным современным оборудованием и разветвленной транспортной системой. В некоторых из них комплексно механизировано и автоматизировано управление всеми операциями по приготовлению смесей.

10. Регенерация отработанных формовочных и стержневых смесей

Широкое внедрение в литейном производстве специальных смесей, приготовляемых из свежих кварцевых песков, а также ежегодный прирост производства отливок ведет к систематическому повышению расхода кварцевых песков, природные ресурсы которых небезграничны. В целях сокращения расхода их необходимо частично заменять регенерированными (восстановленными) песками из отработанных смесей, в настоящее время вывозимых в отвал.

Рис. 1. Установка для регенерации отработанных смесей.

Пятилетний опыт работы установки показал, что получаемый регенерат является полноценным заменителем свежего кварцевого песка и может быть использован для приготовления формовочных и стержневых смесей.


ТИПОВЫЕ СОСТАВЫ ФОРМОВОЧНЫХ СМЕСЕЙ

Формовочные смеси для форм стальных отливок

Основными требованиями, предъявляемыми к этим смесям, являются прочность и высокая термохимическая устойчивость, что особенно важно при производстве крупных отливок. Некоторые составы формовочных смесей из высокоогнеупорных материалов для крупных стальных отливок приведены в таблице 1.

Таблица 1 - Составы формовочных смесей для крупных стальных отливок

Состав смеси, %

Влажность, %

Газопрони-цаемость

Предел прочности

при сжатии

по-сырому, кПа

Связующие материалы

огнеупорные материалы

Крупные, массой более 5000 кг;

толщина стенки

стекло 7,5

Хромомагнезитовый

Особо крупные

и тяжелые, массой более 5000 кг

Хромистый

железняк

Из легирован-

ной стали

крепитель

Цирконовый песок 100

Для повышения прочности и термохимической устойчивости формы крупных стальных отливок подвергают сушке. Однако эта операция удлиняет технологический цикл, поэтому широко используют поверхностную подсушку форм и быстротвердеющие смеси. Применение быстротвердеющих и самотвердеющих смесей в производстве крупного стального литья – одно из основных направлений развития и совершенствования технологии изготовления форм.

Хромомагнезитовые формовочные смеси на жидком стекле (таблица 1, строка 1) обладают высокой термохимической устойчивостью и применяются для изготовления форм крупных отливок из нержавеющих и жаропрочных сталей. Хромомагнезитовые смеси на жидком стекле имеют несколько меньшую податливость, чем аналогичные смеси на лигносульфонате техническом (ЛСТ). Поэтому стержни и выступающие части формы, препятствующие усадке отливки, изготовляют из смеси на ЛСТ.

Недостатком хромомагнезитовых смесей является низкая газопроницаемость, вследствие чего толщина облицовочного слоя не должна превышать 10 – 15 мм, чтобы исключить образование в отливках газовых раковин.

Хромомагнезитовые смеси приготовляют из отходов хромомагнезитового кирпича, содержащего 15 – 20% С r 2 O 3 и не менее 42% MgO . После дробления и разлома в бегунах хромомагнезитовый порошок просеивают через сито со стороной ячейки 0,8 – 1,5 мм. Для приготовления смесей для крупных отливок остаток на двух последних ситах и тазике должен быть 30-35%. Для мелких и средних отливок рекомендуется более мелкий помол (остаток на тех же ситах 35-40%).

Смеси на основе хромистого железняка (таблица 1, строка 2)применяют для форм отливок массой до 160 т с толщиной стенки не более 70 мм из углеродистых и специальных сталей. Хромистый железняк дробится и просеивается через сито с ячейками 1,0 – 1,5 мм. Просеянный хромистый железняк должен содержать не более 30 – 40% пылевидной фракции. Из полученного песка в бегунах готовится формовочная смесь влажностью 6 – 7%. Дополнительные связующие материалы можно не вводить, т.к. после сушки образуется плотная корка. Если прочность недостаточна, то в состав смеси вводят 0,75 – 3,0% ЛСТ. Толщина облицовочного слоя смеси зависит от толщины стенки, массы, конфигурации отливки и выбирается в пределах 25 – 150 мм.

