20.03.2019

Типы разъемов оптических кабелей. Оптические разъемы LC при высокой плотности монтажа


Многие путают виды оптических разъемов и с ходу мало кто может сказать какой разъем имеет какую полировку. При общении с коллегами наверно часто слышали фразы типа: «ну этот, синенький маленький разъем» или «эмм.. зелененький». В интернете большинство материалов написано сумбурно и не понятно, в данной статье мы постараемся разложить все по полочкам.

Типы полировок

Стоит отметить, что главной проблемой оптических разъемов является оптическое затухание, оно зависит от разъюстировки (поперечного отклонения) сердцевин стыкуемых оптических волокон и оказывает основное влияние на величину суммарных потерь.

Другой проблемой установки оптического коннектора на конце волокна является потеря оптического сигнала, которая вызвана тем, что часть передающегося света отражается обратно в волокно к источнику этого света, лазеру. Обратное отражение (RL -Return Loss) может нарушить работу лазера и структуру передаваемого сигнала. Чтобы это явление предотвратить/уменьшить используют различные виды полировок.

На данный момент выделяют 4 типа полировки:

Хоть в основном используются последние две, давайте рассмотрим каждую по порядку.

PC — Physical Contac . В первых вариациях полировки был предусмотрен исключительно плоский вариант коннектора, однако жизнь показала, что плоский вариант дает место воздушным зазорам между световодами. В дальнейшем торцы коннекторов получили небольшое закругление. В класс PC входят заполированные вручную и изготовленные по клеевой технологии коннекторы. Недостаток данной полировки заключается в том, что возникает такое явление как «инфракрасный слой» — в инфракрасном диапазоне происходят негативные изменения на торцевом слое. Данное явление ограничивает применение коннекторов с такой полировкой в высокоскоростных сетях (>1G).

SPC — Super Physical Contact . По сути та же PC, только сама полировка является более качественной, т.к. она уже не ручная а машинная. Также был сужен радиус сердечника и материалом наконечника стал цирконий. Дефекты полировки конечно снизить удалось, однако проблема инфракрасного слоя осталась

UPC- Ultra Physically Contact . Данная полировка осуществляется уже сложными и дорогими системами управления, в результате чего проблема инфракрасного слоя была устранена а параметры отражения значительно снижены. Это дало возможность коннекторам с данной полировкой применяться в высокоскоростных сетях.

АРС — Angled Physically Contact . На данный момент считается, что наиболее действенным способом снижения энергии отраженного сигнала является полировка под углом 8-12°. В таком исполнении отраженный световой сигнал распространяется под большим углом нежели вводимый в волокно. Коннекторы с косой полировкой отличаются цветом, они обычно зеленые.

Сводные данные можно посмотреть в таблице ниже.

Зависимость вносимых потерь от способа полировки
Серия Вносимое затухание, ДБ Обратное отражение, ДБ
PC 0,2 -25 .. -30
SPC 0,2 -35 .. 0
UPC 0,2 -45 .. 50
APC 0,3 -60 .. 70

Типы разъемов

Оптический разъем FC. Разработка компании NTT. Наконечник диаметром 2,5 мм с выпуклой торцевой поверхностью диаметром 2 мм. Фиксация осуществляется накидной гайкой с резьбой. Это делает дает им устойчивость к вибрациям и ударам, что позволяет использовать их например рядом с ж/д либо на подвижных объектах.

Оптический разъем ST. Разработка компании AT&T. Наконечник диаметром 2,5 мм с выпуклой торцевой поверхностью диаметром 2 мм. Защита торца волокна осуществляется прокручиванием в момент установки боковым ключом, который входит в паз розетки. Вилка фиксируется байонетным замком (от фр. ba?onnette - штык. Пример байонетного замка — крепление объектива фотокамеры). Коннекторы просты в эксплуатации и довольно надежны, однако чувствительны к вибрациям.

Оптический разъем SC . Недостаток коннекторов ST и FC заключается во вращательном движении при включении это накладывает ограничение на плотность включения (сложно вкручивать, когда из рядом много воткнуто). Тип SC сделан по принципу push-pull — нажал вставил/вытащил. Фиксирующий механизм открывается при вытягивании за корпус. Коннектор можно вытащить приложив силу 40Н, тогда как при «вытягивании» ST и FC проще порвать само волокно. Соответственно, на подвижных объектах разъем SC использовать не рекомендуется.

Оптический разъем LC. Разработка компании Lucent Technologies. Керамический сердечник диаметром 1,25 мм, не связанный с пластмассовым корпусом. Фиксируется защелкой, как во всем известном RJ-45. Является самым популярным оптическим разъемом. Пара коннекторов легко объединяется в дуплекс.

Заключение.

В наименовании оптического патч-корда указываются какие коннекторы установлены на концах, а через символ «/» тип полировки. Если тип полировки не указан, значит это прямая полировка. Например, оптиковолоконный патч-корд LC-SC, это значит, что на одном конце будет разъем LC а на другом SC. В спецификации в любом магазине можно подобрать нужную полировку и нужные разъемы.

На сегодняшний день разработано более 70 типов коннекторов различного назначения для ВОЛС. Наиболее распространенные - симметричные оптические разъемы с конструктивным исполнением штекерного типа. Для соединения таких коннекторов используют специальные оптические адаптеры. Благодаря этим устройствам соединяемые оптические разъемы могут быть как одного, так и нескольких типов.

Описание конструкции оптического коннектора

Штекерные оптические разъемы выглядят следующим образом: оптоволокно фиксируется в специальном прецизионном наконечнике типа "феруле", который вставляется во вставку-центратор. Крепеж разъемов в адаптере может быть как байонетного типа, так и резьбового или замкового. В некоторых видах оборудования требуется подключение дуплексных пар оптоволокна, специально для этого были разработаны оптические разъемы дуплексного типа. Изначально реализация подобных устройств достигалась за счет симметричного пластмассового зажима, содержащего гнезда, в которые вкладывалась пара коннекторов, после чего они фиксировались защелкой. Больше всего для этого подходили разъемы с квадратными корпусами. Однако со временем появилась необходимость разработки оптических разъемов дуплексного типа в едином корпусе.

