11.03.2019

"Аквастоп" - защита от протечек воды: технология защиты, установка и отзывы. Блок защиты от протечек воды - сигнализаторы промышленного изготовления и самодельные устройства


Представьте: вы включили стиральную машину, а сами ушли забирать ребенка из детского сада или на прогулку с любимым лабрадором. Тем временем у стиральной машины сорвало шланг, и вода полилась на пол…

Последствия легко себе представить и непросто пережить. Без системы защиты от протечек «Аквасторож» случилась бы катастрофа! Страшно подумать, что могло бы произойти с вашей квартирой и сколько пришлось бы заплатить соседям за восстановление их жилья, а если затопило несколько этажей?

Как же предотвратить потоп? Все просто – установить «Аквасторож». Система защиты от протечек воды и залива состоит из трех элементов: шаровых электрокранов, датчиков протечки и управляющего устройства – контроллера.

Как работает «Аквасторож»? Вода попадает на датчик, установленный на полу в ванной, санузле или под раковиной на кухне. Датчик протечки передает сигнал о протечке на контроллер, и через 3 секунды водоснабжение дома будет перекрыто.

Вернувшись домой, вместо разъяренных соседей под дверью и страшной картины с плавающей мебелью вы обнаружите лишь маленькую лужицу на полу. Вздох облегчения – системе защиты от протечек удалось предотвратить катастрофу, спасти ваше имущество и бюджет. Соседи снизу, вложившие всю душу в ремонт, даже не догадаются о том, что могло бы произойти, не будь «Аквасторожа».

Система эта год от года становится все удобнее и умнее. Недавно вышла система четвертого поколения «Аквасторож Эксперт» – совершенно новая и в своем роде уникальная. Такой на рынке еще не было!

Ее главное отличие от предшествующих поколений – уникальные умные краны с полным контролем работоспособности. Новый контроллер «Эксперт» постоянно следит, чтобы в электрических цепях кранов и датчиков не было повреждений, а также определяет положение кранов. Если что-то идет не так, он экстренно перекрывает водоснабжение. Что именно происходит с кранами и датчиками, всегда видно по индикатору.

Поистине дом будущего – умный и безопасный, который, кроме прочего, сам заботится о своей сохранности.

Оборудовать квартиру или коттедж системой «Аквасторож» легко – справится даже непрофессионал. Весь процесс не займет много времени. Даже если ремонт завершен, еще не поздно. Можно выбрать систему с беспроводными датчиками – они «общаются» с контроллером с помощью радиосигнала, или замаскировать провода, проложив их под плинтусом или между швов кафельной плитки.

Шаг 1. Электрокраны «Аквасторож»

Монтируются непосредственно в трубы горячего и холодного водоснабжения за вводными вентилями. Порядок действий таков: перекройте вводные вентили, затем отсоедините от них водопроводную разводку и установите краны «Аквасторож».

Если у вводного вентиля выход «папа», то кран «Аквасторож» подсоединяется к нему без дополнительных приспособлений. Если это «мама», то потребуется «американка» – накидная гайка, которая применяется, когда надо соединить две трубы с резьбой, не вращая их. С помощью специального ключа или шестигранника нужно накрутить американку на вводной кран, заранее обмотав резьбовое соединение лентой ФУМ для уплотнения и герметизации.

Теперь подсоедините к крану «Аквасторож» ранее отсоединенную разводку. Затем устанавливаются счетчики, регулятор давления, фильтры и т.д.

Шаг 2. Установка контроллера «Аквасторож»

Контроллер «Аквасторож» нужно устанавливать в сухом помещении с открытым доступом. Это может быть сантехнический шкаф, в коридор, прихожая, санузел и пр. Для контроллера нужно выбрать такое место, чтобы влажность воздуха не превышала 70%.

Процесс установки контроллера прост. Для начала сделаем разметку для закрепления пластины, на которую впоследствии будет одеваться контроллер. Далее сверлим отверстия для двух винтов (саморезов), которые уже идут в комплекте. Прикручиваем отверткой пластину и вставляем в нее контроллер. На этом установка контроллер завершена. Приступаем к следующему этапу.

Шага 3. Датчики протечки

Не поленитесь провести небольшой эксперимент, чтобы определить, где именно будет скапливаться вода в случае аварии, и расположите датчики в стратегически правильных местах. Датчики «Аквасторож» бывают проводными и беспроводными. В случае с проводными датчиками:

  • проложите провод (например, в плиточных швах);
  • зафиксируйте донышко на полу винтом или двусторонним скотчем;
  • закрепите на донышке пластину
  • наденьте сверху декоративный колпачок

С беспроводными датчиками еще проще: их достаточно разложить на полу и при необходимости закрепить с помощью двустороннего скотча.

Шаг 4. Подключите компоненты системы к контроллеру

Осталось соединить все части в единую систему. Сначала подключите электрокраны к разъемам на плате контроллера. Чтобы ненароком не перепутать разъемы, смотрите на подписи: «Кран 1», «Кран 2» и т.д. Затем подключите датчики. Проводные – в соответствующие разъемы слева, они тоже маркированы. Беспроводные заранее известны системе, их подключать не нужно.

Вода дырочку найдет. Эта пословица известна всем. Самое главное в том, что она подтверждается, пусть и не очень часто, но последствия могут быть самые плачевные. Здесь речь пойдет о том, чем чреваты протечки водопроводных или канализационных труб в квартире. Часто об этих случаях мы узнаем от разгневанного соседа, живущего этажом ниже.

