23.09.2019

Температурный коэффициент удельного сопротивления нихрома. Сопротивление меди в зависимости от температуры


При нагревании увеличивается в результате увеличения скорости движения атомов в материале проводника с возрастанием температуры. Удельное сопротивление электролитов и угля при нагревании, наоборот, уменьшается, так как у этих материалов, кроме увеличения скорости движения атомов и молекул, возрастает число свободных электронов и ионов в единице объема.

Некоторые сплавы, обладающие большим , чем составляющие их металлы, почти не меняют удельного сопротивления с нагревом (константан, манганин и др.). Это объясняется неправильной структурой сплавов и малым средним временем свободного пробега электронов.

Величина, показывающая относительное увеличение сопротивления при нагреве материала на 1° (или уменьшение при охлаждении на 1°), называется .

Если температурный коэффициент обозначить через α , удельное сопротивление при to =20 о через ρ o , то при нагреве материала до температуры t1 его удельное сопротивление p1 = ρ o + αρ o (t1 - to) = ρ o(1 + (α (t1 - to))

и соответственно R1 = Ro (1 + (α (t1 - to))

Температурный коэффициент а для меди, алюминия, вольфрама равен 0,004 1/град. Поэтому при нагреве на 100° их сопротивление возрастает на 40%. Для железа α = 0,006 1/град, для латуни α = 0,002 1/град, для фехрали α = 0,0001 1/град, для нихрома α = 0,0002 1/град, для константана α = 0,00001 1/град, для манганина α = 0,00004 1/град. Уголь и электролиты имеют отрицательный температурный коэффициент сопротивления. Температурный коэффициент для большинства электролитов равен примерно 0,02 1/град.

Свойство проводников изменять свое сопротивления в зависимости от температуры используется в термометрах сопротивления . Измеряя сопротивление, определяют расчетным путем окружающую температуру.Константан, манганин и другие сплавы, имеющие очень небольшой температурный коэффициент сопротивления применяют для изготовления шунтов и добавочных сопротивлений к измерительным приборам.

Пример 1. Как изменится сопротивление Ro железной проволоки при нагреве ее на 520°? Температурный коэффициент а железа 0,006 1/град. По формуле R1 = Ro + Ro α (t1 - to) = Ro + Ro 0,006 (520 - 20) = 4Ro , то есть сопротивление железной проволоки при нагреве ее на 520° возрастет в 4 раза.

Пример 2. Алюминиевые провода при температуре -20° имеют сопротивление 5 ом. Необходимо определить их сопротивление при температуре 30°.

R2 = R1 - αR1 (t2 - t1) = 5 + 0 ,004 х 5 (30 - (-20)) = 6 ом.

Свойство материалов изменять свое электрическое сопротивление при нагреве или охлаждении используется для измерения температур. Так, термосопротивления , представляющие собой проволоку из платины или чистого никеля, вплавленные в кварц, применяются для измерения температур от -200 до +600°. Полупроводниковые термосопротивления с большим отрицательным коэффициентом применяются для точного определения температур в более узких диапазонах.

Полупроводниковые термосопротивления, применяемые для измерения температур называют термисторами .

Термисторы имеют высокий отрицательный температурный коэффициент сопротивления, то есть при нагреве их сопротивление уменьшается. выполняют из оксидных (подвергнутых окислению) полупроводниковых материалов, состоящих из смеси двух или трех окислов металлов. Наибольшее распространение имеют медно-марганцевые и кобальто-марганцевые термисторы. Последние более чувствительны к температуре.

Металл

Удельное сопротивление ρ при 20 ºС, Ом*мм²/м

Температурный коэффициент сопротивления α, ºС -1

Алюминий

Железо (сталь)

Константан

Манганин

Температурный коэффициент сопротивления α показывает на сколько увеличивается сопротивление проводника в 1 Ом при увеличении температуры (нагревании проводника) на 1 ºС.

Сопротивление проводника при температуре t рассчитывается по формуле:

r t = r 20 + α* r 20 *(t - 20 ºС)

r t = r 20 *,

где r 20 – сопротивление проводника при температуре 20 ºС, r t – сопротивление проводника при температуре t.