Использование облицовочных смесей связанно с рядом производственных неудобств – большим расходом хромистого железняка, отслаиванием облицовочного слоя формы, при формовке в почве и на встряхивающих машинах облицовочная смесь перемешивается с наполнительной. Поэтому часто формы облицовывают пастами из хромистого железняка. Для отливок массой 1,5 – 2 т толщина слоя пасты должна быть 1,5 мм, а для отливок массой 30 т и более толщина слоя 2 – 4 мм. В качестве связующего в составе пасты используют патоку (10-12%) и декстрин (0,1 – 2,0%). На формы крупных и толстостенных отливок пасту наносят в два слоя.

Цирконовые формовочные смеси (таблица 1, строка 3)позволяют получать высокую чистоту поверхности отливок, но вследствие дороговизны песка применяются редко, только при изготовлении особо ответственных отливок.

Быстротвердеющие жидкостекольные песчано-глинистые смеси занимают доминирующие положение в производстве отливок, как из углеродистых, так и из легированных сталей. Переход с песчано-глинистых на жидкостекольные смеси сокращает производственный цикл, способствует увеличению роста выпуска отливок на одного рабочего и обеспечивает получение отливок высокого качества. Однако при этом увеличивается расход свежих материалов. На практике часто для форм стальных отливок применяют облицовочные быстротвердеющие смеси, составы которых приведены в таблице 2.

Таблица 2 - Составы облицовочных быстротвердеющих смесей с жидким стеклом для форм стальных отливок

Состав смеси в вес, %

Отработанная

Песок К02,

порошко-образная

Общее глино-

назначения

Влажность, %

Газопрони-цаемость

Предел прочности, кПа/м 2

на сжатие

(по-сырому)

на разрыв

(по-сухому)

назначения

Песчано-глинистые формовочные смеси применяют для изготовления отливок из углеродистой стали малой и средней массы (таблица 3).

Таблица 3 – Составы песчано-глинистых формовочных смесей для форм стальных отливок

Характеристика отливки

Состав смеси, % вес.

Влажность, %

Газопроницае-мость

Предел прочности при сжатии во влажном состоянии,

Отработанная

Кварцевый

Общее глино-содержание

формовки

по-сырому

Масса до 100 кг, толщина стенки до 25 мм

Масса 100-500 кг, толщина стенки до 25 мм

Масса до 500 кг, толщина стенки до 50 мм

Масса до 5000кг, толщина стенки до 50 мм

Склонна к горячим трещинам; толщина стенки до 80 мм

для формовки

по-сырому

Масса до 100 кг

* В смесь вводят до 8% (объем.) древесных опилок.

Тонкостенные отливки массой до 500 кг получают во влажных формах, ответственные и более тяжелые отливки – в сухих формах. Для крупных отливок, массой более 5000 кг, и средних отливок со стенкой толщиной более 50 мм облицовочную смесь приготовляют только из свежих материалов и в качестве противопригарного материала вводят до 30% маршалита.

Для стальных отливок формовочные смеси готовят из крупнозернистого кварцевого песка, чтобы увеличить огнеупорность смеси. После сушки формы красят маршалитовой краской.

Качество стальных отливок улучшится при использовании бентонитовых смесей, влажностью 4 – 5% с небольшими добавками органических связующих (ЛСТ, древесного пека, ГТФ и др.) (таблица 4).

