20.09.2019

Все формулы по разделу электростатика. Электростатика


где F - модуль силы взаимодействия двух точечных зарядов величиной q 1 и q 2 , r - расстояние между зарядами, - диэлек- трическая проницаемость среды, 0 - диэлектрическая постоянная.

    Напряженность электрического поля

где - сила, действующая на точечный заряд q 0 , помещенный в данную точку поля.

    Напряженность поля точечного заряда (по модулю)

где r - расстояние от заряда q до точки, в которой определяется напряженность.

    Напряженность поля, создаваемого системой точечных зарядов (принцип суперпозиции электрических полей)

где - напряженность в данной точке поля, создаваемого i-тым зарядом.

    Модуль напряженностиполя, создаваемого бесконечной равномерно заряженной плоскостью:

где
- поверхностная плотность заряда.

    Модуль напряженности поля плоского конденсатора в средней его части

.

Формула справедлива, если расстояние между пластинами много меньше линейных размеров пластин конденсатора.

    Напряженность поля, создаваемого бесконечно длинной равномерно заряженной нитью (или цилиндром) на расстоянии r от нити или оси цилиндра по модулю:

,

где
- линейная плотность заряда.

а) через произвольную поверхность, помещенную в неоднородное поле

,

где - угол между вектором напряженности и нормалью к элементу поверхности, dS - площадь элемента поверхности, E n - проекция вектора напряженности на нормаль;

б) через плоскую поверхность, помещенную в однородное электрическое поле:

,

в)через замкнутую поверхность:

,

где интегрирование ведется по всей поверхности.

    Теорема Гаусса. Поток вектора напряженности через любую замкнутую поверхность S равен алгебраической сумме зарядов q 1 , q 2 ... q n , охватываемых этой поверхностью, деленной на 0 .

.

Поток вектора электрического смещения выражается аналогично потоку вектора напряженности электрического поля:

а) поток сквозь плоскую поверхность, если поле однородно

б) в случае неоднородного поля и произвольной поверхности

,

где D n - проекция вектора на направление нормали к элементу поверхности, площадь которой равна dS .

    Теорема Гаусса. Поток вектора электрической индукции сквозь замкнутую поверхность S , охватывающую заряды q 1 , q 2 ... q n , равен

,

где n - число зарядов, заключенных внутри замкнутой поверхности (заряды со своим знаком).

    Потенциальная энергия системы двух точечных зарядов Q и q при условии, что W  = 0, находится по формуле:

W =
,

где r - расстояние между зарядами. Потенциальная энергия положительна при взаимодействии одноименных зарядов и отрицательна при взаимодействии разноименных.

    Потенциал электрического поля, созданного точечным зарядом Q на расстоянии r

 =
,

    Потенциал электрического поля, созданного металлической сферой радиуса R , несущей заряд Q :

 =
(r ≤ R ; поле внутри и на поверхности сферы),

 =
(r > R ; поле вне сферы).

    Потенциал электрического поля, созданного системой n точечных зарядов в соответствии с принципом суперпозиции электрических полей равен алгебраической сумме потенциалов 1 , 2 ,…, n , создаваемых зарядами q 1 , q 2 , ..., q n в данной точке поля

= .

    Связь потенциалов с напряженностью:

а) в общем случае = -qrad или =
;

б) в случае однородного поля

Е =
,

где d - расстояние между эквипотенциальными поверхностями с потенциалами 1 и 2 вдоль силовой линии;

в) в случае поля, обладающего центральной или осевой симметрией

где производная берется вдоль силовой линии.

    Работа, совершаемая силами поля по перемещению заряда q из точки 1 в точку 2

A = q ( 1 - 2 ),

где ( 1 - 2 ) - разность потенциалов начальной и конечной точек поля.

    Разность потенциалов и напряженность электрического поля связаны соотношениями

( 1 - 2 ) =
,

где Е е - проекция вектора напряженности на направление перемещения dl .

    Электроемкость уединенного проводника определяется отношением заряда q на проводнике к потенциалу проводника .

.

    Электроемкость конденсатора:

,

где ( 1 - 2 ) = U - разность потенциалов (напряжение) между обкладками конденсатора; q - модуль заряда на одной обкладке конденсатора.