Плотность тока

Через медный проводник с площадью поперечного сечения S = 4 мм² протекает ток I = 10 А. Какова плотность тока?

Плотность тока J = I/S = 10 А/4 мм² = 2.5 А/мм².

[По площади поперечного сечения 1 мм² протекает ток I = 2.5 А; по всему поперечному сечению S протекает ток I = 10 А].

По шине распределительного устройства прямоугольного поперечного сечения (20х80) мм² проходит ток I = 1000 А. Какова плотность тока в шине?

Площадь поперечного сечения шины S = 20х80 = 1600 мм². Плотность тока

J = I/S = 1000 A/1600 мм² = 0.625 А/мм².

У катушки провод имеет круглое сечение диаметром 0.8 мм и допускает плотность тока 2.5 А/мм². Какой допустимый ток можно пропустить по проводу (нагрев не должен превысить допустимый)?

Площадь поперечного сечения провода S = π * d²/4 = 3/14*0.8²/4 ≈ 0.5 мм².

Допустимый ток I = J*S = 2.5 А/мм² * 0.5 мм² = 1.25 А.

Допустимая плотность тока для обмотки трансформатора J = 2.5 А/мм². Через обмотку проходит ток I = 4 А. Каким должно быть поперечное сечение (диаметр) круглого сечения проводника, чтобы обмотка не перегревалась?

Площадь поперечного сечения S = I/J = (4 А) / (2.5 А/мм²) = 1.6 мм²

Этому сечению соответствует диаметр провода 1.42 мм.

По изолированному медному проводу сечением 4 мм² проходит максимально допустимый ток 38 А (см. таблицу). Какова допустимая плотность тока? Чему равны допустимые плотности тока для медных проводов сечением 1, 10 и 16 мм²?

1). Допустимая плотность тока

J = I/S = 38 А / 4мм² = 9.5 А/мм².

2). Для сечения 1 мм² допустимая плотность тока (см. табл.)

J = I/S = 16 А / 1 мм² = 16 А/мм².

3). Для сечения 10 мм² допустимая плотность тока

J = 70 A / 10 мм² = 7.0 А/мм²

4). Для сечения 16 мм² допустимая плотность тока

J = I/S = 85 А / 16 мм² = 5.3 А/мм².

Допустимая плотность тока с увеличением сечения падает. Табл. действительна для электрических проводов с изоляцией класса В.

Задачи для самостоятельного решения

    Через обмотку трансформатора должен протекать ток I = 4 А. Какое должно быть сечение обмоточного провода при допустимой плотности тока J = 2.5 А/мм²? (S = 1.6 мм²)

    По проводу диаметром 0.3 мм проходит ток 100 мА. Какова плотность тока? (J = 1.415 А/мм²)

    По обмотке электромагнита из изолированного провода диаметром

d = 2.26 мм (без учёта изоляции) проходит ток 10 А. Какова плотность

тока? (J = 2.5 А/мм²).

4. Обмотка трансформатора допускает плотность тока 2.5 А/мм². Ток в обмотке равен 15 А. Какое наименьшее сечение и диаметр может иметь круглый провод (без учёта изоляции)? (в мм²; 2.76 мм).

Температурные коэффициенты сопротивления металлов

Задача 18.1. Для измерения температуры применили железную проволочку, имеющую при температуре t 1 = 10 °С сопротивление R 1 = 15 Ом. При некоторой температуре t 2 она имела сопротивление R 2 = 18,25 Ом. Найти эту температуру. Температурный коэффициент сопротивления железа a = 6,0×10 –3 1/°С.

Подставим численные значения:

Ответ : .

СТОП! Решите самостоятельно: А5, В7–В9, С3–С4.

Задача 18.2. Найти температуру t 2 вольфрамовой нити лампочки, если при включении в сеть с напряжением U = 220 В по нити идет ток I = 0,68 А. При температуре t 1 = 20 °С сопротивление нити R 1 = 36 Ом. Температурный коэффициент сопротивления вольфрама a = 4,8×10 –3 1/°С.