И, как правило, затопление нижних соседей происходит как раз после того, как они сделали дорогущий евроремонт, ведь другого теперь и не делают. Тут можно увидеть все что угодно: провисший и обвалившийся натяжной потолок, отставшие от стен обои, всплывший паркет или вспученный линолеум, под которым был уложен теплый пол. И уж совсем не на пользу потоп пойдет для электропроводки.

Начинается составление актов, хождение по судам и домоуправляющим компаниям. Повторный ремонт делается, конечно, за счет верхнего соседа. А уж об испорченных отношениях и потраченных нервах лучше не вспоминать совсем.

Всего этого могло бы и не быть, если протечку заметить в самой ранней стадии. Ведь чаще всего все начинается с отдельных безобидных капель, которые трудно заметить. Постепенно эти капли превращаются в тонкую струйку, а потом прорывается труба или просто выбивается прокладка, и беды не миновать.

Конечно, современные пластиковые трубы имеют гарантию на пятьдесят лет, но где они эти трубы столько стояли, кто это может засвидетельствовать воочию? Поэтому авария может случиться в самый неподходящий момент. А уместно ли вообще в этом случае говорить о каком-то подходящем моменте?

Чтобы не произошло «всемирного потопа», используются всевозможные датчики и сигнализаторы протечки. Проблема, видимо, стоит настолько остро, что в последнее время промышленностью стали выпускаться различные устройства, помогающие бороться с протечками.

Сложность и функциональность таких приборов, точнее сказать, их ассортимент, очень широк. Это могут быть простые сигнализаторы, оповещающие о протечке звуковым сигналом, более сложные устройства могут перекрыть воду во всей квартире.

Наиболее простые «пищалки» имеют автономное питание от батарей, более сложные питаются, конечно, от сети. Есть даже устройства, которые могут по сотовому телефону уведомить об аварии владельца квартиры, предварительно отключив воду. Наиболее продвинутые сигнализаторы позволяют по тому же телефону через SMS отключить воду. Ну, вот просто захотели и отключили!

Естественно, что подобные устройства недешевы, и чем выше их функциональность, тем больше они стоят. Конечно, все устройства рассмотреть невозможно, но некоторые из них попробуем кратко описать хотя бы по принципу: что умеет делать, какой применен , источник питания и, конечно, цена.

Сигнализаторы протечки промышленного изготовления

Компания GIDROLOCK предлагает широкий спектр приборов и систем для борьбы с протечками воды. Для установки в квартирах изделия представляют собой набор, состоящий из нескольких компонентов. В комплект входит несколько датчиков протечки, как правило, 3 или 2 штуки. При желании их количество можно увеличить.

Рисунок 1. Датчик протечки WSP (water sensor passive)

Кроме датчиков протечки в комплект также входят два (холодная и горячая вода) шаровых крана с электроприводом (ШЭП) итальянской фирмы BUGATTI, блок управления, аккумулятор 12вольт, 1,3ампер*час. Шаровые краны выпускается с присоединительными резьбами 1/2, 3/4 и один дюйм. Отсюда и разница в назначении и цене наборов. Краны ШЭП выпускаются на напряжение 12В постоянного тока и на 220В переменного. Однако, учитывая требования электробезопасности, лучше ориентироваться на низковольтную аппаратуру 12 - 24В.

Рисунок 2. Шаровый кран с электроприводом

Так набор «КВАРТИРА 1» содержит 2 полудюймовых ШЭП, при этом его стоимость составляет 10000 рублей. «КВАРТИРА 1» в той же комплектации, но с латунными ШЭП стоит чуть дороже - 11600. Различить эти наборы можно по названию: первый называется ULTIMATE BUGATTI, а второй PROFESSIONAL BUGATTI.

Набор квартира 3 с ШЭП 1 дюйм стоит уже 12400 рублей. Цена где-то на уровне недорогого ноутбука или планшетника, вроде бы дорого. Но по сравнению с евроремонтом у соседей на нижнем этаже - не так уж и много. С течением времени цены могут изменяться, естественно, в сторону увеличения.

Если готовый набор по каким-то причинам не подходит, например маловато датчиков, всегда можно купить любой недостающий элемент в розницу. Такую услугу фирма предоставляет тоже.

Датчики с радиоканалом WSR (water sensor radio)

Одной из новинок фирмы GIDROLOCK являются датчики протечки с радиоканалом. Такие датчики могут быть подключены к блокам управления последних моделей: GIDROLOCK CONTROL, GIDROLOCK PREMIUM, GIDROLOCK UNIVERSAL и т.д. Использование датчиков с радиоканалом оправдано при использовании их в системах водоснабжения, отопления или канализации, когда использование обычных проводных датчиков невозможно или затруднительно: дальнее расположение датчиков или нежелание долбить стены для прокладки линий связи.

В случае попадания воды на электроды датчика последний передает сигнал об аварийном событии на приемник, подключенный к блоку управления. Передача сигнала аварии продолжается до тех пор, пока не будет получен ответ от приемника (передача по принципу «запрос-ответ»). Результатом такого радиообмена является закрытие соответствующего ШЭП.

Сами датчики представляют собой большую таблетку диаметром 50 и высотой 12 мм. Дальность действия в пределах прямой видимости не менее 500 м, питание от встроенной батареи, срок службы которой изготовитель гарантирует на целых 24 года. Датчики работоспособны в диапазоне температур -20 - +60 градусов. Уж куда лучше!

Рисунок 3. Датчик WSR

Датчики WSR выпускаются различной окраски, которую можно указать при заказе, в том числе и с рисунком под цвет линолеума или плитки. Базовый цвет датчиков - белый. И уж если используются радиодатчики, то без дистанционного пульта управления обойтись нельзя совсем. И такой пульт тоже есть. Дальность его действия 250 м, срок службы от встроенной батарейки 7 лет: в любой момент можно закрыть или открыть ШЭП, остановить подачу воды при аварийной ситуации или просто в случае ремонта, например, отдельного крана или смесителя.