    Электроемкость проводящего шара (сферы) в СИ

с = 4 0 R ,

где R - радиус шара, - относительная диэлектрическая проницаемость среды; 0 = 8,8510 -12 Ф/м.

    Электроемкость плоского конденсатора в системе СИ:

,

где S - площадь одной пластины; d - расстояние между обкладками.

    Электроемкость сферического конденсатора (две концентри- ческие сферы радиусами R 1 и R 2 , пространство между которыми заполнено диэлектриком, с диэлектрической проницаемость ):

.

    Электроемкость цилиндрического конденсатора (два коакси-альных цилиндра длиной l и радиусами R 1 и R 2 , пространство между которыми заполнено диэлектриком с диэлектрической проницаемостью )

.

    Емкость батареи из n конденсаторов, соединенных после- довательно, определяется соотношением

.

Последние две формулы применимы для определения емкости многослойных конденсаторов. Расположение слоев параллельно пластинам соответствует последовательному соединению однослойных конденсаторов; если же границы слоев перпендикулярны пластинам, то, считают, что имеется параллельное соединение однослойных конденсаторов.

    Потенциальная энергия системы неподвижных точечных зарядов

.

Здесь i - потенциал поля, создаваемого в той точке, где находится заряд q i , всеми зарядами, кроме i -го; n - общее число зарядов.

    Объемная плотность энергии электрического поля (энергия, отнесенная к единице объема):

=
= = ,

где D - величина вектора электрического смещения.

    Энергия однородного поля:

W = V .

    Энергия неоднородного поля:

W =
.


Электрическая проводимость
Электрическое сопротивление
Электрический импеданс См. также: Портал:Физика

Электростатика - раздел учения об электричестве , изучающий взаимодействие неподвижных электрических зарядов .

Между одноимённо заряженными телами возникает электростатическое (или кулоновское) отталкивание, а между разноимённо заряженными - электростатическое притяжение. Явление отталкивания одноименных зарядов лежит в основе создания электроскопа - прибора для обнаружения электрических зарядов.

В основе электростатики лежит закон Кулона . Этот закон описывает взаимодействие точечных электрических зарядов .

История

Основание электростатики положили работы Кулона (хотя за десять лет до него такие же результаты, даже с ещё большей точностью, получил Кавендиш . Результаты работ Кавендиша хранились в семейном архиве и были опубликованы только спустя сто лет); найденный последним закон электрических взаимодействий дал возможность Грину, Гауссу и Пуассону создать изящную в математическом отношении теорию. Самую существенную часть электростатики составляет теория потенциала , созданная Грином и Гауссом. Очень много опытных исследований по электростатике было произведено Рисом книги которого составляли в прежнее время главное пособие при изучении этих явлений.

Диэлектрическая проницаемость

Нахождение величины диэлектрического коэффициента K какого-либо вещества, коэффициента, входящего почти во все формулы, с которыми приходится иметь дело в электростатике, может быть произведено весьма различными способами. Наиболее употребительные способы суть нижеследующие.

1) Сравнение электроёмкостей двух конденсаторов , имеющих одинаковые размеры и форму, но у которых у одного изолирующим слоем является слой воздуха, у другого - слой испытуемого диэлектрика .

2) Сравнение притяжений между поверхностями конденсатора, когда этим поверхностям сообщается определённая разность потенциалов, но в одном случае между ними находится воздух (сила притяжения = F 0), в другом случае - испытуемый жидкий изолятор (сила притяжения = F). Диэлектрический коэффициент находится по формуле:

3) Наблюдения электрических волн (см. Электрические колебания), распространяющихся вдоль проволок. По теория Максвелла скорость распространения электрических волн вдоль проволок выражается формулой

в которой K обозначает диэлектрический коэффициент среды, окружающей собой проволоку, μ обозначает магнитную проницаемость этой среды. Можно положить для огромного большинства тел μ = 1, а потому получается