Таблица 4 - Типовые составы песчано-бентонитовых смесей, применяемых для формовки по-сырому при изготовлении стальных отливок

Смесь и способ формовки

Состав формовочной смеси, %

Влажность, %

Газопроницаемость

прочности при сжатии, кПа

Оборотная смесь

Кварцевый песок

Бентонит

Единая для автоматических пескодувно-прессовых линий формовки типа Дисаматик

0,05-0,10 крахма-листые

Единая для автоматической формовки прессованием

Мелкие и средние

0,05-0,10 крахма-листые 0,01-0,03 ПАВ

Единая для машинной формовки встряхиванием с подпрессовкой

Мелкие и средние

0,04-0,08 крахма-листые

Облицовочная для машинной формовки встряхиванием с подпрессовкой

0,01-0,03 ПАВ

Во влажных формах с бентонитовой облицовочной смесью можно получать ответственные отливки массой до 1000 кг со стенками толщиной 20 мм и более. При введении в облицовочную смесь жидкого стекла во влажных формах можно изготавливать отливки массой более 2000 кг.

Жидкие самотвердеющие (ЖСС) и быстротвердеющие смеси открывают большие возможности для механизации процессов формовки, улучшения санитарно-гигиенических условий труда, повышения точности отливок и снижения трудоемкости изготовления формы.

Формовочные смеси для чугунных отливок (таблица 5)

В массовом производстве с высокомеханизированным смесеприготовительным отделением рекомендуется использовать единые формовочные смеси. В формах из единой смеси изготовляют детали автомобилей, тракторов, детали станкостроения и автодорожного машиностроения, к которым предъявляют повышенные требования по качеству и чистоте поверхности.

Таблица 5 - Составы песчано-глинистых формовочных смесей для форм чугунных отливок

Состав смеси в вес. %

Влажность, %

Газопроницаемость

Предел прочности на сжатие во влажном состоянии, кПа

Формовка

Масса, кг

Толщина стенки, мм

Зерновой

Облицовочная

Обработанная смесь

Свежие материалы

Каменный.уголь

Древесные опилки

Отработанная смесь

Свежие материалы

Каменно-угольная пыль

По-сырому

По-сухому

Кирпичные формы и стержни

На разрыв

в сухом состоянии

Единая смесь приготовляется из отработанной смеси с добавлением свежих материалов (кварцевого песка и огнеупорной глины). Замена огнеупорной глины бентонитом (таблица 6) резко улучшает качество отливок. в состав единой смеси в качестве упрочняющих и противопригарных добавок вводят каменноугольную пыль (0,5 – 1,5%), древесный пек (до 1 %), ЛСТ (до 2%) и др.

Литейное производство достаточно простой и широко распространенный технологический процесс для получения отливок различного размера и разнообразной формы. Получение деталей методом литья практикуется в автомобилестроении, станкостроении, вагоностроении и многих прочих отраслях машиностроения. Для получения полых или с множеством отверстий отливок используются стержневые и формовочные смеси различных составов. Экономически обосновано использование песчано-глинистых форм при массовом производстве.

Состав смесей зависит от:

  • способа формовки:
    1. ручная;
    2. машинная;
  • типа металла:
    1. сталь;
    2. чугун;
    3. цветной металл и его сплавы;
  • типа производства:
    1. единичное;
    2. серийное;
    3. массовое;
  • типа литья;
  • технологического оснащения.

Материалы, которые используются для получения формовочных смесей, подразделяются на следующие группы:

  • песчаник;
  • различные сорта глины;
  • вспомогательные:
    • связующие материалы;
    • противопригарные смазки и покрытия;
    • огнеупорные;
    • специальные.

Глинистые пески могут содержать глины в своем составе до 50%. Делят их по количеству содержания глины на:

  • тощие – до 10%;
  • полужирные – до 20%;
  • жирные – до 30%;
  • очень жирные – до 50%.

Также используются кварцевые пески. Силикатная основа позволяет принимать в форму расплав, температура которого достигает 1700С.

Получение отливок высокого качества требует использования противопригарных покрытий и материалов мелкой фракции, чтобы предупредить образование в форме пор.

Виды и состав смесей

К формовочным смесям для литья предъявляются следующие требования:

  • механическая прочность;
  • теплопроводность;
  • газовая проницаемость;
  • огнестойкость;
  • теплоемкость.

Формовочные и стержневые смеси обладают одинаковыми свойствами. Но к стержням предъявляются более высокие требования, потому что на него расплавленный металл оказывает более сильное давление.