Очередным этапом развития производства оптоволоконных разъемов стало создание специальных коннекторов ленточного типа в цельном буферном покрытии. Тем не менее сегодня такой вид не пользуется особой популярностью из-за высокой сложности получения качественного стыка, даже с применением сварочного метода. В настоящее время основными потребителями упомянутых разъемов являются Япония и США.

Основные технические характеристики

Главными параметрами оптических коннекторов являются: долговременная стойкость и стабильность ко внешним условиям. На пропускную способность влияет обратное отражение и вносимое затухание. Эти характеристики зависят от поперечного смещения осей, а также угла между ними. А еще от френелевского отражения сигнала на границе разделения двух сред. Максимальным значением потерь, которое вносится разъемом, является оптическое затухание. Эта характеристика оказывает влияние на размер суммарных потерь в данном тракте. Этот параметр напрямую зависит от поперечного отклонения (разъюстировки) сердцевин соединяемых

Следующий важный параметр - это обратное отражение. Главный источник, влияющий на данную характеристику, - это граница разделения двух сред (воздуха и волокна). Эта составляющая может достигать существенных величин. Более того, обратное отражение может быть переменчивым во времени, то есть под влиянием внешних факторов оно в конечном итоге способно нарушить работоспособность всей системы.

Оптический аудиокабель

Сейчас большую популярность в устройстве аудиосистем завоевывают Главным преимуществом таких проводов является отсутствие помех, а значит, сигнал останется чистым и четким, несмотря на длину такого удлинителя. хорошо зарекомендовали себя надежной работой в сложных электромагнитных условиях, там, где медные провода были не в состоянии справиться с помехами. В компьютерной технике особо популярен кабель SPDIF (Sony-Philips Digital Interface) - это интерфейс для передачи аудиосигналов в цифровом виде. Он передает между устройствами без потери качества, которая неизбежно возникает при использовании аналогового метода.

Оптические разъемные соединения волокон (их часто называют оптическими разъемами или коннекторами (connectors)) обеспечивают многократные (500…1000 циклов) соединения/разъединения волокон. На рынке существует большое количество специализированных разъемов в двух типоразмерах: стандартном и миниатюрном. Наиболее распространены три типа стандартных разъемов: FC, ST, SC и шесть типов миниатюрных разъемов: MT-RJ, LC, VF-45, LX-5, Opti-Jack, SCDC-SCQC.

Наиболее высокие требования к качеству разъемов предъявляются при соединении одномодовых волокон, где в основном используются стандартные разъемы типа: FC, ST, SC. Разъемы типа FC ориентированы на применение в линиях дальней связи и в сетях кабельного телевидения. Это единственный тип разъема, рекомендованный для применения на подвижных объектах, так как он лучше других выдерживает вибрацию и удары.

Основным недостатком FC разъемов является то, что он обеспечивает меньшую плотность монтажа, чем разъемы ST и SC. Для закрепления разъема FC в розетке необходимо закрутить накидную металлическую гайку с резьбой. В тоже время разъем типа ST крепится к розетке с помощью байонетной гайки, а разъем SC еще проще - с помощью пластмассовой защелки. Однако разъемы типа ST и SC обладают менее жесткой конструкцией, чем разъемы типа FC и рекомендованы только для стационарных объектов. Минимальную же плотность монтажа (почти в 2 раза меньшую) обеспечивают миниатюрные разъемы. Среди них на сегодняшний день наиболее популярны разъемы MT-RJ и LC. Они применяются преимущественно с многомодовыми волокнами в локальных вычислительных сетях, где особенно велика потребность в увеличении плотности монтажа.

Рассмотрим более подробно конструкцию разъемного соединителя для FC разъемов. В ней содержатся все принципиально важные решения, используемые в соединителях с разъемами другого типа. Конструктивно разъемный соединитель представляет собой два разъема и соединительную розетку. Оптические волокна вклеены в керамические наконечники разъемов диаметром 2.5 мм (в миниатюрных разъемах диаметр наконечника 1.25 мм). Разъемы центрируются в розетке с помощью плавающего центратора в виде разрезной втулки из керамики для одномодового волокна или из бронзы для многомодового волокна. Наконечники разъемов прижимаются друг к другу в центраторе с помощью пружин и, таким образом, место соединения волокон механически развязано относительно корпуса розетки. Фиксация разъемов в розетке может быть резьбовой (FC), байонетной (ST) и замковой (SG).

Торцевые поверхности волокон в оптических разъёмах имеют сферическую форму с радиусом закругления 10…25 мм для PC разъёмов (PC – Physical Contact) и 5…12 мм для АРС разъемов (АРС – Angled Physical Contact). В соединенном состоянии торцы стыкуемых наконечников прижимаются друг к другу с определенным усилием (обычно 8…12 Н). Возникающая при этом эластичная деформация наконечников приводит к появлению оптического контакта (рис. А. 13).


Рис. А. 13. Схема образования оптического контакта в месте соединения наконечников разъемов PC и АРС.

Две поверхности считаются находящимися в оптическом контакте, если расстояние между ними много меньше длины волны света. При этом чем меньше расстояние между этими поверхностями, тем меньше будет и величина отраженного от них света. Качество оптического контакта определяется качеством шлифовки и последующей полировки торцевой поверхности волокон. Для PC разъёмов ETSI рекомендует величину коэффициента френелевского отражения от места оптического контакта менее – 35 дБ. Стандартная шлифовка, как правило, обеспечивает – 40 дБ.

Многие поставщики оптических коммутационных шнуров предлагают разъёмы со специальной шлифовкой, обеспечивающие коэффициент отражения менее – 55 дБ. Это так называемые разъёмы Супер- и Ультра-PC. На практике такая шлифовка оказывается беспо-лезной, так как буквально после нескольких подключений коэффициент отражения увеличивается до величины, свойственной обычному PC разъёму. Происходит это из-за неизбежного появления пыли и микроцарапин на торцевых поверхностях разъёмов.