Обыкновенно сравнивают длины стоячих электрических волн, возникающих в частях одной и той же проволоки, находящихся в воздухе и в испытуемом диэлектрике (жидком). Определив эти длины λ 0 и λ, получают K = λ 0 2 / λ 2. По теории Максвелла следует, что при возбуждении электрического поля в каком-либо изолирующем веществе внутри этого вещества возникают особые деформации. Вдоль трубок индукции изолирующая среда является поляризованной. В ней возникают электрические смещения, которые можно уподобить перемещениям положительного электричества по направлению осей этих трубок, причём через каждое поперечное сечение трубки проходит количество электричества, равное

Теория Максвелла даёт возможность найти выражения тех внутренних сил (сил натяжения и давления), которые являются в диэлектриках при возбуждении в них электрического поля. Этот вопрос был впервые рассмотрен самим Максвеллом, а позже и более обстоятельно Гельмгольцем . Дальнейшее развитие теории этого вопроса и тесно соединённой с этим теории электрострикции (то есть теории, рассматривающей явления, зависящие от возникновения особых напряжений в диэлектриках при возбуждении в них электрического поля) принадлежит работам Лорберга, Кирхгофа , П. Дюгема , Н. Н. Шиллера и некоторых др.

Граничные условия

Закончим краткое изложение наиболее существенного из отдела электрострикции рассмотрением вопроса о преломлении трубок индукции. Представим себе в электрическом поле два диэлектрика, отделяющихся друг от друга какой-нибудь поверхностью S, с диэлектрическими коэффициентами К 1 и К 2 .

Пусть в точках Р 1 и Р 2 , расположенных бесконечно близко к поверхности S по ту и по другую её сторону, величины потенциалов выражаются через V 1 и V 2 , а величины сил, испытываемых помещенной в этих точках единицей положительного электричества чрез F 1 и F 2 . Тогда для точки Р, лежащей на самой поверхности S, должно быть V 1 = V 2 ,

если ds представляет бесконечно малое перемещение по линии пересечения касательной плоскости к поверхности S в точке Р с плоскостью, проходящей через нормаль к поверхности в этой точке и через направление электрической силы в ней. С другой стороны, должно быть

Обозначим через ε 2 угол, составляемый силой F2 с нормалью n2 (внутрь второго диэлектрика), и через ε 1 угол, составляемый силой F 1 с той же нормалью n 2 Тогда, пользуясь формулами (31) и (30), найдем

Итак, на поверхности, отделяющей друг от друга два диэлектрика, электрическая сила претерпевает изменение в своём направлении подобно световому лучу, входящему из одной среды в другую. Это следствие теории оправдывается на опыте.

См. также

  • Электростатический разряд

Литература

  • Ландау, Л. Д. , Лифшиц, Е. М. Теория поля. - Издание 7-е, исправленное. - М .: Наука , 1988. - 512 с. - («Теоретическая физика» , том II). - ISBN 5-02-014420-7
  • Матвеев А. Н. Электричество и магнетизм. М.: Высшая школа, 1983.
  • Тоннела М.-А. Основы электромагнетизма и теории относительности. Пер. с фр. М.: Иностранная литература, 1962. 488 с.
  • Боргман, «Основания учения об электрических и магнитных явлениях» (т. I);
  • Maxwell, «Treatise on Electricity and Magnetism» (т. I);
  • Poincaré, «Electricité et Optique»";
  • Wiedemann, «Die Lehre von der Elektricität» (т. I);

Ссылки

  • Константин Богданов. Что может электростатика // Квант . - М .: Бюро Квантум, 2010. - № 2.

Примечания

Основные разделы

... Все предсказания электростатики следуют из двух ее законов.
Но одно дело высказать эти вещи математически, и совсем другое -
применять их с легкостью и с нужной долей остроумия.

Ричард Фейнман

Электростатика изучает взаимодействие неподвижных зарядов. Ключевые эксперименты электростатики были проведены в XVII-XVIII веках. С открытием электромагнитных явлений и той революции в технологиях, которые они произвели, интерес к электростатике на некоторое время был утерян. Однако современные научные исследования показывают огромное значение электростатики для понимания многих процессов живой и неживой природы.