Формовочные смеси делятся на три типа:

  1. единые;
  2. облицовочные;
  3. наполнительные.

Единая смесь предназначается для наполнения всего объема литейной формы. В полном объеме используется при машинной формовке при выпуске отливок в большом количестве. Для ее приготовления используется большой объем еще неиспользовавшихся материалов.

Облицовочная смесь предназначена для получения слоя формы, контактирующего непосредственно с расплавом. Его толщина зависит от типа смеси и тяжести отливки и составляет 20-100 мм. Для того чтобы дополнить оставшийся объем используется наполнительная смесь.

Состав формовочной смеси напрямую зависит от формы и метода ее изготовления. Формирование песчано-глинистых форм происходит двумя способами, в результате которых получаются сухие и сырые формы. Для их податливости при формировании в смесь вводятся сгорающие наполнители – торф или древесные опилки. В состав подсушиваемых форм кроме глины и песка закладываются крепитель, измельченный асбест и барда.

Кроме них используются:

  • быстро отверждающиеся;
  • самостоятельно отверждающиеся;
  • твердеющие при химическом преобразовании;
  • жидкостекольные составы.

В быстро отверждающихся смесях связкой выступает жидкое стекло. Если для сушки жидкого стекла необходима теплая продувка, то в данном случае отвердение происходит за счет феррохромового шлака.

Самостоятельно отверждающиеся составы в первоначальном состоянии жидкие. Затем в них вводятся ПАВ и песочный наполнитель. Такой состав сохраняет текучесть не более 10 минут. Поэтому они приготавливаются на формовочных участках.

Химически отверждающиеся смеси имеют малый срок жизни. В следствие чего в смесь добавляется едкий натр.

Жидкостекольные разновидности после формирования подвергаются сушке продуванием углекислым газом. В процессе сушки протекают химические реакции: образование кремниевой кислоты и углекислого натрия.

Для изготовления стержня, например, первого класса, смесь целиком состоит кварца и крепителей. Для формовки крупных стержней используется 1/3 часть использованного и восстановленного состава.

Температура плавления цветных металлов значительно ниже, чем у сталей и чугунов. Из-за чего формовочные смеси имеют меньшую огнеупорность. Для литья бронзы и медных сплавов формовочные составы готовят при использовании глинистого песка П класса. Такие наполнители как борная кислота, серный цвет или фтористая присадка используются для литья алюминия. Они препятствуют активному окислению расплава.

Требуемые свойства

Для получения качественной отливки необходима литейная форма, изготовленная из ингредиентов, подобранных под разлив определенного металла. Формовочная смесь для литья должна обладать определенной влажностью. При малой влажности форма склонна к осыпаемости, что затрудняет формовку.

Плохая газовая проницаемость провоцирует образование в отливке дефектов — газовых пор и раковин. Из-за чего необходим песок крупной фракции (более 50%).

Литье в песчано-глинистую форму

Высокая прочность формы и стержня не позволяет изменять геометрию отливки. Чтобы ее получить применяются специальные связующие материалы.

Приготовление смесей

Процесс приготовления формовочных и стержневых смесей проводится в три этапа. Первый этап — подготовительный. Здесь происходит подготовка еще неиспользованных материалов. Проводится сушка, дробление и последующее просеивание.

На втором этапе происходит подготовка отработанного состава. Это позволяет экономить на материалах. Процесс начинается на охладительных барабанах. Происходит выбивка, размельчение, охлаждение.

Формовочные смеси для литья готовятся на третьем этапе в смесителях. Широкое применение нашли катковые модели. Они используются для приготовления таких составов как:

  • единые;
  • стержневые смеси;
  • облицовочные;
  • с добавками:
    • вязкие;
    • жидкие;
    • пылевидные.

При больших объемах выпуска производство автоматизировано. Механизация процессов отражается на снижении себестоимости продукции.