Можно было бы найти достаточное количество устройств промышленного изготовления для сигнализации о протечках воды, и окажется, что они ничуть не хуже, а может даже и лучше систем фирмы GIDROLOCK, поэтому данную статью ни в коей мере нельзя рассматривать, как рекламу изделий именно этой фирмы. Просто эта система взята для примера, чтобы показать сущность и широту проблемы затопления и способы ее решения.

Кроме системы Гидролок в интернет - магазинах и фирмах предлагаются также системы Нептун, Аквасторож, Радуга, Аквасенсор, Адлан-Т и другие. Какую из этих систем использовать, можно решить только в индивидуальном порядке, сопоставив ее свойства, цену и свои финансовые возможности. Но при современном уровне электроники, импортных комплектующих, а также конкуренции между фирмами все системы, скорей всего, по своим свойствам достаточно надежны и функциональны.

Датчики протечки типа WSP и WSR являются точечными, поэтому фиксируют протечку только тогда, когда до них дотечет вода. В других системах используются датчики на основе сенсорного кабеля типа SC. Такой кабель можно легко уложить по периметру помещения, расположить змейкой по всей площади помещения, либо как-то по-другому.

Крепление кабеля SC к поверхности пола осуществляется с помощью пластиковых клипс с основанием на самоклейке, либо клипсами типа «серьга» с креплением на шурупы. В общем, при использовании кабеля SC гарантируется исключение «слепых зон» контроля.

Для использования совместно с кабелем SC применяется блок управления LDM 0.5. Подключить кабель достаточно просто: согласно инструкции провода четырех цветов подключить к клеммам с соответствующими номерами. На основе сенсорного кабеля работает, например, упомянутая чуть выше система «Радуга».

Более подробно об использовании сенсорного кабеля SC можно прочитать в его техническом паспорте, который можно найти в любой поисковой системе интернета. Там же имеется схема подключения и рисунки со схемами прокладки кабеля в помещении.

Что и говорить, системы промышленного изготовления безусловно хороши, но рядового потребителя несколько смущает цена вопроса. К тому же если этот рядовой потребитель еще и радиолюбитель, то собрать подобный прибор из неликвидных деталей не составит никакого труда. Правда, маловероятно, что получится суперприбор, отключающий воду во время аварии, но в ряде случаев вполне достойно может с поставленной задачей справиться простой звуковой сигнализатор, собранный из нескольких деталей. Далее будет рассмотрено несколько схем, которые были разработаны радиолюбителями в разное, должно быть еще советское, время.

Простые самодельные схемы для обнаружения протечек воды

Вот тут настало время вспомнить еще одну пословицу: «Все гениальное просто». Именно так можно охарактеризовать схему показанную на рисунке ниже. Наиболее подходящее название для нее «Самый простой датчик протечек».

Рисунок 4. Самый простой датчик

Схема настолько проста, содержит всего три детали, что собрать ее самостоятельно сможет любой человек, который взял в руки паяльник впервые в жизни. Скорее всего, не все получится сразу: паяльник перегревается, пайки получаются тусклые и рыхлые, выводы деталей и провода не облуживаются.

Кроме того непонятно, зачем у транзистора три ноги, и куда их паять. Все это заставит обратиться к соответствующей литературе или просто спросить у знакомых радиолюбителей. Но, если все препятствия будут преодолены, схема заработает, а это будет непременно, то может случиться, что ряды радиолюбителей пополнятся еще одним человеком. Так бывает часто, когда собранная конструкция выдала ожидаемые результаты.

Для изготовления схемы понадобится любой маломощный . Это может быть КТ361, КТ502, КТ209 и любой подобный. Резистор R1 имеет номинал 10 - 20 КОм. Его назначение поддерживать транзистор в закрытом состоянии. Для генерации звукового сигнала используется буззер (buzzer - дословный перевод зуммер, устройство звуковой сигнализации, «пищалка») со встроенным генератором. Но везде его называют на английский манер именно буззер, поэтому придется придерживаться традиции.

Такой буззер начинает излучать звук с частотой около 2КГц, как только на него подано напряжение питания. Буззеры выпускаются на напряжение 1,5 - 12В. В данной конструкции подойдет с напряжением 9 - 12В. «Плюсовой» вывод буззера подключается к коллектору транзистора VT1.

Рисунок 5. Буззер

Зонд датчика выполнен в виде пластинки из фольгированного стеклотекстолита размерами 20*60 мм. Для получения двух электродов достаточно на пластинке прорезать фольгу резаком из ножовочного полотна. Полученные полоски желательно облудить, остатки флюса смыть спиртом. Можно также просто проложить на полу рядом два электрода, желательно из нержавеющей проволоки. Вполне подойдут для этих целей обычные вязальные спицы.

Конструкция датчика настолько проста, что не потребуется изобретать печатную плату, все можно собрать навесным монтажом. Не понадобится даже выключатель питания: в дежурном режиме транзистор закрыт и от батарейки почти ничего не потребляется.

В качестве батареи питания используется «Крона», точнее ее современный импортный аналог. Хотя такие батареи достаточно долговечны, могут храниться по нескольку лет, все-таки периодически состояние батареи надо проверять. Сделать это проще всего перемкнув электроды зонда хотя бы влажной тряпкой или даже пальцем. Замыкать накоротко зонд не следует, поскольку транзистор может выйти из строя.