Электростатика и жизнь

В 1953 году американские ученые С. Миллер и Г. Юри показали, что одни из «кирпичиков жизни» - аминокислоты - могут быть получены путем пропускания электрического разряда через газ, близкий по составу первобытной атмосфере Земли, состоящей из метана, аммиака, водорода и паров воды. В течение последующих 50 лет другие исследователи повторили эти опыты и получили те же результаты. При пропускании коротких импульсов тока через бактерии в их оболочке (мембране) появляются поры, через которые внутрь могут проходить фрагменты ДНК других бактерий, запуская один из механизмов эволюции. Таким образом, энергия, необходимая для зарождения жизни на Земле и ее эволюции, действительно могла быть электростатической энергией разрядов молний (рис. 1).

Как электростатика вызывает молнии

В каждый момент времени в разных точках Земли сверкает около 2000 молний, в каждую секунду примерно 50 молний ударяют в Землю, каждый квадратный километр поверхности Земли поражается молнией в среднем шесть раз в году. Еще в XVIII веке Бенджамин Франклин доказал, что молнии, бьющие из грозовых облаков, это электрические разряды, переносящие на Землю отрицательный заряд. При этом каждый из разрядов снабжает Землю несколькими десятками кулонов электричества, а амплитуда тока при ударе молнии составляет от 20 до 100 килоампер. Скоростная фотосъемка показала, что разряд молнии длится лишь десятые доли секунды и что каждая молния состоит из нескольких более коротких.

С помощью измерительных приборов, установленных на атмосферных зондах, в начале XX века было измерено электрическое поле Земли, напряженность которого у поверхности оказалась равной приблизительно 100 В/м, что соответствует суммарному заряду планеты около 400 000 Кл. Переносчиком зарядов в атмосфере Земли служат ионы, концентрация которых увеличивается с высотой и достигает максимума на высоте 50 км, где под действием космического излучения образовался электропроводящий слой - ионосфера. Поэтому можно сказать, что электрическое поле Земли - это поле сферического конденсатора с приложенным напряжением около 400 кВ. Под действием этого напряжения из верхних слоев в нижние все время течет ток силой 2–4 кА, плотность которого составляет (1–2)·10 –12 А/м 2 , и выделяется энергия до 1,5 ГВт. И если бы не было молний, это электрическое поле исчезло бы! Получается, что в хорошую погоду электрический конденсатор Земли разряжается, а при грозе - заряжается.

Грозовое облако - это огромное количество пара, часть которого сконденсировалось в виде мельчайших капелек или льдинок. Верх грозового облака может находиться на высоте 6–7 км, а низ - нависать над землей на высоте 0,5–1 км. Выше 3–4 км облака состоят из льдинок разных размеров, так как температура там всегда ниже нуля. Эти льдинки находятся в постоянном движении, вызванном восходящими потоками теплого воздуха, поднимающегося снизу от нагретой поверхности земли. Мелкие льдинки легче, чем крупные, и они увлекаются восходящими потоками воздуха и по дороге все время сталкиваются с крупными. При каждом таком столкновении происходит электризация, при которой крупные льдинки заряжаются отрицательно, а мелкие - положительно. Со временем положительно заряженные мелкие льдинки собираются преимущественно в верхней части облака, а отрицательно заряженные крупные - внизу (рис. 2). Другими словами, верхушка облака заряжается положительно, а низ - отрицательно. При этом на земле непосредственно под грозовым облаком наводятся положительные заряды. Теперь все готово для разряда молнии, при котором происходит пробой воздуха и отрицательный заряд с нижней части грозовой тучи перетекает на Землю.

Характерно, что перед грозой напряженность электрического поля Земли может достигать 100 кВ/м, т. е. в 1000 раз превышать ее значение в хорошую погоду. В результате во столько же раз увеличивается положительный заряд каждого волоска на голове человека, стоящего под грозовой тучей, и они, отталкиваясь друг от друга, встают дыбом (рис. 3).

Фульгурит - след молнии на земле

При разряде молнии выделяется энергия порядка 10 9 –10 10 Дж. Большая часть этой энергии тратится на гром, нагрев воздуха, световую вспышку и излучение других электромагнитных волн, и только маленькая часть выделяется в том месте, где молния входит в землю. Но и этой «маленькой» части вполне достаточно, чтобы вызвать пожар, убить человека или разрушить здание. Молния может разогревать канал, по которому она движется, до 30 000°C, что гораздо выше температуры плавления песка (1600–2000°C). Поэтому молнии, попадая в песок, плавят его, а раскаленный воздух и водяные пары, расширяясь, формируют из расплавленного песка трубку, которая через некоторое время застывает. Так рождаются фульгуриты (громовые стрелы, чертовы пальцы) - полые цилиндры, сделанные из оплавленного песка (рис. 4). Самые длинные из раскопанных фульгуритов уходили под землю на глубину более пяти метров.