Для изготовления отливок разнообразных деталей и их элементов на современных литейных предприятиях используются полупостоянные и разовые литейные формы. В соответствии с условиями технологии литейного процесса, для изготовления таких литейных форм используются специальные смеси для литья, представляющие собой сочетание высокоогнеупорных веществ (асбест, шамот) с песчано-глинистыми составляющими. Компоненты, входящие в составы для литья, могут быть как природного, так и искусственного происхождения (синтетические). В результате смешения составляющих формовочных смесей в определенных пропорциях, готовые составы могут обладать заранее заданными свойствами и иметь нужную податливость, огнеупорность, прочность, формуемость, газопроницаемость и так далее.

Виды смесей

Формовочные смеси для литья в зависимости от характера использования делятся на несколько основных категорий:

  • Облицовочные смеси. Данный вид формовочных смесей предназначен для изготовления рабочего слоя литейной формы. Высокие физические и механические свойства таких смесей обеспечиваются повышенным процентом содержания исходных материалов для формовки (песка и глины);
  • Наполнительные смеси для литья. Данные формовочные составы для литья используются для наполнения формы, после того, как на модель была нанесена облицовочная смесь. Для приготовления такой смеси исходные формовочные материалы (глина и песок) перерабатываются совместно с остатками оборотной смеси;
  • Единая формовочная смесь для литья. Смесь такого типа представляет собой формовочный материал, объединяющий в себе свойства одновременно и наполнительной, и облицовочной смеси. Единые смеси используются на автоматических линиях в серийном и массовом изготовлении при машинной формовке. Долговечность таких смесей обеспечивается присутствием в составе глин с высокой связующей способностью и наиболее огнеупорных видов песков.

Состав формовочной смеси для литья

Химический состав, который может иметь формовочная смесь для литья, зависит от совокупности следующих факторов:

  • От рода используемого сплава и размеров отливки;
  • От способа формовки и вида литья (цветное литье, стальное или чугунное);
  • От характера производства и имеющихся в распоряжении производства технологических средств.

Также состав, который имеет формовочная смесь для литья, может различаться в зависимости от того, в каком состоянии она должна находиться перед заливкой. Формовочные смеси для сухих форм содержат в своем составе повышенное количество воды и глины. Кроме того, в состав таких смесей могут дополнительно вводиться такие выгорающие добавки, как торф или опилки. В составе формовочных смесей для сырых форм снижается процентное содержание оборотной смеси. Формовочные составы для литья металлов в подсушенные формы отличаются одновременным наличием и оборотных компонентов, и свежих материалов (глины и песка), и крепителей.

Изобретение относится к литейному производству. Гипсовая смесь содержит, мас.%: гипс 30-35, воду 25-30, огнеупорный наполнитель - остальное. В качестве огнеупорного наполнителя используют золу уноса ТЭЦ, содержащую 60-75% SiO 2 , 12-15% С, 8-10% Al 2 O 3 , 3-5% CaO, 2-3% Fe 2 O 3 и 1% MgO. Фазовый состав - 70% частиц размером 0,315 мм, 20% - 0,18 мм и 10% менее 0,18 мм. Повышается термостойкость и огнеупорность гипсовых литейных форм. 1 з.п. ф-лы, 1 табл.

Изобретение относится к области литейного производства, а именно к гипсовым формовочным смесям.

Известны составы гипсовых формовочных смесей, содержащие в качестве огнеупорного наполнителя кварцевый песок (О.Е.Кестнер, В.К.Бараданьянц и др., «Точное литье цветных сплавов в гипсовые и керамические формы», М.: - Машиностроение, 1968).

Недостатком известных изобретений является высокая стоимость огнеупорного наполнителя, низкая термостойкость и огнеупорность литейных форм.

