17.04.2019

Измерение и регулирование давления. Виды манометров и принцип работы


Манометр жидкостный
Назначение прибора:
Манометр открытый демонстрационный предназначен для измерения давления от 0 до 400 мм ртутного или водяного столба (4000 Па) выше и ниже атмосферного давления.
Основные части прибора и их назначение: Демонстрационный жидкостный манометр состоит из U-образной стеклянной трубки высотой 48 см и диаметром 3,5 – 4,5 мм и стойки на треноге. Одно колено стеклянной трубки присоединяется к сосуду, давление в котором нужно измерить. На стойке нанесены хорошо заметные издали штриховые сантиметровые деления с оцифровкой: в середине стойки – 0 и от него вверх и вниз через каждые 10 см цифры 1 и 2. Цена деления шкалы прибора 10 мм водяного столба. С обратной стороны верхней части стойки при помощи металлической пластинки укреплен стеклянный тройник. Тройник с одной стороны соединен с манометром, с другой – с установкой и средним отростком с резиновой трубкой, на которую надет винтовой или пружинящий зажим. Это позволяет во время работы приводить жидкость в обоих коленах манометра к одному уровню, не отключая от установки другие приборы. Достаточно слегка разжать зажим, чтобы соединить манометр с атмосферой. К манометру прилагают резиновую трубку длиной 80 см и винтовой зажим. Манометр заполняют чаще всего водой и реже спиртом или ртутью. Для лучшей видимости воду подкрашивают, например нигрозином или желто-зеленым флюоресцином. Жидкостный манометр нетрудно изготовить своими силами, изогнув в пламени спиртовки стеклянную трубку или соединив внизу две прямые стеклянные трубки при помощи резиновой.
Принцип действия прибора:
Действие открытого жидкостного манометра основано на свойстве сообщающихся сосудов и законе Паскаля. Жидкость устанавливается в обоих коленах на одном и том же уровне, так как на ее поверхность действует только атмосферное давление. Чтобы понять, как работает такой манометр, его можно соединить резиновой трубкой с круглой плоской коробкой, одна сторона которой затянута резиновой пленкой. Если слегка надавить пальцем на пленку, то уровень жидкости в колене манометра, соединенном с коробкой, понизится, в другом же колене повысится. Это объясняется тем, что при надавливании на пленку увеличивается давление воздуха в коробке. По закону Паскаля это увеличение давления передается и жидкости в том колене манометра, которое присоединено к коробке. Поэтому давление на жидкость в этом колене будет больше, чем в другом, где на жидкость действует атмосферное давление. Под действием силы этого избыточного давления жидкость начнет перемещаться: в колене со сжатым воздухом жидкость опустится, в другом – поднимется. Жидкость придет в равновесие (остановится) , когда избыточное давление сжатого воздуха уравновесится давлением, которое производит избыточный столб жидкости в другом колене манометра. Чем сильнее давить на пленку, тем выше избыточный столб жидкости, тем больше его давление. Следовательно, об изменении давления можно судить по высоте этого избыточного столба.

Принцип работы

Принцип действия манометра основан на уравновешивании измеряемого давления силой упругой деформации трубчатой пружины или более чувствительной двухпластинчатой мембраны, один конец которой запаян в держатель, а другой через тягу связан с трибко-секторным механизмом, преобразующим линейное перемещение упругого чувствительного элемента в круговое движение показывающей стрелки.

Разновидности

В группу приборов измеряющих избыточное давление входят:

Манометры - приборы с измерением от 0,06 до 1000 МПа (Измеряют избыточное давление - положительную разность между абсолютным и барометрическим давлением)

Вакуумметры - приборы измеряющие разряжения (давления ниже атмосферного) (до минус 100 кПа).

Мановакуумметры - манометры измеряющие как избыточное (от 60 до 240000 кПа), так и вакуумметрическое (до минус 100 кПа) давление.

Напоромеры -манометры малых избыточных давлений до 40 кПа

Тягомеры -вакуумметры с пределом до минус 40 кПа

Тягонапоромеры -мановакуумметры с крайними пределами не превышающими ±20 кПа

Данные приведены согласно ГОСТ 2405-88

Большинство отечественных и импортных манометров изготавливаются в соответствии с общепринятыми стандартами, в связи с этим манометры различных марок заменяют друг друга. При выборе манометра нужно знать: предел измерения, диаметр корпуса, класс точности прибора. Также важны расположение и резьба штуцера. Эти данные одинаковы для всех выпускаемых в нашей стране и Европе приборов.