Как электростатика защищает от молний

К счастью, большинство разрядов молнии происходят между облаками и поэтому не угрожают здоровью людей. Однако считается, что каждый год молнии убивают более тысячи людей по всему миру. По крайней мере, в США, где ведется такая статистика, ежегодно от удара молнии страдают около тысячи человек и более ста из них погибают. Ученые давно пытались защитить людей от этой «кары божьей». Например, изобретатель первого электрического конденсатора (лейденской банки) Питер ван Мушенбрук в статье об электричестве, написанной для знаменитой французской «Энциклопедии», защищал традиционные способы предотвращения молнии - колокольный звон и стрельба из пушек, которые, как он считал, оказываются довольно эффективными.

В 1750 году Франклин изобрел громоотвод (молниеотвод). Пытаясь защитить здание Капитолия столицы штата Мэриленд от удара молнии, он прикрепил к зданию толстый железный стержень, возвышающийся над куполом на несколько метров и соединенный с землей. Ученый отказался патентовать свое изобретение, желая, чтобы оно как можно скорее начало служить людям. Механизм действия громоотвода легко объяснить, если вспомнить, что напряженность электрического поля вблизи поверхности заряженного проводника увеличивается с ростом кривизны этой поверхности. Поэтому под грозовым облаком вблизи острия громоотвода напряженность поля будет так высока, что вызовет ионизацию окружающего воздуха и коронный разряд в нем. В результате вероятность попадания молнии в громоотвод значительно возрастет. Так знание электростатики не только позволило объяснить происхождение молний, но и найти способ защититься от них.

Весть о громоотводе Франклина быстро разнеслась по Европе, и его выбрали во все академии, включая и Российскую. Однако в некоторых странах набожное население встретило это изобретение с возмущением. Сама мысль, что человек так легко и просто может укротить главное оружие божьего гнева, казалась кощунственной. Поэтому в разных местах люди из благочестивых соображений ломали громоотводы.

Любопытный случай произошел в 1780 году в одном небольшом городке на севере Франции, где горожане потребовали снести железную мачту громоотвода и дело дошло до судебного разбирательства. Молодой адвокат, защищавший громоотвод от нападок мракобесов, построил защиту на том, что и разум человека, и его способность покорять силы природы имеют божественное происхождение. Все, что помогает спасти жизнь, во благо - доказывал молодой адвокат. Он выиграл процесс и снискал большую известность. Адвоката звали... Максимилиан Робеспьер.

Ну, а сейчас портрет изобретателя громоотвода - самая желанная репродукция в мире, ведь она украшает известную всем стодолларовую купюру.

Электростатика, возвращающая жизнь

Энергия разряда конденсатора не только привела к возникновению жизни на Земле, но и может вернуть жизнь людям, у которых клетки сердца перестали синхронно сокращаться. Асинхронное (хаотичное) сокращение клеток сердца называют фибрилляцией. Фибрилляцию сердца можно прекратить, если пропустить через все его клетки короткий импульс тока. Для этого к грудной клетке пациента прикладывают два электрода, через которые пропускают импульс длительностью около десяти миллисекунд и амплитудой до нескольких десятков ампер. При этом энергия разряда через грудную клетку может достигать 400 Дж (что равно потенциальной энергия пудовой гири, поднятой на высоту 2,5 м). Устройство, обеспечивающее электрический разряд, прекращающий фибрилляцию сердца, называют дефибриллятором. Простейший дефибриллятор представляет собой колебательный контур, состоящий из конденсатора емкостью 20 мкФ и катушки индуктивностью 0,4 Гн. Зарядив конденсатор до напряжения 1–6 кВ и разрядив его через катушку и пациента, сопротивление которого составляет около 50 Ом, можно получить импульс тока, необходимый для возвращения пациента к жизни.