Работает датчик так. При попадании жидкости на электроды зонда его сопротивление уменьшается до нескольких килоом, что вызывает открывание транзистора. Через открытый транзистор напряжение питания подается на буззер и раздается звуковой сигнал.

Для обнаружения протечек датчики, можно несколько штук, раскладываются на полу в предполагаемых местах протечки воды. Крепление датчиков осуществляется при помощи клеящей ленты скотч или изолентой. При этом каждый датчик питается, само собой, от своей отдельной батарейки.

Чуть сложнее схема «Звуковой сигнализатор протечки» показанная на следующем рисунке. Смысл ее такой же, что и у схемы на одном транзисторе, только чуть побольше деталей и есть возможность настройки чувствительности.

Рисунок 6. Звуковой сигнализатор протечки

Ее основой является пороговый элемент на микросхеме К561ТЛ1, в составе которой имеются 4 двухвходовых . В данной схеме используется только один элемент. Входы остальных трех неиспользуемых элементов следует подключить к общему проводу. Это уменьшит общий ток потребления и защитит выходы микросхемы от пробоя. Напряжения срабатывания порогового элемента показаны на следующем рисунке.

Рисунок 7. Технические данные микросхемы К561ТЛ1

При включении микросхемы как показано на рисунке получается триггер Шмитта с одним входом и одним выходом. Логика работы такого элемента предельно проста. Когда напряжение на входе превысит напряжение срабатывания 2,8В на выходе устанавливается уровень логического нуля. В этом случае транзистор VT1 закрыт, поэтому буззер молчит.

Если входное напряжение на выводах 1,2 уменьшать, даже очень медленно и плавно, то при снижении его до уровня 2,2В на выходе элемента DD1.1 быстро и резко появится уровень логической единицы, который откроет транзистор VT1 и раздастся звуковой сигнал. Несмотря на сравнительно малые размеры буззера, звучание его, как правило, очень громкое и противное, не услышать просто нельзя.

Входное напряжение формируется делителем, образованным цепочкой резисторов R1, R2 и датчиком протечки, конструкция которого была описана чуть выше. Нетрудно подсчитать, что при номиналах резисторов, указанных на схеме, снижение сопротивления датчика до 50 - 100КОм приведет к «просадке» напряжения на входе триггера Шмитта ниже 2,2В. Если датчик сухой, практически «обрыв», напряжение на входе практически равно напряжению питания.

Питание сигнализатора осуществляется от на напряжение 9 - 12В. Вполне подойдет для этих целей любой сетевой адаптер или блок питания от польских «антенн-сушилок».

Наличие напряжения питания контролируется при помощи светодиода HL1, который потребляет основную долю мощности, пока сигнализатор находится в режиме ожидания. Поэтому, если предполагается питание устройства от батарейки, этот светодиод следует из схемы исключить.

Такая поразительная простота рассмотренных выше схем обусловлена применением в них буззера со встроенным генератором: подали питание и, пожалуйста, запищало. Если же применить обычный пьезоизлучатель или динамическую головку, то схема выглядит несколько иначе. Датчик затопления включает генератор, а уже он выдает звуковые колебания.

Ниже показана схема с использованием генератора на базе .

Рисунок 8. Схема сигнализатора протечек на таймере 555

По сути дела эта схема мало отличается от схемы на одном транзисторе, рассмотренной выше. Датчик протечки, все те же две полоски стеклотекстолита или две вязальных спицы, подключен к базе транзистора T1. При увлажнении датчика его сопротивление уменьшается и открывается транзистор T1. Ток через переход коллектор - эмиттер создает на резисторе R3 падение напряжения, которое приложено к выводу 4 микросхемы NE555.

Вывод 4 является входом /R (сброс) таймера NE555. Логический ноль на этом входе запрещает, останавливает работу всей микросхемы, поэтому генератор молчит, а на выводе 3 уровень логического ноля. Падение напряжения на резисторе R3 воспринимается таймером как логическая единица. Поэтому генератор запускается, на выходе 3 появляются прямоугольные импульсы звуковой частоты. Сам генератор выполнен по стандартной схеме, описание которой можно найти в статье о таймере NE555.

Выходной каскад микросхемы NE555 достаточно мощный, поэтому для получения звукового сигнала можно непосредственно к выходу схемы подключить электромагнитный излучатель с сопротивлением обмотки не менее 50 Ом.

Подобных простейших схем можно найти немало. Выполнены они чаще всего на транзисторах или микросхемах малой степени интеграции, как правило, К561. Но при некоторых различиях схем принцип действия один и тот же: протекла вода, намок сенсор, включился генератор, раздался звук. Поэтому для понимания принципа работы таких детекторов протечки достаточно трех рассмотренных схем.

Новая элементная база - новые схемы, новые возможности

Но радиолюбители народ творческий и неугомонный. В эпоху микроконтроллеров датчики протечки создаются именно на них. Принцип работы примерно тот же, что описан выше, вот только реакция умных схем на протечку может быть более разнообразной. Например, при незначительном увлажнении датчика прибор начинает издавать короткие редкие гудки. По мере поднятия уровня воды гудки начинают учащаться, менять тон или превратиться в сплошной звуковой сигнал.

Подобная система также может иметь , контакты которого или к электрифицированным кранам типа ШЭП, перекрывающим воду в нужный момент. Получается система ничуть не хуже промышленных, описанных выше.

На основе современной элементной базы достаточно легко создать датчики протечек, работающие по радиоканалу. Для этого достаточно объединить в одной конструкции микроконтроллер и модуль передачи радиосигнала. И такие схемы в арсенале любительских конструкций уже есть.

Для того, чтобы изменить способности , вовсе не обязательно что-то изменять в схеме при помощи паяльника и отвертки. Нужных параметров легко добиться простым изменением программы микроконтроллера.