Ответ :

СТОП! Решите самостоятельно: В10–В12, С4, с6, С8.

Сверхпроводимость

Рис. 18.3

В 1911 г. голландский ученый Камерлинг-Оннес обнаружил, что при темпе­ратурах, близких к абсолютному нулю, сопротивление неко­торых веществ скачком падает до нуля (рис. 18.3). Это яв­ление назвали сверхпроводимостью. Ток, возбужденный в кольце из сверхпроводника, может продолжаться месяцы и годы, не затухая после того, как источник убрали.

Примерно половина чистых металлов может переходить в сверхпроводящее состояние, а всего в настоящее время известно более тысячи сверхпроводников. Из чистых метал­лов наибольшей температурой перехода обладает ниобий (9,3 К), а у сплавов «ре­кордсменом» является со­единение ниобия с герма­нием (23,2 К).

В сильном магнитном поле сверхпроводимость ис­чезает. Чем дальше отстоит температура сверхпровод­ника от точки перехода, тем сильнее должно быть разрушающее магнитное поле. Таким разрушающим маг­нитным полем может быть и поле самого тока в сверхпро­воднике. У некоторых сплавов удается сохранять сверхпро­водимость при токе в несколько тысяч ампер.

До сих пор неизвестно, можно ли создать сверхпро­водящие материалы при температурах, близких к комнат­ным. Создание таких материалов позволило бы передавать электроэнергию на любые расстояния без потерь. Однако уже теперь электромагниты со сверхпроводящими обмотка­ми, охлажденными жидким гелием (температура кипения 4,2 К), часто используют в ускорителях элементарных час­тиц, в мощных генераторах тока и в некоторых других уст­ройствах. Большое практическое значение имело бы созда­ние материалов, способных сохранять сверхпроводящее со­стояние при температуре кипения легко доступного и деше­вого жидкого азота 77 К.

Во время нагревания удельное сопротивление металла увеличивается в связи с активацией Броуновского движения атомов. Часть сплавов, имеющих большее удельное сопротивление, практически не меняют его с ростом температуры (манганин, константан). Это связано с особой структурой сплавов и малым средним временем свободного пробега электронов.

Изменение проводимости

Температурный коэффициент сопротивления — отражает изменение проводимости при нагревании или охлаждения материала. Если температурный коэффициент обозначить через α, удельное сопротивление при 20 °C через Ro, то во время нагревания материала до температуры t° его удельное сопротивление R1 = Ro (1 + (α(t1 — to))

Приведём пример. Температурный коэффициент фехрали = 0,0001 /1 градус, а для нихрома α= 0,0002 / 1 градус. Это означает, что нагревание на 100 °C, повышает электросопротивление фехрали на 1%, а нихрома на 2%.

Отрезок нихромовой проволоки 1 м

Поперечное сечение (мм) Электросопротивление t° 20 °C (ом) Электросопротивление t° 100 °C (ом) Электросопротивление t° 1000 °C (ом)
0,3 15,71 16,05 19,1
0,5 5,6 5,612 5,72
0,7 2,89 2,95 3,4,7
0,9 1,7 1,734 2,04
1,0 1,4 1,428 1,68
1,5 0,62 0,632 0,742
2,0 0,35 0,357 0,42
2,5 0,22 0,224 0,264
3,0 0,16 0,163 0,192
4,0 0,087 0,0887 0,104
5,0 0,056 0,0673 0,079
6,0 0,039 0,0398 0,0468
7,0 0,029 0,0296 0,0348
8,0 0,022 0,0224 0,0264
9,0 0,017 0,01734 0,0204
10,0 0,014 0,01428 0,0168

Свойство проводников изменять свое сопротивления в зависимости от температуры используется в термомопарах для измерения температуры металлургических процессов, а также в печах сушки и обжига.