Поэтому, когда требуется коэффициент отражения не хуже - 55 дБ, разумнее использовать АРС разъемы. В АРС разъёмах нормаль к контактной поверхности наклонена к оси наконечника под углом 8° (рис. А. 13). В такой конструкции коэффициент отражения не превышает - 60 дБ как в соединенном, так и в разъединенном состоянии. В соединенном состоянии типичным является значение от –70 до –80 дБ.

Таким образом, в PC и АРС разъёмах только ничтожно малая часть излучения отражается от места соединения торцов волокон. Поэтому потери, вызванные отражением света, пренебрежимо малы. Если пренебречь так же потерями, возникающими из-за дефектов на торцах волокон, то основной причиной, вызывающей потери в месте соединения разъемов, является смещение сердцевин соединяемых волокон относительно друг друга вследствие эксцентриситета (неконцентричности) как самих волокон, так и деталей крепления разъёма (рис. А.14).


Рис А. 14. Сложение разных видов неконцентричности в наконечнике

Оценим допустимую величину смещения сердцевин волокон исходя из того, что потери в разъемах, в соответствии рекомендациями ETSI, не должны превышать 0.5 дБ. Зависимость этих потерь от величины смещения сердцевин d описывается формулой: ?d(дБ) = 4.34 (2 d/w)2. Учитывая, что диаметр модового поля w ? 10 мкм, получаем, что величина смещения сердцевин друг относительно друга должна быть меньше 1.7 мкм.

Потери принято относить к одному определенному разъёму (несмотря на то, что измеряемой величиной являются потери в месте соединения двух разъемов). Так можно делать, когда потери в месте соединения разъемов обусловлены только смещением сердцевин волокон и один разъём при этом образцовый (его также называют материнским или мастер-разъёмом). Образцовый разъем А выделен среди других разъёмов тем, что в нем ось сердцевины волокна совпадает с номинальным центром разъёма (рис. А. 15).


Рис. А. 15. Местоположение сердцевины волокна в наконечниках: (а) – в типовом (некалиброванном) разъёме и (б) – в образцовом разъеме А.

Все измерения при изготовлении оптических шнуров выполняются только относительно образцового разъёма. Данные именно этих измерений и указываются в каталогах всех производителей, а также на упаковке готовых изделий. Но при использовании оптических шнуров типовой разъём стыкуется не с образцовым разъёмом, а с таким же типовым разъемом (любой с любым). В таких соединениях смещения сердцевин получаются больше почти в 1.5 раза, а потери (в дБ) увеличиваются при этом примерно в 2 раза (рис. А. 16).


Рис. А. 16. Гистограмма распределения потерь, вносимых при соединении типовых (некалиброванных) разъемов (любого с любым).

Для компенсации негативного влияния эксцентриситета применяются различные способы регулировки (настройки) разъемов. Наибольшее распространение получила технология, в которой используется образцовый разъём Б (со смещенной сердцевиной во-локна). В образцовом разъёме Б сердцевина волокна смещена относительно номинального центра (параметры оговорены в спецификации IЕС) примерно на половину радиуса зоны возможных отклонений сердцевины (рис. А. 17).

Рис. А. 17. Местоположение сердцевины волокна в наконечниках: (а) – в некалиброванном разъеме и (б) – б образцовом разъеме Б.

Потери в месте соединения наконечников стандартного разъёма и образцового разъема Б, как легко видеть из рис. А. 17, будут изменяться при вращении одного из наконечников вокруг продольной оси. Своих экстремальных значений эти потери достигают в положениях, где совпадают азимуты их сердцевин. Таким образом, имеется возможность при изготовлении разъёма настраивать его на минимум потерь. Для этой цели (только в разъемах типа FC) имеется специальный ключ.

Настройка разъёма осуществляется следующим образом. Вращая изготовленный наконечник вокруг продольной оси, определяют его положение относительно образцового, при котором достигается наименьший уровень вносимых потерь, после чего наконечник фиксируется в корпусе разъёма. Наконечник может быть вставлен в корпус разъема в одном из четырех положений (со смещением вокруг оси на 90°). В результате сердцевина волокна попадает в строго определенный (относительно корпуса разъёма) квадрант торцевой поверхности (рис. A. 17). При соединении откалиброванных таким способом разъёмов (любого с любым) потери получаются в среднем примерно в два раза меньше (рис. А. 18).


Рис.А.18. Гистограмма распределения потерь вносимых при соединении калиброванных разъемов (любого с любым).

Достоинство этого способа настройки разъёмов, кроме эффективного уменьшения потерь (таблица № А.1), заключается также и в том, что используются стандартные наконечники, и что стоимость таких калиброванных разъёмов увеличивается незначительно. Этот способ настройки специфицирован IЕС и поддержан большинством крупных производителей, что обеспечивает совместимость и взаимозаменяемость изготавливаемых ими разъёмов.

Таблица № А.1. Потери, вносимые при соединении разъёмов.

В настоящее время на телекоммуникационных сетях в Европе наиболее часто применяются некалиброванные разъемы со специфицированным значением вносимых потерь (относительно образцового разъёма) не более 0.5 дБ. Однако поскольку с ростом числа телекоммуникационных сетей возрастает и количество точек соединений, то для снижения величины полных потерь все чаще применяются калиброванные разъёмы.

Оптические коннекторы применяются при оконцовке оптических волокон и для их стыковки с пассивным или активным телекоммуникационным оборудованием.

По мере развития ВОЛС было разработано более 70 типов оптических разъёмов для различных условий применения.