Заявляемое изобретение позволяет снизить стоимость формовочной смеси, повысить термическую стойкость и огнеупорность форм. Сущность заявляемого изобретения заключается в том, что гипсовая смесь для изготовления форм точного литья, содержащая гипс, воду и огнеупорный наполнитель, в качестве огнеупорного наполнителя содержит золу уноса ТЭЦ. При этом в качестве огнеупорного наполнителя использована зола уноса ТЭЦ, содержащая: 60-75% SiO 2 , 12-15% С, 8-10% Al 2 O 3 , 3-5% CaO, 2-3% Fe 2 O 3 и 1% MgO, а фазовый состав смеси следующий: 70% частиц размером 0,315 мм, 20% - 0,18 и 10% менее 0,18 мм.

Технический результат, получаемый при реализации изобретения, заключается в повышении термостойкости и огнеупорности гипсовых литейных форм.

Использование золы в качестве огнеупорного наполнителя позволяет повысить огнеупорность и трещиностойкость форм благодаря содержащемуся в золе обожженному кварцу с малым коэффициентом термического расширения, а также снизить стоимость литейных форм.

Предлагаемую гипсовую смесь используют при следующем количественном соотношении ингредиентов, мас.%:

Исследование термической стойкости образцов литейных форм проводили согласно ГОСТ 7875.0-94 и ГОСТ 7875.2-94, определяя количество циклов теплосмен. В таблице приведены экспериментальные данные, характеризующие свойства форм, полученных из разных составов формовочных смесей.

Как видно из представленных данных, изготовленные из предложенных составов смесей образцы, содержащие золу уноса ТЭЦ, выдерживают 1-2 теплосмены, что позволяет изготавливать качественные отливки. Образцы литейных форм, изготовленные из исходной смеси, без золы, разрушились при первой теплосмене. Гипсовую формовочную смесь готовят следующим образом.

Сухие компоненты смеси в заданной пропорции (например, 30% гипса и 40% наполнителя от массы смеси) тщательно перемешивают и порциями засыпают в воду (например, взятую в количестве 30% от массы) при постоянном перемешивании. В качестве огнеупорного наполнителя использована зола уноса ТЭЦ, содержащая: 60-75% SiO 2 , 12-15% С, 8-10% Al 2 O 3 , 3-5% CaO, 2-3% Fe 2 O 3 и 1% MgO, а фазовый состав смеси следующий: 70% частиц размером 0,315 мм, 20% - 0,18 и 10% менее 0,18 мм.

1. Гипсовая смесь для изготовления форм точного литья, содержащая гипс, воду и огнеупорный наполнитель, отличающаяся тем, что в качестве огнеупорного наполнителя она содержит золу уноса ТЭЦ при следующем соотношении ингредиентов, мас.%:

2. Смесь по п.1, отличающаяся тем, что в качестве огнеупорного наполнителя использована зола уноса ТЭЦ, содержащая 60-75% SiO 2 , 12-15% С, 8-10% Al 2 O 3 , 3-5% СаО, 2-3% Fe 2 O 3 и 1% MgO, а фазовый состав смеси следующий: 70% частиц размером 0,315 мм, 20% - 0,18 мм и 10% менее 0,18 мм.

Похожие патенты:

Изобретение относится к литейному производству. Смесь содержит шламовый отход производства поливинилхлорида в количестве 97-99 мас.%, содержащий, мас.%: Н2О 50,2; CaSO4·2H2O 12,2; Са(ОН)2 7,2; NaCl 28,2; NaSO4 2,0; NaOH 0,2 и древесные опилки. Связующим в смеси являются кристаллогидраты солей NaCl. Смесь имеет высокие прочностные свойства и легко удаляется из отливок путем растворения связующего в воде. 1 з.п. ф-лы, 2 табл., 1 пр.