Борис Аладышкин

P.S. Дополнение к статье. Пример наглядного рисунка как можно использовать датчики протечки в каком то произвольном сантехническом помещении.

Примечание. Все может видоизмениться при использовании другого вида оборудования. Всегда следует учитывать технические условия вашего сантехнического узла (расположения труб для подачи воды, а так же расположения других видов сантехнических изделий - раковин, ванн, унитазов и т.д).

Многим знакома проблема протечек воды в квартирах. Из-за испорченного смесителя или лопнувшего шланга приходится выбрасывать огромные деньги на ремонты квартир. Предлагаю изготовить самоделку из доступных материалов при помощи обычного инструмента.

Изобретатель системы защиты от протечек воды, Рудик Александр Владимирович, успешно пользуется данной системой уже более года.
По словам автора: это изобретение уже один раз спасла мою квартиру от затопления.

Изготовил и установил систему самостоятельно. При изготовлении, на материалы было потрачено около 10 долларов (300 рос. рублей) и 30 часов рабочего времени.

В мой квартире 4 шаровых крана. На оборудование такой квартиры защитой от протечек "Нептун" или Гидролок" ушло бы более 20000 рублей (это вместе с установкой).

Так что выгода очевидна. Моя система делает тоже что "Нептун" или "Гидролок" (перекрывает подачу воды в квартиру при её появлении на полу) и не уступает им в надёжности и эффективности.

Принцип работы самодельного устройства

Ставим на пол механизм (отдалённо напоминающий мышеловку), присоединенный тросиком к шаровому крану.

При попадании воды на чувствительный элемент (бумажную ленту) происходит её разрыв. После этого пружина, сжимаясь, тянет тросик, который, в свою очередь, перекрывает кран.


В данной системе используются шаровые краны, уже ранее установленные (ничего нового не нужно).

Система позволяет перекрыть воду и обычным способом (вручную). Рукоятку поворачиваем в сторону, а тросики остаются неподвижными.
На фото видно два тросика: первый идёт к датчику в туалет, второй - в ванную.

При попадании воды на пол в одном из помещений срабатывает датчик, пружина тянет тросик, который тянет ручку шарового крана и перекрывает подачу воды в квартиру.

Требования к самодельной системе защиты от протечек воды

На фото видно, что некоторые элементы выполнены из нержавейки (для более долговечной работы и лучшего соскальзывания).

После срабатывания механизма протереть его от влаги салфеткой, только после этого заправить свежую ленту. Тросики не должны иметь более одного изгиба под углом 90 градусов и длину не более 2 метров.

Шаровой кран и датчик могут находиться в разных помещениях (соединяются они тросиком, проходящим через отверстие в стене).
Трубы для подводки воды в квартиру должны быть металлическими (при креплении кронштейна к трубе),а шаровой кран жёлтого цвета (другие плохого качества)

Материалы и инструменты

При изготовлении использовался обычный инструмент:

Молоток,

Электродрель,

Болгарка или ножовка по металлу,

Отвёртка,

Плоскогубцы.

Необходимые материалы:

Нержавейка,

Обычное железо,

Пружина,

Тросики,

Деревянный брусок,

Листок бумаги,

Канцелярские кнопки.

Изготовление

Основание - деревянный брусок (длина-360мм, ширина-50мм, высота-25-30мм), один короткий торец имеет угол 93 градуса. На основании размещены детали №3,4,5,тросик, пружина.

Датчик (чувствительный элемент) - это вырезанная из ученической тетрадки полоска бумаги, прикреплённая к низу основания несколькими кнопками.


При изготовлении детали №3 использовался дубовый брусок 150х20х50мм. Вокруг него делались все изгибы, а потом брусок вынимался и делались вырезы болгаркой для крепления тросика.


Детали 3 и 4 должны быть изготовлены из нержавейки (как минимум, из нержавейки должна быть заштрихованная область этих деталей)


Для лучшего соскальзывания детали №4. Деталь 3 лучше сначала попробовать изготовить из картона. Места изгибов показаны красными линиями.


При изготовлении детали №1 возникает проблема - расширенное отверстие диаметром 6 мм.


Решил её следующим образом - высверлил одно отверстие, с внутренней стороны всунул в него винт шестёрку. Винт должен полностью закрыть отверстие. После этого высверливается второе отверстие (сверлится винт и деталь одновременно). Испорченный винт выбрасывается, заусеницы подчищаются надфилем.

Детали 4, 4а, 4б, пружина скручиваются вместе одним винтом снизу (предварительно в пазы деталей 4а и 4б продевается тросик).


Регулировка самодельной системы для защиты от протечек воды

При изготовлении и регулировке системы желательно использовать приспособление -кусок трубы более 20 см длиной с резьбой с накрученным на нее шаровым краном.

На этом приспособлении вы сможете проверить работу всего механизма не у себя дома, а в гараже, мастерской или показать работу системы своим знакомым. Приспособление также пригодится при высверливании отверстий для соединения деталей №2 и 2а.


Для этого нужно зажать в тиски эти детали с предварительно вставленной между ними трубой приспособления. Ручка шарового крана (деталь №1 и №1а)должна быть в закрытом положении, а прорези для тросика в ручке и деталь №2 должны совпадать. После этого сверлятся отверстия одновременно в деталях №2 и №2а.

В детали №5 два отверстия: первое - для пальца (когда натягиваем пружину), второе- для зацепа. Деталью №5 можно регулировать натяжение пружины,покручивая ею по виткам.