Электростатика, дающая свет

Люминесцентная лампа может служить удобным индикатором напряженности электрического поля. Чтобы убедиться в этом, находясь в темном помещении, потрем лампу полотенцем или шарфом - в результате внешняя поверхность лампового стекла зарядится положительно, а ткань - отрицательно. Как только это произойдет, мы увидим всполохи света, возникающие в тех местах лампы, к которым мы прикасаемся заряженной тканью. Измерения показали, что напряженность электрического поля внутри работающей люминесцентной лампы составляет около 10 В/м. При такой напряженности свободные электроны обладают необходимой энергией для ионизации атомов ртути внутри люминесцентной лампы.

Электрическое поле под высоковольтными линиями электропередач - ЛЭП - может достигать очень высоких значений. Поэтому если в темное время суток люминесцентную лампу воткнуть в землю под ЛЭП, то она загорится, и довольно ярко (рис. 5). Так с помощью энергии электростатического поля можно освещать пространство под ЛЭП.

Как электростатика предупреждает о пожаре и делает дым чище

В большинстве случаев при выборе типа детектора пожарной сигнализации предпочтение отдается дымовому датчику, так как пожар обычно сопровождается выделением большого количества дыма и именно этот тип детектора способен предупредить людей в здании об опасности. Дымовые датчики используют ионизацию или фотоэлектрический принцип для обнаружения дыма в воздухе.

В ионизационных детекторах дыма имеется источник α-излучения (как правило, америций-241), ионизирующий воздух между металлическими пластинами-электродами, электрическое сопротивление между которыми постоянно измеряется с помощью специальной схемы. Образующиеся в результате α-излучения ионы обеспечивают проводимость между электродами, а оказывающиеся там микрочастицы дыма связываются с ионами, нейтрализуют их заряд и увеличивают таким образом сопротивление между электродами, на что реагирует электрическая схема, подавая сигнал тревоги. Датчики, устроенные на этом принципе, демонстрируют весьма впечатляющую чувствительность, реагируя еще до того, как самый первый признак дыма обнаруживается живым существом. Следует отметить, что используемый в датчике источник радиации никакой опасности для человека не представляет, так как альфа-лучи не могут пройти даже через лист бумаги и полностью поглощаются слоем воздуха толщиной в несколько сантиметров.

Способность частичек пыли к электризации широко используется в промышленных электростатических пылеуловителях. Газ, содержащий, например, частицы сажи, поднимаясь вверх, проходит через отрицательно заряженную металлическую сетку, в результате чего эти частицы приобретают отрицательный заряд. Продолжая подниматься вверх, частицы оказываются в электрическом поле положительно заряженных пластин, к которым они притягиваются, после чего частицы падают в специальные емкости, откуда их периодически удаляют.

Биоэлектростатика

Одной из причин астмы являются продукты жизнедеятельности пылевых клещей (рис. 6) - насекомых размером около 0,5 мм, живущих в нашем доме. Исследования показали, что приступы астмы вызываются одним из белков, который выделяют эти насекомые. Структура этого белка напоминает подкову, оба конца которой заряжены положительно. Электростатические силы отталкивания между концами такого подковообразного белка делают его структуру стабильной. Однако свойства белка можно изменить, если нейтрализовать его положительные заряды. Это удается сделать, увеличив концентрацию отрицательных ионов в воздухе с помощью любого ионизатора, например люстры Чижевского (рис. 7). Одновременно с этим уменьшается и частота приступов астмы.

Электростатика помогает не только обезвреживать белки, выделяемые насекомыми, но и ловить их самих. Уже говорилось о том, что волосы «встают дыбом», если их зарядить. Можно себе представить, что испытывают насекомые, когда оказываются электрически заряженными. Тончайшие волоски на их лапках расходятся в разные стороны, и насекомые теряют способность передвигаться. На таком принципе основана ловушка для тараканов, показанная на рисунке 8. Тараканов привлекает сладкая пудра, предварительно электростатически заряженная. Пудрой (на рисунке она белая) покрывают наклонную поверхность, находящуюся вокруг ловушки. Оказавшись на пудре, насекомые становятся заряженными и скатываются в ловушку.

Что такое антистатики?