Соединение станционного оптоволокна с линейным происходит на оптическом кроссе при помощи оптических разъемов, представляющие собой оптические коннекторы и оптические адаптеры (вилки и розетки соответственно).
Оптический адаптер представляет собой розетку, в которую с обеих сторон вставляются коннекторы. Таким же образом патч корд присоединяется к активному оборудованию ВОСП, лицевая панель которых имеет оптический адаптер, соответствующий типу коннектора.
Оптические разъёмные соединители (коннекторы) предназначены для того, чтобы обеспечить прохождение света от одного элемента ВОСП к другому, например, из среды передачи в линейное и оконечное оборудование, с минимально возможными потерями при воздействии различных внешних факторов. Такое соединение должно быть устойчивым и воспроизводимым при повторном использовании.

Существует 2 вида оптических адаптеров:
1) соединительные, имеющие одинаковые типы разъемов с каждой стороны для соединения коннекторов одного типа. Обозначение соединительных адаптеров соответствует типу подключаемых коннекторов (FC, SC, LC, ST и т. д.);
2) переходные, имеющие разные типы разъемов с каждой стороны адаптера (FC/SC).
Основной концепцией при создании оптических адаптеров является их передача оптического сигнала без каких-либо искажений в разъеме. Отсюда можно выделить основные параметры механического соединения.

Основные параметры оптических разъемов:
Вносимые потери (затухание, вызванное утратой концентричности торцов) представляют собой разницу уровней средней мощности сигнала на входе оптического разъема и на выходе.
Затухание отражения (передаваемое излучение частично отражается обратно в волокно к источнику (лазеру)). Достаточно сильное обратное отражение (RL - Return Loss) приведёт к нарушению функционирования лазера и изменению структуры транслируемого сигнала. Для уменьшения этого явления придумали несколько типов полировки.

FC- коннектор - коннекторы типа FC были разработаны компанией NTT и ориентированы в основном на применение в одномодовых линиях дальней связи, специализированных системах и сетях кабельного телевидения. Керамический наконечник диаметром 2,5 мм с выпуклой торцевой поверхностью диаметром 2 мм обеспечивает физический контакт стыкуемых световодов. Наконечник изготавливается со строгими допусками на геометрические параметры, что гарантирует низкий уровень потерь и минимум обратных отражений. Радиус наконечника обеспечивает физический контакт стыкуемых световодов.




Коннектор FC с металлической феррулой

Для фиксации коннектора FC на розетке используется накидная гайка с резьбой М8х0,75. В данной конструкции подпружиненный наконечник жестко не связан с корпусом и хвостовиком, что усложняет и удорожает коннектор, однако такое дополнение окупается повышением надежности.
Коннекторы типа FC устойчивы к воздействию вибраций и ударов, что позволяет применять их на соответствующих сетях, например, непосредственно на подвижных объектах, а также на сооружениях, расположенных вблизи железных дорог.

Адаптер для FC с аттенюатором

Особенности

  • Совместимость с IEC 61 754-143, TIA/EIA, NTT, спецификациям Belcore
  • Коррозийно-резистентный корпус
  • Высокая надежность
  • 2,5 мм керамическая ферула
  • Устойчивость к вибрации и одиночным ударам

Область применения

  • Кабельные системы, CATV, LAN, WAN
  • Медицинское и контрольно-измерительное оборудование
  • Телекоммуникационные и бортовые сети

Технические характеристики


ST-коннектор - рекомендуется использовать в первую очередь для многомодовых применений. Наконечник коннектора не развязан с корпусом и оболочкой кабеля, что делает конструкцию проще, надежнее и дешевле, в тоже время такая конструкция полностью удовлетворяет многомодовому применению. Моноблочная конструкция ST коннектора разработана для быстрого оконцевания. Коннекторы имеют керамические наконечники диаметром 2,5 мм.

Коннекторы ST фиксируются байонетным замком

Особенности

Область применения

  • LAN системы и оборудование
  • Оптические подсистемы локальных сетей
  • Телекоммуникационные сети
  • Сетевая обработка данных

Технические характеристики


SС-коннектор - одним из недостатков коннекторов типов FC и ST считается необходимость вращательного движения при подключении к адаптеру. Для устранения этого недостатка, препятствующего увеличению плотности монтажа на лицевой панели, разработаны коннекторы типа SC. Корпус коннектора SC в поперечном сечении прямоугольный. Наконечник не связан жестко с корпусом и хвостовиком.

При подключении коннектора SC происходит проворачивание наконечника

SC коннектор duplex

Подключение и отключение коннектора SC производится линейно (push-pull), что предохраняет наконечники коннекторов от прокручивания друг относительно друга в момент фиксации в адаптере. Фиксирующий механизм открывается только при вытягивании коннектора за корпус. К недостаткам коннекторов SC следует отнести несколько более высокую цену и меньшую механическую прочность относительно рассмотренных ранее коннекторов типов FC и ST. Сила, выдергивающая коннектор SC из адаптера, регламентируется в пределах 40 Н, в то время как для серии FC это значение практически может равняться прочности миникабеля. Как и в случае с коннекторами ST, этот недостаток ограничивает применение коннекторов типа SC на подвижных объектах.

Особенности

  • Низкая стоимость,
  • Корпус типа push-pull,
  • Конструкция предварительной сборки,
  • Совместимость с IEC, TIA/EIA-568A TIA/EIA, NTT,
  • Низкие прямые потери

Область применения

  • Кабельные системы, CATV, LAN, WAN,
  • Медицинское и контрольно-измерительное оборудование,
  • Телекоммуникации

Технические характеристики

LС-коннектор - популярный компактный волоконно-оптический коннектор нового поколения, доминирующий на рынке телекоммуникационного оборудования, это уменьшенный вариант SC-коннекторов. Он также имеет прямоугольное сечение корпуса. Конструкция коннектора сравнительно проста: керамический сердечник диаметром 1,25 мм, не связанный с пластмассовым корпусом. Механизм фиксации – защелка (аналогично RJ-45) Вследствие этого и подключение коннектора производится схожим образом. Пара коннекторов легко объединяется в дуплекс. Использование данного коннектора позволяет увеличить плотность портов активного оборудования, патч-панелей и настенных розеток в два раза по сравнению со стандартными коннекторами, скажем, SC, без каких-либо компромиссов с качеством.