Основание (деревянный брусок 360 х 50 х 25) можно изготовить большей длины, а после регулировки лишнюю часть бруска отрезать. Длина моего основания подобрана под определённую пружину.

В растянутом состоянии усилие пружины около 10 килограммов, в конце срабатывания 4,5 кг.

Главное условие: на бумажную ленту должно действовать постоянное усилие от 1 до 1,5 килограммов (для изменения этого усилия нужно уменьшить или увеличить угол). Для измерения можно использовать бытовые пружинные весы.

Пружину покупал в хозяйственном магазине (дверная пружина), разрезал на три части.

В этой статье описывается изготовление квартиры.

Основной задачей этой автоматизированной системы является закрытие электрических клапанов на трубопроводах водоснабжения квартиры при аварийных ситуациях. Аварийные ситуации могут создаваться при порывах гибких (в оплетке) соединительных шлангов и неисправности вентилей, тройников, трубопроводов. Принцип работы системы заключается в обнаружении затопления сенсорными датчиками, которые с помощью электронного устройства закрывают клапана, на подающих воду трубопроводах.

Защита от протечек и затопления избавляет от значительных затрат времени и денежных средств и проблем с соседями. Затраты на приобретение и установку автоматизированной системы несоизмеримы с затратами по устранению последствий аварии.

Можно приобрести и установить готовую систему антизатопления. Такие системы имеются в продаже. Это «Аквасторож», «Нептун», «Гидролок». У каждой системы есть свои достоинства и недостатки, но основным недостатком их всех является их высокая стоимость 200$ – 500$, в зависимости от типов датчиков (проводные и радиодатчики) и типов контроллеров и исполнительных механизмов.

Я решил собрать систему своими руками. В подборе комплектущих предпочтение отдавалось надежности и практичности используемых компонентов.

В качестве электронного устройства, выполняющего функции контроля и управления по заданному алгоритму было выбрано «Устройство контроля уровня САУ-М7.Е».

«Прибор САУ-М7.Е предназначен для создания систем автоматизации технологических процессов, связанных с контролем и поддержанием заданного уровня жидких или сыпучих веществ в различного рода резервуарах, емкостях, контейнерах и т.п.» – цитата из инструкции.


Это устройство отличается надежностью, большим выбором и гибкостью настроек параметров, и небольшими габаритными размерами. А также максимально допустимым током нагрузки, коммутируемым контактами встроенного реле 8А, что позволяет управлять исполнительными устройствами без дополнительных пускателей.

Следующим шагом был подбор корпусов датчиков затопления и прорисовка печатных плат под подобранные корпуса. Для корпусов датчиков в магазине были приобретены четыре кнопки квартирного звонка.



Изготовление датчиков затопления.

Под размеры кнопки прорисован эскиз печатной платы датчика затопления.


Из фольгированного стеклотекстолита по приведенным размерам вырезаем четыре платы. С помощью рейсфедера, заполненного битумным лаком, рисуем на платах токопроводящие дорожки по эскизу. Просушиваем лак и помещаем платы в раствор хлорного железа для травления. Когда не покрытые лаком участки меди растворятся в хлорном железе, промываем платы и смываем битумный лак растворителем.


На жало паяльника прикрепляем комок многожильного провода и с его помощью облуживаем печатные проводник. Припой должен покрыть медные проводники тонкой блестящей пленкой.


Платы, вначале, планировалось устанавливать в крышку кнопки, о чем свидетельствуют проточки по бокам плат. Но потом было принято решение устанавливать платы в нижнюю выемку самой кнопки.



Внешний вид кнопки без крышки.



Устанавливаем плату на подготовленное место снизу кнопки и сверлом диаметром 0,8-1,0 мм просверливаем плату вместе с кнопкой по углам. В просверленные отверстия вставляем скобы из луженой медной проволоки диаметром 0,8 мм.


Протягиваем скобу в сторону печатной платы до упора и формируем по углам из проволоки скобы ножки высотой 2,5 – 3,0 мм. Припаиваем проволоку к печатной плате.




Отключаем от клемм светодиод с резистором. Припаиваем к отрезкам провода клеммные наконечники, подключаем их под винты клемника кнопки и припаиваем к скобам печатной платы.



Сама кнопка и ее контакты изменениям не подвергались и используются в датчике и служат для контроля целостности соединительной линии (при нажатии на кнопку любого датчика должна сработать авария и включиться сирена). Датчики затопления готовы, теперь нужно расположить датчики в местах предполагаемой утечки (под кабиной гидробокса, под стиральной машиной, под умывальником, под щитом распределения водоподачи) и провести от них до САУ-М7.Е соединительные линии. Я применил для линий плоский гибкий телефонный четырехжильный провод 4х0.75 мм 2 . Провод заводится в коробочку кнопки, проводники соединяются попарно, к парам припаиваются клеммные наконечники и крепятся под винты кнопки.


Все четыре провода проводятся под плинтусом к месту установки устройства САУ- М7.Е и присоединяется к параллельно к клеммам 1 и 4. Между клеммами 4 и 2 ставится перемычка. Эта перемычка нужна для включения второго реле устройства, которое при включении отключит насосную станцию. Но эта операция нужна только тем, у кого установлена насосная станция для повышения и стабилизации давления водопроводной сети при использовании душевых кабин и гидромассажных боксов.


Подключение и настройка устройства контроля уровня САУ- М7.Е.

Для подключения устройства применяем схему


При замыкании, пролившейся водой, любого датчика затопления, включаются выходные электромагнитные реле «Верх» и «Работа». Своими контактами реле отключают насосную станцию и подключают электромагнитные клапана ЭК1 и ЭК2, врезанные в трубопроводы подачи воды. Электроклапана я применил итальянские «СЕМЕ» 8715NN0206, нормально открытые. Закрываются при подаче на обмотку клапана напряжения 220 В.