Также существуют манометры измеряющие абсолютное давление, то есть избыточное давление+атмосферное

Прибор, измеряющий атмосферное давление, называется барометром .

Типы манометров

В зависимости от конструкции, чувствительности элемента различают манометры жидкостные, грузопоршневые, деформационные (с трубчатой пружиной или мембраной). Манометры подразделяются по классам точности: 0,15; 0,25; 0,4; 0,6; 1,0; 1,5; 2,5; 4,0 (чем меньше число, тем точнее прибор).

Манометр низкого давления(СССР)

Виды манометров

По назначениям манометры можно разделить на технические - общетехнические, электроконтактные, специальные, самопишущие, железнодорожные, виброустойчивые(глицеринозаполненые), судовые и эталонные (образцовые).

Общетехнические: предназначены для измерения не агрессивных к сплавам меди жидкостей, газов и паров.

Электроконтактные: имеют возможность регулировки измеряемой среды, благодаря наличию электроконтактного механизма. Особенно популярным прибором этой группы можно назвать ЭКМ 1У, хотя он давно снят с производства.

Специальные: кислородные- должны быть обезжирены, так как иногда даже незначительное загрязнение механизма при контакте с чистым кислородом может привести к взрыву. Часто выпускаются в корпусах голубого цвета с обозначением на циферблате О2(кислород); ацетиленовые -не допускают в изготовлении измерительного механизма сплавов меди, так как при контакте с ацетиленом существует опасность образования взрывоопасной ацетиленистой меди; аммиачные-должны быть коррозиестоикими.

Эталонные: обладая более высоким классом точности (0,15;0,25;0,4) эти приборы служат для проверки других манометров. Устанавливаются такие приборы в большинстве случаев на грузопоршневых манометрах или каких-либо других установках способных развивать нужное давление.

Судовые манометры предназначены для эксплуатации на речном и морском флоте.

Железнодорожные: предназначены для эксплуатации на Ж/Д транспорте.

Самопишушие: манометры в корпусе, с механизмом позволяющим воспроизводить на диаграмной бумаге график работы манометра.

Термопроводность

Термопроводные манометры основываются на уменьшении теплопроводности газа с давлением. В таких манометрах встроена нить накала, которая нагревается при пропускании через неё тока. Термопара или датчик определения температуры через сопротивление (ДОТС) могут быть использованы для измерения температуры нити накала. Эта температура зависит от скорости с которой нить накала отдаёт тепло окружающему газу и, таким образом, от термопроводности. Часто используется манометр Пирани, в котором используется единственная нить накала из платины одновременно как нагревательный элемент и как ДОТС. Эти манометры дают точные показания в интервале между 10 и 10 −3 мм рт. ст., но они довольно чувствительны к химическому составу измеряемых газов.

Две нити накаливания

Одна проволочная катушка используется в качестве нагревателя, другая же используется для измерения температуры через конвекцию.

Манометр Пирани (oдна нить)

Манометр Пирани состоит из металлической проволоки, открытой к измеряемому давлению. Проволока нагревается протекающим через неё током и охлаждается окружающим газом. При уменьшении давления газа, охлаждающий эффект тоже уменьшается и равновесная температура проволоки увеличивается. Сопротивление проволоки является функцией температуры: измеряя напряжение через проволоку и текущий через неё ток, сопротивление (и таким образом давление газа) может быть определено. Этот тип манометра был впервые сконструирован Марчелло Пирани.

Термопарный и термисторный манометры работают похожим образом. Отличие же в том, что термопара и термистор используются для измерения температуры нити накаливания.

Измерительный диапазон: 10 −3 - 10 мм рт. ст. (грубо 10 −1 - 1000 Па)

Ионизационный манометр

Ионизационные манометры - наиболее чувствительные измерительные приборы для очень низких давлений. Они измеряют давление косвенно через измерение ионов образующихся при бомбардировке газа электронами. Чем меньше плотность газа, тем меньше ионов будет образовано. Калибрирование ионного манометра - нестабильно и зависит от природы измеряемых газов, которая не всегда известна. Они могут быть откалибрированы через сравнение с показаниями манометра Мак Леода, которые значительно более стабильны и независимы от химии.