Коннектор LC широко используются при изготовлении оптических шнуров и пигтейлов, оконцевании многожильных оптических кабелей, изготовлении аттенюаторов, разветвителей, коллиматоров.

Существуют модели коннекторов, специально адаптированные для установки на микрокабель 900 мкм и кабели с диаметрами внешней оболочки 1,6, 2,0, 2,4 и 3 мм. Ферул в коннекторе может вращаться, последовательно занимая шесть позиций, что позволяет добиваться прямых потерь <0,1 дБ.

Особенности

  • Оптимальные оптические характеристики в связи с использованием высококачественных ферул
  • Широкий выбор ферул
  • Малогабаритная форма
  • Высокая концентрация при использовании
  • Перестраиваемость
  • Совместимость с Telcordia, ANSI/EIA/TIA, IEC
  • Адаптация к кабелю 1,6/1,8/2,0мм

Область применения

  • Gigabit Ethernet
  • Телекоммуникационные сети
  • Базовые инсталляции
  • Многопортовые оптические системы

Технические характеристики

MU-коннектор - разъемы MU волокна представляют тенденции нового поколения, они представляют собой уменьшенный приблизительно вдвое аналог SC коннектора. Механизм фиксации за счет уменьшения габаритов в коннекторах этого типа может быть менее надежен.

Наконечник и центратор – керамические, диаметром 1,25 мм. Корпус выполнен из пластмассы, детали – полимерные и металлические.

Доля оборудования, выпускаемого с коннекторами типа MU, относительно невелика, однако есть перспективы роста, в первую очередь за счет снижения доли использования в оборудовании коннекторов более ранних разработок.

Особенности

  • Разъем с пылезащитной заглушкой
  • Соответвие требованиям ROHS
  • Аппаратная совместимость NTT-MU
  • NTT&JIS соответствие
  • Соединение типа push-pull (толчок-рывок)
  • Высокая точность выравнивания
  • Материал ферул – цирконий
  • Полная совместимость с IEC 61 754-6

Область применения

  • Сфера телекоммуникаций
  • Кабельное телевидение (CATV)
  • LAN (FITL, FTTH and FTTD)
  • SONET / SDH
  • ATM и WDM приложений
  • Цифровая сеть

Технические характеристики


MT-RJ-коннектор - коннекторы MT-RJ разработаны консорциумом производителей в составе AMp Hewlett-Packard, Siecor LIN, Fujikura и USConnec. Эти коннекторы изготавливаются исключительно в виде дуплексных пар и поэтому не могут считаться универсальными. Технологически они сложны в производстве.

Корпус коннекторов содержит пару металлических направляющих, в которые предварительно установлены два оптических волокна. Оптические волокна кабеля подвариваются к предустановленным волокнам. После установки кабель фиксируется поворотом запирающего ключа.

Коннекторы типа MT-RJ применяются в коммутаторах, концентраторах и маршрутизаторах многими ведущими производителями оборудования.



Особенности

  • Размер и конструкция защелки аналогичны RJ-45
  • Дуплексный ферул
  • Низкая стоимость
  • Высокая плотность портов
  • Соответствие стандартам ISO/IEC 67754-18 и TIA/EIA 604-12
  • Низкие прямые потери

Использование коннектора MT-RJ увеличивает плотность портов в два раза по сравнению со стандартными коннекторами и делает его идеальным для использования в приложениях типа fiber-to-the-desk. Данный тип разъема позволяет осуществить подключение дуплексных каналов оптической связи при помощи одного шнура, что позволяет сэкономить пространство при монтаже линий связи

Область применения
  • Проводка в зданиях (горизонтальная и backbone)
  • Локальные сети (LAN) и FTT приложения
  • Телекоммуникационные сети

Технические характеристики


MPO - коннектор - MPO («Multi-fiber Push On») коннектор – малогабаритный соединитель, разработанный для ферул типа MT, имеющий размер обычного симплексного SC-соединителя.

MPO (Multiple-Fibre Push-On/Pull-off) – многоволоконный оптический разъем, устанавливаемый в адаптер без вращения, прямым введением. MPO – название первой версии 12-волоконного разъема, которая затем была улучшена и переименована в MTP, хотя эти разъемы сохранили совместимость между собой.

В МPO-коннекторе осуществляется совмещение полосок, содержащих 4, 8 или 12 оптических волокон. Прокладка и подключение волоконно-оптических кабелей с МPO коннекторами установленными производителем, не требуют применения специального инструмента и привлечения квалифицированного персонала, поскольку нет необходимости производить оконцовку кабеля. При этом обеспечиваются высокие характеристики соединения.

Преимуществом данного коннектора (МРО) является объединение 12 волокон в одном коннекторе и соединение с компактным ленточным волокном, что значительно экономит место в патч-панелях и кроссовых шкафах.

В стандартном MPO коннекторе терминируется 12 волокон. Последние разработки позволили увеличить количество волокон в коннекторе с таким интерфейсом до 72. Таким образом система MPO обеспечивает высочайшую плотность монтажа.

МРО упрощенная технология подключения магистральных волоконно-оптических кабелей рlug-and-play («подключил и готово») представляет идеальное готовое решение проблемы инсталляции для небольших проектов при соединении нескольких зданий и реализации вертикальной разводки. Возможность выполнять множество подключений, имея несколько волокон в одном коннекторе, значительно ускоряет процесс инсталляции.

Использование МРО коннектора экономит время и снижает вероятность повреждения хрупких оптических разъемов. MPO система также снижает риск попадания грязи в волокна адаптеров.