Вместе с элетроклапанами контактами 10 и 11 реле Верх подключается реле времени Е17М-12, которое предназначено для ограничения времени звучания аварийной сирены до одной минуты (чтобы не нервничали соседи, когда никого нет дома). Контактами РВ 15 и 16 аварийная сирена отключается, сигнальная лампа аварии остается включенной до устранения аварии. Реле времени, сирену и сигнальные лампы можно применить любые. Для их питания можно использовать постоянное напряжение 12В на контактах 5 и 6 устройства САУ-М7Е.

Перед включением в работу устройство САУ-М7.Е необходимо настроить переключением перемычек на коммутаторах К1-К4.


На фото показано как необходимо расположить перемычки.


Подаем на схему напряжение питания и проверяем работоспособность. При отсутствии воды, датчики затопления сухие, система водопровода работает в штатном режиме.


Если на датчики затопления попадает вода сигнализация на передней панели САУ-М7Е имеет вид как на фото

Электроклапана должны перекрыть поток воды, звучит звуковая сигнализация, включена красная сигнальная лампа аварии.

Таким образом, система защиты от протечек и затопления собрана своими руками и протестирована. Стоимость системы на порядок меньше промышленной, но по надежности она ничуть не уступает. В этой системе защиты лучше применить устройства контроля уровня жидкости трехканальное САУ- М6 вместо САУ-М7Е. Этот прибор проще и удобнее в применении в данном случае. Он содержит три канала с отдельной регулировкой и три реле. Поэтому на нем проще реализовать алгоритм работы системы. Но я не смог найти такой прибор, поэтому применил САУ-М7Е.

Если решите собрать систему на САУ-М6 – обращайтесь [email protected] . Есть схема системы и инструкция САУ-М6. Пишите отзывы, делитесь новыми идеями.

В статье представлен прагматичный подход по созданию одного из элементов Умного Дома - экономной защиты от потопа (антипротечки) на базе универсального контроллера домашней автоматизации.

Главные отличия от ранее представленных на хабре решений данной задачи – простота реализации, относительно дешево + для повторения не надо быть программистом. Правда паять все равно придется, но всего 2 раза.

Введение

На хабре, как на ресурсе технически активных людей, на который страждущие идут за советом и решением проблем, размещено множество статей по теме Умный Дом.
И часто в комментариях встречаются сожаления о том, что мол никто пока не родил одновременно мощный, простой в освоении и экономный способ реализации Умного Дома для обывателей. То надо паять, то кодить, причем часто на разных языках: и для микроконтроллера, и для веб и так далее.
А так чтоб взял, купил запчасти-кубики за недорого и сам лично запустил – такое редко встречается.

Вот я и решил вставить свои 5 копеек, так как похоже, мне как раз попался один из вариантов реализации Умного Дома, который может подойти для многих прагматически настроенных потребителей.

Я расскажу на примере реализации защиты от потопа, хотя уже, на этом же контроллере у меня функционирует система охранной сигнализации, регистрации температуры и автоматического отключения нужных розеток при уходе из дома.

Итак, по моей «пирамиде потребностей Маслоу для Умного Дома» (с) – важность сигнализации и предотвращения потопа находится на том же уровне, что и важность сигнализации о вторжении или появлении дыма.

Пирамида потребностей Маслоу для Умного Дома

Ибо масштаб трагедии может быть ужасающим:

Ввиду того, что я недавно обзавелся универсальным контроллером умного дома и уже реализовал более важный функционал - я решил, что пора «постелить соломки».

Проблема

Итак, захотелось в случае обнаружения протечки воды – получать оповещение (смс и/или email) и, чтобы автоматически перекрывалась подача воды в квартиру. А также иметь возможность открывать и перекрывать воду «вручную», в том числе удаленно через интернет.

Решение

Существует ряд готовых наборов для полного или частичного решения данной задачи, но, во-первых, они мягко говоря дороговаты, во-вторых, имея в руках универсальный контроллер управления умным домом все это можно сделать самому и будет не хуже, а даже лучше ввиду того, что все будет интегрировано в единую систему и будет взаимодействовать именно так как мне хочется, а не так, как решил производитель системы. А учитывая, что самая дорогостоящая часть систему уже есть (контроллер), то избавляемся от дублирования и избыточности.

Текущая структура моей системы Умный Дом. Красным выделены компоненты непосредственно участвующие в системе Антипротечки.

Настольный макет прикладной части системы антипротечки выглядел так:

У меня сейчас горячая вода получается путем нагрева в бойлере холодной воды. Поэтому перекрывать нужно только одну трубу.

При необходимости, систему можно будет элементарно нарастить и сделать перекрытие второй трубы просто добавив еще один клапан и подключив его параллельно к радиореле.

Датчик протечки

Самый сложный момент во всей системе.
Беда в том, что если вопросы по контролю вторжения и появления дыма или газа элементарно решаются стандартными датчиками, то с контролем утечки воды все несколько иначе. В перечне совместимых датчиков моего универсального контроллера пока нет датчика протечки воды. По крайней мере не было…

Поиск на хабре быстро показал путь наименьшего сопротивления : взять стандартный беспроводной герконовый датчик и вместо геркона, а точнее параллельно ему, вывести провода с контактами и замыкать их водой.

Данный подход имеет ряд недостатков: одним из главных является окисление не позолоченных контактов со временем.

Ранее читал в интернете, что существуют другие способы определения протечки воды, например, бесконтактные, но дешевизна, оперативность и элементарность реализации описанного выше варианта прервала полет инженерной мысли в сторону инновационных подходов.