Одежда, ковры, покрывала и т. п. предметы заряжаются после контакта с другими предметами, а иногда и просто со струями воздуха. В быту и на производстве заряды, возникающие таким образом, часто называют статическим электричеством.

При нормальных атмосферных условиях натуральные волокна (из хлопка, шерсти, шелка и вискозы) хорошо впитывают влагу (гидрофильны) и поэтому слегка проводят электричество. Когда такие волокна касаются других материалов или трутся о них, на их поверхностях появляются избыточные электрические заряды, но на очень короткое время, поскольку заряды сразу же стекают обратно по влажным волокнам ткани, содержащим различные ионы.

В отличие от натуральных, синтетические волокна (полиэфирные, акриловые, полипропиленовые) плохо впитывают влагу (гидрофобны), и на их поверхностях имеется меньшее количество подвижных ионов. При контакте синтетических материалов друг с другом они заряжаются противоположным зарядами, но так как эти заряды стекают очень медленно, материалы прилипают друг к другу, создавая неудобства и неприятные ощущения. Кстати, волосы по структуре очень близки к синтетическим волокнам и тоже гидрофобны, поэтому при контакте, например, с расческой они заряжаются электричеством и начинают отталкиваться друг от друга.

Чтобы избавиться от статического электричества, поверхность одежды или другого предмета можно смазать веществом, которое удерживает влагу и этим увеличивает концентрацию подвижных ионов на поверхности. После такой обработки возникший электрический заряд быстро исчезнет с поверхности предмета или распределится по ней. Гидрофильность поверхности можно увеличить, смазав ее поверхностно-активными веществами, молекулы которых похожи на мыльные молекулы - одна часть очень длинной молекулы заряжена, а другая нет. Вещества, препятствующие появлению статического электричества, называют антистатиками. Антистатиком является, например, и обычная угольная пыль или сажа, поэтому, чтобы избавиться от статического электричества, в состав пропитки ковролиновых покрытий и обивочных материалов включают так называемую ламповую сажу. Для этих же целей в такие материалы добавляют до 3% натуральных волокон, а иногда и тонкие металлические нити.

Определение 1

Электростатика – обширный раздел электродинамики, исследующий и описывающий покоящиеся в определенной системе электрически заряженные тела.

На практике выделяют два вида электростатических зарядов: положительные (стекло о шелк) и отрицательные (эбонит о шерсть). Элементарный заряд является минимальным зарядом ($e = 1,6 ∙10^{ -19}$ Кл). Заряд любого физического тела кратен целому количеству элементарных зарядов: $q = Ne$.

Электризация материальных тел – перераспределение заряда между телами. Способы электризации: касание, трение и влияние.

Закон сохранения электрического положительного заряда – в замкнутой концепции алгебраическая сумма зарядов всех элементарных частиц остается стабильной и неизменной. $q_1 + q _2 + q _3 + …..+ q_n = const$. Пробный заряд в данном случае представляет собой точечный положительный заряд.

Закон Кулона

Указанный закон был установлен экспериментальным путем в 1785 году. Согласно этой теории, сила взаимодействия двух покоящихся точечных зарядов в среде всегда прямо пропорциональна произведению положительных модулей и обратно пропорционально квадрату общего расстояния между ними.

Электрическое поле представляет собой уникальный вид материи, который осуществляет взаимодействие между стабильными электрическими зарядами, формируется вокруг зарядов, воздействует только на заряды.

Такой процесс точечных неподвижных элементов полностью подчиняются третьему закону Ньютона, и считается результатом отталкивания друг от друга частиц при одинаковых силовых притяжениях друг к другу. Взаимосвязь стабильных электрических зарядов в электростатике называют кулоновским взаимодействием.

Закон Кулона вполне справедлив и точен для заряженных материальных тел, равномерно заряженных шаров и сфер. В этом случае за расстояния в основном берут параметры центров пространств. На практике данный закон хорошо и быстро выполняется, если величины заряженных тел гораздо меньше расстояния между ними.

Замечание 1

В электрическом поле также действуют проводники и диэлектрики.

Первые представляют содержащие свободные носители электромагнитного заряда вещества. Внутри проводника может возникнуть свободное движение электронов. К этим элементам относятся растворы, металлы и различные расплавы электролитов, идеальные газы и плазма.