Изобретение относится к порошковой металлургии, в частности к получению керамической вставки для формирования в процессе литья в корпусе бурового инструмента полости для установки сменной детали. Керамические частицы измельчают до диаметра меньше чем 150 мкм, а частицы смолы - до диаметра меньше чем 100 мкм. Из измельченных керамических частиц и частиц смолы готовят порошковую смесь, вводят ее в литейную форму, имеющую полость, образующую требуемую сменную деталь, например буровое долото или сопло. Затем осуществляют уплотнение смеси и отверждение смолы. Вставка может содержать армирующие волокна или графитовый сердечник и керамическую оболочку. Армирующие волокна вводят в порошковую смесь перед ее уплотнением. Для получения графитового сердечника в литейную форму вводят цилиндрический графитовый элемент и засыпают порошковую смесь так, чтобы графитовый элемент был заключен в нее. Обеспечивается получение керамической вставки с оптимальной механической прочностью, облегчение удаления из отливки вставки без ее разрушения. 3 н. и 17 з.п. ф-лы, 7 ил.

Изобретение относится к области литейного производства. Водный раствор алюмоборфосфатного концентрата подвергают электродиализу при силе тока 0,2…1,5 А, затем смешивают с водным раствором поливинилового спирта в объемном соотношении (2…4):1. Обеспечивается повышение физико-механических свойств керамических форм на бескремнеземном связующем. 2 табл., 2 пр.

Изобретение относится к литейному производству. Смесь содержит, мас.%: кварцевый песок 85,5-87,5; MgSO4·7H2O 4,0-4,5; маршаллит 3,0-3,5 и воду 5,5-6,5. Обеспечивается увеличение прочности смеси. 2 табл.

Изобретение относится к литейному производству. Суспензия включает этилсиликат, спиртовой раствор нитрата алюминия девятиводного, микропорошки электрокорунда, алюминиевый порошок и оксид иттрия при следующем соотношении компонентов, мас.%: этилсиликат 5,0-8,0; спирт этиловый 14,0-17,0; нитрат алюминия девятиводный 1,3-2,0; кислота соляная или азотная 0,06-0,1; поливинилбутираль 0,03-0,09; алюминиевый порошок 3,0-6,0; оксид иттрия 4,0-8,0; микропорошки электрокорунда - остальное. Обеспечивается уменьшение степени взаимодействия керамической формы с металлом отливок. 2 табл.

Суспензия для получения литейной формы содержит от 50 до 80 мас.% термостойких частиц, средний размер которых составляет от 0,5 до 150 мкм, от 5 до 35 мас.% частиц оксида алюминия, средний диаметр которых составляет менее 300 нм, и от 5 до 35 мас.% воды, pH указанной суспензии составляет от 5 до 12. Суспензию получают путем смешивания водной дисперсии, содержащей частицы оксида алюминия, с термостойкими частицами, средний размер которых составляет от 0,5 до 150 мкм, и, если это необходимо, с добавками. Средний диаметр частиц оксида алюминия в дисперсии составляет менее чем 300 нм в твердом виде, содержание частиц оксида алюминия составляет более чем 15 мас.%, а pH составляет от 5 до 12. С использованием суспензии получают литейную форму для точного литья. Обеспечивается повышение устойчивости суспензии, сокращение времени сушки формы, повышение прочности формы и упрощение ее изготовления. 5 н. и 10 з.п. ф-лы, 4 табл., 5 пр.

Изобретение относится к литейному производству. Формовочная камера содержит основание 3, верхнюю часть 4, две боковые стенки 5, прижимную плиту 6 и поворотную плиту 10. Верхняя часть 4 снабжена одним или более отверстиями 22 для заполнения песка, сообщающимися с системой 14 подачи песка. Прижимная плита 6 снабжена сменной прижимной модельной плитой, имеющей прижимную модель 8, и присоединена к механизму 9 перемещения. Поворотная плита 10 снабжена сменной поворотной модельной плитой, имеющей поворотную модель 12, и установлена с возможностью поступательного и поворотного перемещения, для обеспечения выталкивания образуемых форм прижимной плитой 6. Для обеспечения регулирования гибкости размера образуемых форм, особенно высот образуемых форм, без изменения геометрии системы подачи песка формовочная камера снабжена средством 13 синхронного вертикального перемещения верхней части 4 и системы 14 подачи песка, или основания 3, или и того и другого относительно остальной формовочной камеры. 2 н. и 25 з.п. ф-лы, 12 ил.

Изобретение относится к литейному производству