Особенности

  • Объединение 12 волокон в одном коннекторе и соединение с компактным ленточным волокном
  • Адаптирован к VSR интерфейсу
  • Низкие потери
  • Обеспечение значительного пространства и экономии средств

Область применения

  • Взаимосвязь с OE модулями
  • Gigabit Ethernet
  • Мультимедиа
  • Телекоммуникационные сети и системы

Технические характеристики

MTP - коннектор - усовершенствованная конструкция 12-волоконного разъема, первоначально носившего обозначение MPO (Мultiple-Fibre Push-On/Pull-off – многоволоконный оптический разъем, устанавливаемый в проходник без вращения, прямым введением). Улучшения затронули конструкцию разъема (разборный корпус, усовершенствованный наконечник) и состав материала, используемого для изготовления коннекторов.

В результате разъемы MTP обладают существенно более высокими характеристиками передачи, чем их предшественники, хотя они по-прежнему совместимы между собой.

Внимание: разъемы MTP делятся на типы male и female!

Тип МТР в основном используется внутри помещений, например, в вычислительных центрах в корпоративных сетях, где используются распределительные шкафы и устройства параллельной оптики. Также МТР коннекторы широко используются в новых технологиях, таких как гибкие оптические мультиплексоры ввода/вывода (ROADM), т.е. там, где высокая плотность соединений крайне важна. Возможность выполнять множество подключений, имея несколько волокон в одном коннекторе, значительно ускоряет процесс инсталляции.


Особенности

  • Объединение до 72 волокон в одном коннекторе и соединение с компактным ленточным волокном
  • Сильнейшая взаимосвязь МТ ферулы с мультиволокном, увеличенная плотность монтажа
  • Адаптирован к VSR интерфейсу
  • Соответствие Telcordia’s GR-326-Core, IEC стандартам
  • Низкие потери
  • Оптимальное сочетание компактности и надежности

Область применения

  • Локальные сети LAN (включая FTTH and FTTD)
  • Gigabit Ethernet
  • Активное обрудование / интерфейс трансивера
  • Мультимедиа

Технические характеристики


SMA - коннектор - волоконно-оптические разъемы и SMA оптическая продукция широко используется в медицине, промышленности, там, где необходимо применение различных сенсоров, датчиков, а также в волоконно-оптических тестовых приложениях. SMA волоконно-оптический коннектор имеет компактный размер, высокую долговечность и надежность.

Разъемы SMA волокна могут быть с керамическим наконечником или ферулой из нержавеющей стали SMA имеет две версии, SMA 905, SMA 906. Разница в том, что в волоконно-оптическом разъеме SMA 905 – обычная (straight) ферула, а волоконно-оптическом разъеме SMA 906 используются «step» наконечник для достижения более низких вносимых потерь. В стандартном волоконно-оптическом SMA коннекторе применяется 3.175 mm ферула.


Особенности

  • Металлическая или керамическая ферула
  • Высокая температурная стабильность
  • Высокая износоустойчивость
  • Соответствие TIA / IEC
  • Соответствие ROHS

Область применения

  • Телекоммуникационные сети и системы передачи данных
  • Локальные сети
  • Лазерные системы
  • Медицина/хирургия
  • Спектрометры

Технические характеристики


E-2000 - коннектор - волоконно-оптический разъем и E2000 продукция становятся все более распространенными в области коммуникаций.

В коннекторах типа Е-2000 реализована одна из наиболее сложных конструкций.

Подключение и отключение коннектора производится линейно (push-pull). Фиксирующий механизм открывается только при вытягивании коннектора за корпус с применением специальной вставки-ключа. Случайное выключение такого коннектора без использования ключа практически невозможно (то есть необходима нагрузка для разрушения защелки корпуса коннектора).

Коннектор Е-2000 – пластиковый коннектор, с верхним замком. Как правило, используется в одномодовых сетях. Большее распространение имеет Е-2000/АРС, в связи с большим количеством оборудования для телевизионных систем, где необходима полировка АРС. Особенность стыковки данного коннектора с адаптером препятствует попаданию пыли на поверхность оптических элементов. Также обеспечивается достаточная жесткость крепления, устойчивость к вибрационным нагрузкам и высокая степень точности сведения световодов. Сечение корпуса – квадратное, что позволяет легко реализовать дуплексные коннекторы.


Особенности

  • Безопасная передача высокоскоростных протоколов
  • Многослойная циркониевая ферула диаметром 2,5 мм
  • Автоматические пластмассовые шторки (spring loaded shutter), выполняющие функции заглушек при отключении адаптера и открывающиеся при включении
  • Конструкция типа push-pull locking (толчок-рывок с верхним замком)
  • Совместимость с европейскими (EN 186270) и международными (IEC 61754-151) стандартами, TIA/EIA 604-16

Область применения

  • Локальные сети LAN
  • Современные DWDM приложения высокой мощности
  • Кабельное телевидение CATV
  • Метрология
  • Железные дороги
  • Промышленность
Технические характеристики
DIN - коннектор - Коннекторы типа DIN нашли применение в тестовой аппаратуре и телекоммуникационном оборудовании, кабельнном телевидении, LAN, WAN, MAN, а также в промышленности, медицине и в лазерных системах.

Этот уникальный разъем обеспечивает превосходную производительность за счет своей конструкции.

Стандартный керамический сердечник диаметром 2,5 мм выступает далеко за пределы корпуса. Пластмассовый корпус снабжен ключом, препятствующим вращению сердечника вокруг своей оси при вкручивании в адаптер.

Особенности

  • Совместимость с DIN47256
  • Специальная конструкция керамической ферулы типа free-floating (свободное плавание)
  • Коррозионно-устойчивый корпус
  • Компактная конструкция
  • Низкие показатели прямых потерь и обратного отражения

Технические характеристики

Biconic - коннектор - с полимерным наконечником обеспечивает максимальную производительность для многомодовых и одномодовых приложений. Этот разъем волоконно-оптический "первого поколения" часто используется при восстановлении устаревшего установленного волоконно-оптического оборудования. Размер волокна 126мкм.
Состоит из конусообразной полимерной манжеты, которая помогает выровнять волокна при подсоединении его к интерфейсу.
Прочная и надежная конструкция позволяет использовать коннекторы такого типа в военных структурах и медицинских учреждениях.