Термоэлектроны соударяются с атомами газа и генерируют ионы. Ионы притягиваются к электроду под подходящим напряжением, известным как коллектор. Ток в коллекторе пропорционален скорости ионизации, которая является функцией давления в системе. Таким образом, измерение тока коллектора позволяет определить давление газа. Имеется несколько подтипов ионизационных манометров.

Измерительный диапазон: 10 −10 - 10 −3 мм рт. ст. (грубо 10 −8 - 10 −1 Па)

Большинство ионных манометров делятся на два вида: горячий катод и холодный катод. Третий вид - это манометр с вращающимся ротором более чувствителен и дорог, чем первые два и здесь не обсуждается. В случае горячего катода электрически нагреваемая нить накала создаёт электронный луч. Электроны проходят через манометр и ионизируют молекулы газа вокруг себя. Образующиеся ионы собираются на отрицательно заряженном электроде. Ток зависит от числа ионов, которое, в свою очередь, зависит от давления газа. Манометры с горячим катодом аккуратно измеряют давление в диапазоне 10 −3 мм рт. ст. до 10 −10 мм рт. ст. Принцип манометра с холодным катодом тот же, исключая, что электроны образуются в разряде созданным высоковольтным электрическим разрядом. Манометры с холодным катодом аккуратно измеряют давление в диапазоне 10 −2 мм рт. ст. до 10 −9 мм рт. ст. Калибрирование ионизационных манометров очень чувствительно к конструкционной геометрии, химическому составу измеряемых газов, коррозии и поверхностным напылениям. Их калибровка может стать непригодной при включении при атмосферном и очень низком давлении. Состав вакуума при низких давлениях обычно непредсказуем, поэтому масс-спектрометр должен быть использован одновременно с ионизационным манометром для точных измерений.

Горячий катод

Ионизационный манометр с горячим катодом Баярда-Алперта обычно состоит из трёх электродов работающих в режиме триода, где катодом является нить накала. Три электрода - это коллектор, нить накала и сетка. Ток коллектора измеряется в пикоамперах электрометром. Разность потенциалов между нитью накала и землёй обычно составляет 30 В, в то время как напряжение сетки под постоянным напражением - 180-210 вольт, если нет опционоальной электронной бомбардировки, через нагрев сетки, которая может иметь высокий потенциал приблизительно 565 Вольт. Наиболее распространённый ионный манометр - это горячим катодом Баярда-Алперта с маленьким ионным коллектором внутри сетки. Стеклянный кожух с отверстием к вакууму может окружать электроды, но обычно он не используется и манометр встраивается в вакуумный прибор напрямую и контакты выводятся через керамическую плату в стене вакуумного устройства. Ионизационные манометры с горячим катодом могут быть повреждены или потерять калибровку если они включаются при атмосферном давлении или даже при низком вакууме. Измерения ионизационных манометров с горячим катодом всегда логарифмичны.

Электроны испущенные нитью накала движутся несколько раз в прямом и обратном направлении вокруг сетки пока не попадут на неё. При этих движениях, часть электронов сталкивается с молекулами газа и формирует электрон-ионные пары (электронная ионизация). Число таких ионов пропорционально плотности молекул газа умноженной на термоэлектронный ток, и эти ионы летят на коллектор, формируя ионный ток. Так как плотность молекул газа пропорциональна давлению, давление оценивается через измерение ионного тока.

Чувствительность к низкому давлению манометров с горячим катодом ограничена фотоэлектрическим эффектом. Электроны, ударяющие в сетку, производят рентгеновские лучи, которые производят фотоэлектрический шум в ионном коллекторе. Это ограничивает диапазон старых манометров с горячим катодом до 10 −8 мм рт. ст. и Баярда-Алперта приблизительно к 10 −10 мм рт. ст. Дополнительные провода под потенциалом катода в луче обзора между ионным коллектором и сеткой предотвращают этот эффект. В типе извлечения ионы притягиваются не проводом, а открытым конусом. Поскольку ионы не могут решить, какую часть конуса ударить, они проходят через отверстие и формируют ионный луч. Этот луч иона может быть передан нa кружку Фарадея.