Диэлектрики являются веществами, в которых не может быть свободных носителей электрического заряда. Свободное движение электронов внутри самих диэлектриков невозможно, так как по ним не протекает электрический ток. Именно эти физические частицы обладают не равной диэлектрической единице проницаемостью.

Силовые линии и электростатика

Силовые линии начальной напряженности электрического поля являются непрерывными линиями, касательные точки к которым в каждой среде, через которые они проходят, полностью совпадают с осью напряженности.

Основные характеристики силовых линий:

  • не пересекаются;
  • не замкнуты;
  • стабильны;
  • конечное направление совпадает с направлением вектора;
  • начало на $+ q$ или в бесконечности, конец на $– q$;
  • формируются вблизи зарядов (где больше напряжённость);
  • перпендикулярны поверхности основного проводника.

Определение 2

Разность электрических потенциалов или напряжение (Ф или $U$) - это величина потенциалов в начальной и конечной точках траектории положительного заряда. Чем меньше изменяется потенциал на отрезке пути, тем меньше в итоге напряженность поля.

Напряженность электрического поля всегда направлена в сторону уменьшения начального потенциала.

Рисунок 2. Потенциальная энергия системы электрических зарядов. Автор24 - интернет-биржа студенческих работ

Электроемкость характеризует способность любого проводника накапливать необходимый электрический заряд на собственной поверхности.

Данный параметр не зависит от электрического заряда, однако на него могут воздействовать геометрические размеры проводников, их формы, расположение и свойств среды между элементами.

Конденсатор является универсальным электротехническим устройством, которое помогает быстро накопить электрический заряд для отдачи его в цепь.

Электрическое поле и его напряженность

По современным представлениям ученых, электрические стабильные заряды не влияют друг на друга непосредственно. Каждое заряженное физическое тело в электростатике создает в окружающей среде электрическое поле. Этот процесс оказывает силовое воздействие на другие заряженные вещества. Главное свойство электрического поля заключается в действии на точечные заряды с некоторой силой. Таким образом, взаимодействие положительно заряженных частиц осуществляется через поля, которые окружают заряженные элементы.

Это явление возможно исследовать посредством, так называемого, пробного заряда – небольшого по размеру электрического заряда, который не вносит существенное перераспределения изучаемого зарядов. Для количественного выявления поля вводится силовая особенность - напряженность электрического поля.

Напряженностью называют физический показатель, который равен отношению силы, с которой поле воздействует на пробный заряд, размещенный в данной точке поля, к величине самого заряда.

Напряженность электрического поля представляет собой векторную физическую величину. Направление вектора в этом случае совпадает в каждой материальной точке окружающего пространства с направлением действующей на положительный заряд силы. Электрическое поле не меняющихся со временем и неподвижных элементов считается электростатическим.

Для понимания электрического поля применяют силовые линии, которые проводятся таким образом, чтобы направление главной оси напряженности в каждой системе совпадало с направлением касательной к точке.

Разность потенциалов в электростатике

Электростатическое поле включает одно важное свойство: работа сил всех движущихся частиц при перемещении точечного заряда из одной точки поля в другую не зависит от направления траектории, а определяется исключительно положением начальной и конечной линий и параметром заряда.

Результатом независимости работы от формы движения зарядов является следующее утверждение: функционал сил электростатического поля при преобразовании заряда по любой замкнутой траектории всегда равен нулю.

Рисунок 4. Потенциальность электростатического поля. Автор24 - интернет-биржа студенческих работ

Свойство потенциальности электростатического поля помогает ввести понятие потенциальной и внутренней энергии заряда. А физический параметр, равный соотношению потенциальной энергии в поле к величине этого заряда, называют постоянным потенциалом электрического поля.

Во многих сложных задачах электростатики при определении потенциалов за опорную материальную точку, где величина потенциальной энергии и самого потенциала обращаются в ноль, удобно использовать бесконечно удаленную точку. В этом случае значимость потенциала определяется так: потенциал электрического поля в любой точке пространства равен работе, которую выполняют внутренние силы при удалении положительного единичного заряда из данной системы в бесконечность.