Технические характеристики

ESCON - коннектор - (Enterprise Systems Connection) волоконный канальный интерфейс, обеспечивающий обмен информацией между сервером IBM zSeries и периферийными устройствами (либо другим сервером). Впервые применялся в серверах архитектурыESA/390. Впервые анонсирован компанией IBM в 1990 году. ESCON реализует полудуплексный режим передачи с использованием протоколов типа запрос-ответ.
Физически ESCON канал состоит их двух волоконно-оптических кабелей, каждый из которых предназначен для передачи информации в одну сторону.
Для подключения периферийного устройства используется соединение точка-точка (одиночное или через коммутатор ESCON).


Технические характеристики

Для соединения оптических кабелей в муфтах или установки пигтейлов в кроссах обычно используют сварочный аппарат - он позволяет надежно и с максимальной плотностью фиксировать волокна, а так же оставлять технологические запасы на повторное соединение и перемещения волокон в кабеле под воздействием температуры и растягивающего усилия. В большинстве случаев сварка самый удобный вид соединения. Но у нее есть и недостатки, которые можно решить с помощью установки на кабель быстрых коннекторов.

Какие проблемы возникают при использовании сварки как основного вида соединений?

1. Место сварки оптического волокна становится хрупким и его следует фиксировать специальной термоусадочной гильзой КЗДС.

2. Термоусадочная гильза требует фиксации, т.к. не защищает волокно от растягивающего усилия.

3. Волокно с обоих сторон гильзы может сломаться, т.к. с него снята защитная оболочка.

4. Нельзя произвести соединение волокон с помощью сварки в сложных условиях, например когда нет запаса волокна или на столбе без технологического запаса волокна.

Из всего следует, что при оконцовывании кабеля всегда требуется установка маленького кросса, а при развертывании сетей в частном секторе всегда требуется снимать муфту со столба и оставлять колечки кабеля магистрального и клиентских, что со временем создает паутину из проводов. И самое главное нельзя провести такие работы одному монтажнику, т.к. он просто не сможет снять муфту.

Вставляем оптическое волокно в центральную трубку и перемещаем зажимной бегунок вправо, тем самым фиксируя его в разъеме. Передвинув его обратно можно вынуть волокно из коннектора.

Под крышкой, зажимающей кабель от выскальзывания необходимо оставить запас волокна. Быстрый коннектор типа SC одевается непосредственно на кабель, поэтому нельзя оставить большой запас волокна, как при использовании сварочного аппарата. Если длина кабеля более 200 метров нужно предпринять меры для исключения перемещения волокон внутри кабеля, например оставлять запас, свернутый в колечки.

Закрываем крышку быстрого коннектора и затягиваем зажимную втулку. Хотя разъем предназначен для установки на FTTH кабель, можно устанавливать его и на центральную трубку кабеля.

ВНИМАНИЕ!!! При установки на центральную трубку она не надежно фиксируется в разъеме, нужно положить сверху обрезок этой трубки, или намотать немного изоленты, что бы увеличить ее толщину. В этом случае крепление будет надежным.

Осталось только одеть синий пластмассовый фиксатор в розетке и готово - волокно можно подключать к оборудованию. Можно подключить его непосредственно или расположить в кроссе или настенной розетке, а подключение оборудования осуществлять через промежуточный патчкорд.

Теперь для сравнения произведем установку разъема с применением оптического сварочного аппарата. Сами разъемы на кабель с помощью сварки непосредственно не устанавливаются, поэтому нужно использовать разрезанный патчкорд или специальный оптический пигтейл. Он приваривается к волокну из кабеля и устанавливается в кроссе.

Существуют оптические патчкорды с разъемами SC разной длины, у них обычно толстая изоляция 2 или 3 миллиметра, бывают и специальные пигтейлы (обрезанные патчкорды), с тонкой внешней изоляцией 0.9 миллиметров. Использовать можно любые, однако для плотного монтажа многоволоконного кабеля в кроссе целесообразнее использовать пигтейлы с тонкой изоляцией - они легко гнуться и фиксируются, не занимают много места.

Сделать из патчкорда пигтейл можно с помощью специального кабельного стриппера с различными диаметрами отверстий. Разрезаем его пополам и снимаем верхнюю защитную изоляцию.

В итоге получаем тот же оптический пигтейл, который при сравнении с оптическим волокном обладает несколько более толстой защитной оболочкой.

Скалываем оптическое волокно из кабеля по линейке 20 миллиметров скалывателем Jilong KL- 21 C . Естественно волокно предварительно нужно очистить и снять буферное покрытие стриппером.

Зажимаем волокно прижимной планкой скалывателя KL- 21 C , закрываем крышку и производим скол.

Аналогичную операцию производим и с привариваемым патчкордом - снимаем буферное покрытие, протираем и скалываем.

Включаем сварочный аппарат Jilong KL-280 G и ждем его готовности к работе, когда на экране появится соответствующее сообщение.

Открываем защитную крышку сварочного аппарата и укладываем пигтейл на правую зажимную площадку, волокно при этом должно попасть на V образную канавку перед сварочными электродами. Предварительно на волокно нужно одеть термоусадочную гильзу КЗДС.

Аналогично укладываем волокно из оптического кабеля слева. Роутер Mikrotik RB450 G используем в качестве подставки под кабель.

После закрытия крышки сварочного аппарата Jilong KL-280 он автоматически производит сведение и сварку волокон, но предварительно проверяет качество произведенного скола. Аппарату скол не понравился, поэтому он выдал сообщение что превышен угол скола. Хоть на экране аппарата и виден дефект волокна справа, однако не всегда его явно видно и было бы не плохо, если аппарат сообщал с какой стороны плохой скол.

Сообщение с экрана сварочного аппарата об ошибке - "Превышен угол скола". Он предлагает игнорировать дефект и продолжить, но лучше этого не делать и произвести повторный скол волокна.