Холодный катод

Существует два вида манометров с холодным катодом: манометр Пеннинга (введённый Максом Пеннингом), и инвертированный магнетрон. Главное различие между ними состоит в положении анода относительно катода. Ни у одного из них нет нити накаливания, и каждому из них требуется напряжение до 0,4 кВ для функционирования. Инвертированные магнетроны могут измерять давления до 10 −12 мм рт. ст.

Такие манометры не могут работать если ионы, генерируемые катодом рекомбинируют прежде, чем они достигнут анод. Если средняя длина свободного пробега газа меньше, чем размеры манометра, тогда ток на электроде исчезнет. Практическая верхняя граница измеряемого давления манометра Пеннинга 10 −3 мм рт. ст.

Точно так же манометры с холодным катодом могут не включиться при очень низких давлениях, так как почти полное отсутствие газа мешает устанавливать электродный ток - особенно в манометре Пеннинга, который использует вспомогательное симметричное магнитное поле, чтобы создать траектории ионов порядка метров. В окружающем воздухе подходящие ионые пары формируются посредством воздействия космической радиации; в манометре Пеннинга приняты меры, чтобы облегчить установку пути разряда. Например, электрод в манометре Пеннинга обычно точно сужается, для облегчения полевой эмиссии электронов.

Циклы обслуживания манометров с холодным катодом вообще измеряются годами, в зависимости от газового типа и давления, в котором они работают. Используя манометр с холодным катодом в газах с существенными органическими компонентами, такими как остатки масла насоса, может привести к росту тонких углеродистых плёнок в пределах манометра, которые в конечном счете замыкают электроды манометра, или препятствуют гереации пути разряда.

Применение манометров

Манометры применяются во всех случаях, когда необходимо знать, контролировать и регулировать давление. Наиболее часто манометры применяют в теплоэнергетике, на химических, нефтехимических предприятиях, предприятиях пищевой отрасли.

Цветовая маркировка

Довольно часто корпуса манометров, служащих для измерения давления газов, окрашивают в различные цвета. Так манометры с голубым цветом корпуса предназначены для измерения давления кислорода. Жёлтый цвет корпуса имеют манометры на аммиак, белый – на ацетилен, тёмно-зелёный – на водород, серовато-зелёный – на хлор. Манометры на пропан и другие горючие газы имеют красный цвет корпуса. Корпус чёрного цвета имеют манометры, предназначенные для работы с негорючими газами.

См. также

  • Микроманометр

Примечания

Ссылки

Принцип работы

Принцип действия манометра основан на уравновешивании измеряемого давления силой упругой деформации трубчатой пружины или более чувствительной двухпластинчатой мембраны, один конец которой запаян в держатель, а другой через тягу связан с трибко-секторным механизмом, преобразующим линейное перемещение упругого чувствительного элемента в круговое движение показывающей стрелки.

Разновидности

В группу приборов измеряющих избыточное давление входят:

Манометры - приборы с измерением от 0,06 до 1000 МПа (Измеряют избыточное давление - положительную разность между абсолютным и барометрическим давлением)

Вакуумметры - приборы измеряющие разряжения (давления ниже атмосферного) (до минус 100 кПа).

Мановакуумметры - манометры измеряющие как избыточное (от 60 до 240000 кПа), так и вакуумметрическое (до минус 100 кПа) давление.

Напоромеры -манометры малых избыточных давлений до 40 КПа

Тягомеры -вакуумметры с пределом до минус 40 КПа

Тягонапоромеры -мановакуумметры с крайними пределами не превышающими ±20 кПа

Данные приведены согласно ГОСТ 2405-88

Большинство отечественных и импортных манометров изготавливаются в соответствии с общепринятыми стандартами, в связи с этим манометры различных марок заменяют друг друга. При выборе манометра нужно знать: предел измерения, диаметр корпуса, класс точности прибора. Также важны расположение и резьба штуцера. Эти данные одинаковы для всех выпускаемых в нашей стране и Европе приборов.

Также существуют манометры измеряющие абсолютное давление, то есть избыточное давление+атмосферное

Прибор, измеряющий атмосферное давление, называется барометром.