За основу был взят китайский беспроводной магнитоконтактный (герконовый) датчик MD-209R. В моем случае был выбран относительно дешевый датчик-клон, совместимый с протоколом передачи PowerCode (фирмы Visonic), так как это один из беспроводных протоколов, поддерживаемых моим контроллером.

Параллельно встроенному геркону я подпаял 2 провода, замыкание которых фактически приводят к срабатыванию датчика.

Итак, после нехитрых манипуляций с паяльником получилось это:

Клапан с электроприводом


В качестве клапана, перекрывающего воду, можно использовать любой клапан, имеющий электропривод и соответствующий размер соединения с трубой.

Свой макет я испытывал на китайском клапане с электроприводом под трубу на 1/2 дюйма .

Конструкция электропривода клапана автоматически отключает питание на катушку после открытия или закрытия. Таким образом, нет необходимости командами с контроллера снимать напряжение через радиореле после выполнения операции.

Радиореле

Для подачи питания на привод я закупил на ebay вот такое двухканальное радиореле из списка совместимых с контроллером. Тип YKT-02XX-433

Внутри установлена так любимая китайскими производителями микросхема-кодер 1527.

В нем стоят 10-амперные реле, поэтому, в принципе, ими можно коммутировать почти любую бытовую нагрузку до 250В. Ограничение 2 кВт.

Для управления электроприводом этого более чем достаточно, так как привод клапана питается от 12 В и по паспорту потребляет всего 4 Вт, причем только во время изменения состояния клапана.

Данное радиореле может работать в нескольких режимах, один из которых нам как раз и надо: взаимная блокировка каналов. В этом режиме - при включении реле одного канала, автоматически выключается реле другого канала. Таким образом, мы «почти аппаратно» защищаемся от одновременной подачи напряжения на «открытие» и «закрытие» на соленоид электропривода клапана вследствие каких-либо глюков.

Схема подключения клапана, приемника:

Управление


В качестве «мозгов» системы я применил Наносервер NS1000 - универсальный контроллер отечественного производителя 1-М Умным Домом .

Возможности контроллера, которые так или иначе используются в данном проекте:
Поддержка сверхбюджетных беспроводных датчиков и радиореле.
Выполнение сценариев оффлайн (даже без интернет).
Оповещение о событиях через смс и по электронной почте.
Элементарное составление «сценариев» работы системы без написания кода.
Возможность управление устройствами со смартфона (Android).
Управление через WEB.
Ведение «логов».

Сценарии

В процессе настройки контроллера нужно учесть следующий нюанс:
Герконовый датчик посылает сообщение о срабатывании когда размыкается, а нам надо чтобы при замыкании. Соответственно, в условии запуска сценария нужно указать не включение датчика, а выключение. И не по состоянию, а по изменению. Чтобы оповещения не повторялись циклически.
Условие запуска сценария 1: Если Канал «Датчик протечки» выключился.
Шаги сценария:
. Оповещение «Хозяин, у нас потоп!»
. Включить канал «Клапан воды закрыть»

И сценарий на открытие клапана по команде с брелка или со смартфона:
Условие запуска сценария 2: Если Канал «Можно открыть клапан воды» включился.
Шаги сценария:
. Включить канал «Клапан воды открыть»

В WEB-интерфейсе облачного сервиса это выглядит так:

Для ручного управления устройствами ничего «программировать» не надо – после добавления в систему, управление каждым устройством автоматически становится доступно из Личного кабинета через WEB-интерфейс и с Android-приложения.

Вид панели WEB-управления Умным Домом через интернет:

Внешний вид Android-приложения

Что в результате?

Цель достигнута. При срабатывании датчика протечки, я получаю смс-оповещение вида «Хозяин, у нас потоп!» и клапан автоматически перекрывается в течение менее 30 секунд.
Так же, я имею возможность не автоматически открывать и закрывать клапан, путем нажатия на кнопки брелка, со смартфона или с браузера через интернет.
Срабатывание каждого датчика и устройства регистрируется в журнале логов.

При этом, не пришлось писать код и самостоятельное повторение данного решения вполне доступно для большинства (конечно, не считая установки клапанов на трубы).

Настройка системы, зная, что ты хочешь, занимает от силы 10 минут. Включая активацию датчика и радиореле, создание всех сценариев.

Понятно, что в том виде, как оно представлено на фотографиях, в реальности оно долго и надежно работать не сможет.
Блок питания привода клапана, радиореле, да и сам датчик нужно еще поместить в пластиковые коробочки с хоть какой-то степенью защиты.

Плюс уже возникают разные мысли по развитию системы, например, дублированию оповещения на световую сигнализацию, периодическую «тренировку» клапана чтобы «не застаивался» и тп. Кстати, лично у меня есть серьезные сомнения в необходимости функции резервного питания электроклапана, которой так хвастаются некоторые «покупные» комплекты антипротечки.

Другими словами - аппетит приходит во время еды.

Благо дело, что для наращивания функционала не надо звать «сертифицированных» специалистов, чтобы они что-то подкрутили в системе. Все это можно элементарно сделать самому, благодаря простоте принципов настройки универсального контроллера.

Немного о ценах:

Наносервер NS-1000 - 44$
Датчик магнитоконтактный MD-209R - 13$
Радиореле - 10$
Клапан- 15$

Итого (без учета доставки) = 82$

Не так уж и дешево. Но это если не учитывать, что наносервер используется не только для фукнции антипротечки. Ведь на нем реализована система охранной и пожарной сигнализации и другие возможности…

P.S.

В процессе реализации, уже купив клапан, я обнаружил, что существуют