После произведения повторных действий по сколу, очистке и укладки волокна аппарат без проблем произвел сварку и показал информацию о потерях в сварном соединении - Loss: 0.01 dB - такое значение должно быть показано при всех сварках, если оно выше 0.03 , то нужно произвести повторное соединение волокон.

Вводить волокна в аппарат Jilong KL-280 G можно даже в защитной оболочке, специальная прокладка под крышкой и соответствующий вырез это позволяют.

После сварки волокно натягивается между зажимными планками, если одну пошевелить пальцем, вторая так же будет перемещаться, поэтому открывать крышки следует аккуратно.

Получилось вот такое красивое соединение, однако глаз специалиста сразу поймет не ладное.

Забыли одеть термоусадочную гильзу КЗДС, а без нее волокно можно легко сломать. Это одна из основных ошибок при начале работы с оптикой. Придется разрезать волокно и произвести повторную сварку. Нельзя просто взять и разрезать волокно в любом месте, нужно найти место сварки и вырезать его с двух сторон, как красную ленточку при открытии новых объектов строителями.

Производим повторный скол скалывателем Jilong KL- 21 C , только линейку ставим на самое минимальное значение, что бы буферное покрытие было на максимально возможной длине оптического волокна.

Одеваем термоусадочную гильзу и вновь заводим волокна в сварочный аппарат.

Производим сварку и получаем результат - Loss:0.36 dB - это очень много, нужно резать и делать повторную сварку. Видно что волокно сварилось со смещением, что говорит о том, что нельзя укладывать в канавку сварочного аппарата волокно с не снятым буферным покрытием.

Зато гильза КЗДС на месте, однако она не закрывает все волокно со снятым буферным покрытием - со стороны кабеля конец оголенного волокна был короткий, а со стороны патчкорда забыли выровнять длину. Режем снова.

Пробуем сразу поместить волокна в сварочный аппарат не скалывая их концы - и вот наглядный результат. Сразу становиться понятно для чего нужен скалыватель и можно ли обойтись без него. Аппарат для сварки оптических волокон Jilong KL-280 G не будет работать если их торцы не обработаны.

Аппарат выдает соответствующее предупреждение.

Теперь производим скол по всем правилам с обрезкой волокна по линейке на 16 миллиметров.

И попадаем опять на сообщение о превышении угла скола, смотрим на картинке какое волокно с дефектом (в данном случае правое) и производим повторный скол.

Вставляем волокна в аппарат Jilong KL 280 G и закрываем крышку. Волокна должны свободно перемещаться, т.к. аппарат во время сведения может утягивать их внутрь. Так же не следует располагать волокна глубже сварочного электрода, аппарат выдаст сообщение об ошибке - он может только втягивать волокна в себя, а не выталкивать обратно.

Процесс сварки производится автоматически, в этом и есть основное отличие сварочного аппарата Jilong KL-280 G от обычного KL-280 .

Опять что-то пошло не так и аппарат выдал сбой сварки с интересной картинкой волокна с дыркой в центре, нужно опять резать и переделывать.

Однако само волокно с дефектом сварилось и достаточно крепко.

Производим повторную сварку.

И получаем требуемый уровень потерь - Loss: 0.01 dB .

Аккуратно достаем волокна, сдвигаем термоусадочную гильзу КЗДС на место сварки и помещаем ее в печку вверху сварочного аппарата.

Закрываем крышку, но ей мешает толстая оболочка кабеля - ничего страшного, печка может работать и с приоткрытой крышкой.

Для включения печки следует нажать кнопку HEAT на панели сварочного аппарата.

И по завершении процесса усадки вынуть гильзу и разместить ее в специальном металлическом держателе для полного остывания. Гильза может прилипнуть в печке, поэтому следует доставать ее сразу после звукового сигнала.

Вот результат, волокно сварено, одета гильза КЗДС, но все равно обращаться с ним нужно осторожно и требуется уложить в кросс или настенную коробку.

Вид со стороны коннекторов на соединения различных типов. Вверху быстрый коннектор одетый на центральную трубку оптического кабеля, внизу патчкорд, приваренный к основному кабелю.

С другой стороны все не так аккуратно. Если конец кабеля с быстрым коннектором можно гнуть как угодно, то конец кабеля в месте сварки очень легко повредить и требуется защитить его путем укладки в маленький настенный оптический бокс, при этом для подключения активного оборудования понадобиться использовать дополнительный пигтейл.

Конечно можно разделать волокно так, что бы центральная трубка оптического кабеля зашла в гильзу КЗДС, и буферное покрытие пигтейла так же оказалось внутри, тогда при усадке и трубка основного кабеля, и приваренный патчкорд окажутся надежно соединенными.

Естественно внешний вид такого соединения не очень аккуратный. Толстую желтую изоляцию не получится одеть в гильзу, т.к. она не зажимается лапкой сварочного аппарата, тут можно либо обмотать все изолентой, либо одеть несколько обычных термоусадочных трубок для электрических кабелей.

В сравнении со сваркой соединение быстрым коннектором с разъемом SC производится быстрее и проще, кроме этого в некоторых случаях не требуется применение оптического кросса и лишних переходников с патчкордами. Что может быть удобно при подключении абонентских кабелей в муфты на столбах не на сварке, а на быстрых соединителях. В муфте предварительно развариваются волокна и устанавливаются розетки, абонентские кабели на земле оконцовываются коннекторами и подключаются к муфте, при этом запас кабеля не требуется и на столбах не появляется паутина из проводов. Кроме этого быстрые соединители можно использовать при строительстве сетей на базе технологии PON.

Стоимость самого дешевого оптического кабеля меньше витой пары, поэтому набор из скалывателя, стриппера и быстрых коннекторов очень быстро окупается, особенно если часто приходится прокладывать линии связи длиной более 100 метров.

Данный информационный материал был создан, подготовлен и размещен специалистами ООО «ЛАНМАРТ» и является собственностью администрации проекта www.сайт. Любое использование и размещение данного материала на других ресурсах допускается только при наличии прямой ссылки на первоисточник.