Типы манометров

В зависимости от конструкции, чувствительности элемента различают манометры жидкостные, грузопоршневые, деформационные (с трубчатой пружиной или мембраной). Манометры подразделяются по классам точности: 0,15; 0,25; 0,4; 0,6; 1,0; 1,5; 2,5; 4,0 (чем меньше число, тем точнее прибор).

Виды манометров

По назначениям манометры можно разделить на технические - общетехнические, электроконтактные, специальные, самопишушие, железнодорожные, виброустойчивые(глицеринозаполненые), судовые и эталонные (образцовые).

Общетехнические: предназначены для измерения не агрессивных к сплавам меди жидкостей, газов и паров.

Электроконтактные: имеют возможность регулировки измеряемой среды, благодаря наличию электроконтактного механизма. Особенно популярным прибором этой группы можно назвать ЭКМ 1У, хотя он давно снят с производства.

Специальные: кислородные- должны быть обезжирены, так как иногда даже незначительное загрязнение механизма при контакте с чистым кислородом может привести к взрыву. Часто выпускаются в корпусах голубого цвета с обозначением на циферблате О2(кислород); ацетиленовые -не допускают в изготовлении измерительного механизма сплавов меди, так как при контакте с ацетиленом существует опасность образования взрывоопасной ацетиленистой меди; аммиачные-должны быть коррозиестоикими.

Эталонные: обладая более высоким классом точности (0,15;0,25;0,4) эти приборы служат для поверки других манометров. Устанавливаются такие приборы в большинстве случаев на грузопоршневых манометрах или каких-либо других установках способных развивать нужное давление.

Судовые манометры предназначены для эксплуатации на речном и морском флоте.

Железнодорожные: предназначены для эксплуатации на Ж/Д транспорте.

Самопишушие: манометры в корпусе, с механизмом позволяющим воспроизводить на диаграмной бумаге график работы манометра.

Термопроводность

Термопроводные манометры основываются на уменьшении теплопроводности газа с давлением. В таких манометрах встроена нить накала, которая нагревается при пропускании через нее тока. Термопара или датчик определения температуры через сопротивление (ДОТС) могут быть использованы для измерения температуры нити накала. Эта температура зависит от скорости с которой нить накала отдаёт тепло окружающему газу и, таким образом, от термопроводности. Часто используется манометр Пирани, в котором используется единственная нить накала из платины одновременно как нагревательный элемент и как ДОТС. Эти манометры дают точные показания в интервале между 10 и 10−3 мм рт. ст., но они довольно чувствительны к химическому составу измеряемых газов.

[править]Две нити накаливания

Одна проволочная катушка используется в качестве нагревателя, другая же используется для измерения температуры через конвекцию.

Манометр Пирани (oдна нить)

Манометр Пирани состоит из металлической проволоки, открытой к измеряемому давлению. Проволока нагревается протекающим через нее током и охлаждается окружающим газом. При уменьшении давления газа, охлаждающий эффект тоже уменьшается и равновесная температура проволоки увеличивается. Сопротивление проволоки является функцией температуры: измеряя напряжение через проволоку и текущий через неё ток, сопротивление (и таким образом давление газа) может быть определено. Этот тип манометра был впервые сконструирован Марчелло Пирани.

Термопарный и термисторный манометры работают похожим образом. Отличие же в том, что термопара и термистор используются для измерения температуры нити накаливания.

Измерительный диапазон: 10−3 - 10 мм рт. ст. (грубо 10−1 - 1000 Па)

Ионизационный манометр

Ионизационные манометры - наиболее чувствительные измерительные приборы для очень низких давлений. Они измеряют давление косвенно через измерение ионов образующихся при бомбардировке газа электронами. Чем меньше плотность газа, тем меньше ионов будет образовано. Калибрирование ионного манометра - нестабильно и зависит от природы измеряемых газов, которая не всегда известна. Они могут быть откалибрированы через сравнение с показаниями манометра Мак Леода, которые значительно более стабильны и независимы от химии.

Термоэлектроны соударяются с атомами газа и генерируют ионы. Ионы притягиваются к электроду под подходящим напряжением, известным как коллектор. Ток в коллекторе пропорционален скорости ионизации, которая является функцией давления в системе. Таким образом, измерение тока коллектора позволяет определить давление газа. Имеется несколько подтипов ионизационных манометров.