Поставщик

Поставщик «Auremo» — признанный эксперт на рынке цветного и нержавеющего металлопроката- предлагает купить по доступной цене нихром, фехраль, термопары:. Большой выбор на складе. Соответствие ГОСТ и международным стандартам качества. Всегда в наличии нихром, фехраль, термопары, цена — оптимальная от поставщика. Оптовым заказчикам цена — льготная. Обращайтесь по номерам телефонов из раздела «Контакты», мы всегда открыты для предложений. Приглашаем к партнёрскому сотрудничеству.

Купить по выгодной цене

Поставщик «Auremo» предлагает на выгодных условиях купить нихром, фехраль, термопары, цена — обусловлена технологическими особенностями производства без включения дополнительных затрат. На сайте компании отображена самая оперативная информация, есть каталог продукции и прайс-листы. Под заказ можно купить продукцию нестандартных параметров. Цена заказа зависит от объема и дополнительных условий поставки.

Сопротивление проводника (R) (удельное сопротивление) () зависит от температуры. Эту зависимость при незначительных изменениях температуры () представляют в виде функции:

где — удельное сопротивление проводника при температуре равной 0 o C; — температурный коэффициент сопротивления.

ОПРЕДЕЛЕНИЕ

Температурным коэффициентом электрического сопротивления () называют физическую величину, равную относительному приращению (R) участка цепи (или удельного сопротивления среды ()), которое происходит при нагревании проводника на 1 o С. Математически определение температурного коэффициента сопротивления можно представить как:

Величина служит характеристикой связи электросопротивления с температурой.

При температурах, принадлежащих диапазону , у большинства металлов рассматриваемый коэффициент остается постоянным. Для чистых металлов температурный коэффициент сопротивления часто принимают равным

Иногда говорят о среднем температурном коэффициенте сопротивления, определяя его как:

где — средняя величина температурного коэффициента в заданном интервале температур ().

Температурный коэффициент сопротивления для разных веществ

Большая часть металлов имеет температурный коэффициент сопротивления больше нуля. Это означает, что сопротивление металлов с ростом температуры возрастает. Это происходит как результат рассеяния электронов на кристаллической решетке, которая усиливает тепловые колебания.

При температурах близких к абсолютному нулю (-273 o С) сопротивление большого числа металлов резко падает до нуля. Говорят, что металлы переходят в сверхпроводящее состояние.

Полупроводники, не имеющие примесей, обладают отрицательным температурным коэффициентом сопротивления. Их сопротивление при увеличении температуры уменьшается. Это происходит вследствие того, что увеличивается количество электронов, которые переходят в зону проводимости, значит, при этом увеличивается число дырок в единице объема полупроводника.

Растворы электролитов имеют . Сопротивление электролитов при увеличении температуры уменьшается. Это происходит потому, что рост количества свободных ионов в результате диссоциации молекул превышает увеличение рассеивания ионов в результате столкновений с молекулами растворителя. Надо сказать, что температурный коэффициент сопротивления для электролитов является постоянной величиной только в малом диапазоне температур.

Единицы измерения

Основной единицей измерения температурного коэффициента сопротивления в системе СИ является:

Примеры решения задач

ПРИМЕР 1

Задание Лампа накаливания, имеющая спираль из вольфрама включена в сеть с напряжением B, по ней идет ток А. Какой будет температура спирали, если при температуре o С она имеет сопротивление Ом? Температурный коэффициент сопротивления вольфрама .
Решение В качестве основы для решения задачи используем формулу зависимости сопротивления от температуры вида:

где — сопротивление вольфрамовой нити при температуре 0 o C. Выразим из выражения (1.1), имеем:

По закону Ома для участка цепи имеем:

Вычислим

Запишем уравнение связывающее сопротивление и температуру:

Проведем вычисления:

Ответ K

ПРИМЕР 2

Задание При температуре сопротивление реостата равно , сопротивление амперметра равно и он показывает силу тока Реостат, сделан из железной проволоки, он последовательно соединен с амперметром (рис.1). Каким будет сила тока течь через амперметр, если реостат нагреть до температуры ? Считать температурный коэффициент сопротивления железа равным .