Измерительный диапазон: 10−10 - 10−3 мм рт. ст. (грубо 10−8 - 10−1 Па)

Большинство ионных манометров делятся на два вида: горячий катод и холодный катод. Третий вид - это манометр с вращающимся ротором более чувствителен и дорог, чем первые два и здесь не обсуждается. В случае горячего катода электрически нагреваемая нить накала создаёт электронный луч. Электроны проходят через манометр и ионизуют молекулы газа вокруг себя. Образующиеся ионы собираются на отрицательно заряженном электроде. Ток зависит от числа ионов, которое, в свою очередь, зависит от давления газа. Манометры с горячим катодом аккуратно измеряют давление в диапазоне 10−3 мм рт. ст. до 10−10 мм рт. ст. Принцип манометра с холодным катодом тот же, исключая, что электроны образуются в разряде созданным высоковольтным электрическим разрядом. Манометры с холодным катодом аккуратно измеряют давление в диапазоне 10−2 мм рт. ст. до 10−9 мм рт. ст. Калибрирование ионизационных манометров очень чувствительно к конструкционной геометрии, химическому составу измеряемых газов, коррозии и поверхностным напылениям. Их калибровка может стать непригодной при включении при атмосферном и очень низком давлении. Состав вакуума при низких давлениях обычно непредсказуем, поэтому масс-спектрометр должен быть использован одновременно с ионизационным манометром для точных измерений.

Горячий катод

Ионизационный манометр с горячим катодом Баярда-Алперта обычно состоит из трёх электродов работающих в режиме триода, где катодом является нить накала. Три электрода - это коллектор, нить накала и сетка. Ток коллектора измеряется в пикоамперах электрометром. Разность потенциалов между нитью накала и землёй обычно составляет 30 В, в то время как напряжение сетки под постоянным напражением - 180-210 вольт, если нет опционоальной электронной бомбардировки, через нагрев сетки, которая может иметь высокий потенциал приблизительно 565 Вольт. Наиболее распространенный ионный манометр - это горячим катодом Баярда-Алперта с маленьким ионным коллектором внутри сетки. Стеклянный кожух с отверстием к вакууму может окружать электроды, но обычно он не используется и манометр встраивается в вакуумный прибор напрямую и контакты выводятся через керамическую плату в стене ваккумного устройства. Ионизационные манометры с горячим катодом могут быть повреждены или потерять калибровку если они включаются при атмосферном давлении или даже при низком вакууме. Измерения ионизационных манометров с горячим катодом всегда логарифмичны.

Электроны испущенные нитью накала движутся несколько раз в прямом и обратном направлении вокруг сетки пока не попадут на неё. При этих движениях, часть электронов сталкивается с молекулами газа и формирует электрон-ионные пары (электронная ионизация). Число таких ионов пропорционально плотности молекул газа умноженной на термоэлектронный ток, и эти ионы летят на коллектор, формируя ионный ток. Так как плотность молекул газа пропорциональна давлению, давление оценивается через измерение ионного тока.

Чувствительность к низкому давлению манометров с горячим катодом ограничена фотоэлектрическим эффектом. Электроны, ударяющие в сетку, производят рентгеновские лучи, которые производят фотоэлектрический шум в ионном коллекторе. Это ограничивает диапазон старых манометров с горячим катодом до 10−8 мм рт. ст. и Баярда-Алперта приблизительно к 10−10 мм рт. ст. Дополнительные провода под потенциалом катода в луче обзора между ионным коллектором и сеткой предотвращают этот эффект. В типе извлечения ионы притягиваются не проводом, а открытым конусом. Поскольку ионы не могут решить, какую часть конуса ударить, они проходят через отверстие и формируют ионный луч. Этот луч иона может быть передан нa кружку Фарадея.

Часто при решении задач в области физики приходится сталкиваться с такими приборами, как манометры. Но что такое манометр, как он работает и какие виды бывают? Об этом и поговорим сегодня.

Что такие манометр?

Данный прибор предназначен для измерения избыточного давления. Однако давление может быть разным, а потому и разные манометры существуют. Например, для измерения атмосферного давления применяются вакуумметры, для определения разности давлений используются Но в любом случае измеряют они только давление.

Невозможно сейчас описывать все области применения этих приборов, ведь их очень много. Они могут использоваться в автомобилестроении, в сельском хозяйстве, коммунальном и жилищном хозяйстве, в любом механическом транспорте, металлургической промышленности и т.д. В зависимости от предназначения, существуют разные виды данных измерителей, но суть их всегда сводится к одному - к измерению давления.

Также эти приборы делятся на разные группы в зависимости по принципу измерения. Теперь, когда более-менее понятно, что такое манометр, можно переходить к деталям. В частности, опишем виды и области их применения.

Виды манометров давления

В зависимости от предназначения, манометры могут быть разных видов. Например, жидкостные манометры используются для измерения давления столба жидкости. Есть пружинные приборы, способные измерить прикладываемую силу. Здесь давление измеряется благодаря уравновешиванию силой деформации пружины.

Менее популярными можно назвать поршневые манометры, где измеряемое давление уравновешивается силой, которая действует на поршень прибора.

Также отметим, что в зависимости от назначения и условия использования выпускаются следующие приборы:

  • Технические - устройства общего назначения.
  • Контрольные, предназначенные для проверки устанавливаемого оборудования.
  • Образцовые - для проверки приборов и проведения измерений, где обязательна повышенная точность.

Также эти устройства можно делить по чувствительности элемента, классам точности. Например, по классам точности манометры бывают: 0.15, 0.25, 0.4, 0.6, 1, 1.5, 2.5, 4. Здесь число определяет точность прибора, и чем оно будет ниже, тем прибор точнее.

Пружинные

Предназначаются эти манометры для измерения избыточного давления. Их принцип измерения основан на использовании специальной пружины, которая деформируется под действием давления. Значение деформации чувствительного элемента (пружины) определяется специальным отсчетным устройством, которое, в свою очередь, имеет градуированную шкалу. На этой шкале пользователь видит значение измеряемого давления.

Чувствительным элементом в таких манометрах чаще всего выступает так называемая трубка Бурдона - чувствительная одновитковая пружина. Однако бывают и другие элементы: плоская гофрированная мембрана, многовитковая трубчатая пружина, сильфон (гармоникообразная мембрана). Все они одинаково эффективны, но наиболее простым и доступным и из-за этого наиболее распространенным является манометр, показывающий давление с помощью одновитковой пружины Бурдона. Именно такие модели активно применяются для измерения давления в диапазоне 0.6-1600 кгс/см 2 .

Жидкостные манометры

В отличие от пружинных, в жидкостных манометрах давление измеряется путем уравновешивания весом столба жидкости, а мера давления в данном случае - это уровень жидкости в сообщающихся сосудах. Такие приборы позволяют измерять давление в диапазоне 10-105 Па, и применяются они в основном в лабораторных условиях.

По сути, такой прибор - это U-образная трубка с жидкостью с большим удельным весом по сравнению с жидкостью, непосредственно в которой измеряется гидростатическое давление. Чаще всего такой жидкостью является ртуть.

В эту категорию косвенно можно отнести общетехнические и рабочие приборы типа манометра ТМ-510, ТВ-510, представляющие собой наиболее востребованную категорию. Они измеряют давление некристаллизующихся и неагрессивных паров и газов. Класс точности таких манометров: 1, 2.5, 1.5. Применяются такие на котельных, в системах теплоснабжения, при транспортировке жидкостей, а также в производственных процессах.

Электроконтактные манометры

К этой категории относятся в том числе вакууметры и мановакуумметры. Они предназначаются для измерения давления жидкостей и газов, являющихся нейтральными по отношению к стали и латуни. Конструкция этих приборов аналогичная пружинным, однако разница заключается лишь в больших геометрических размерах. Корпус электроконтактного манометра большой из-за устройства контактных групп. Также такой прибор может воздействовать на давление в контролируемой среде благодаря замыканию/размыканию контактов.

Благодаря особому электроконтактному механизму, который здесь используется, прибор можно применять в системе аварийной сигнализации. Собственно, в этой области он также используется.

Образцовые

Этот тип приборов предназначен для проверки манометров, используемых для измерений в лабораторных условиях. Их основное назначение - проверка исправности показаний рабочих манометров. Отличительная особенность таких приборов - очень высокий класс точности, который достигается благодаря конструктивным особенностям, а также зубчатому зацеплению в передаточном механизме.

Специальные

Эта категория приборов используется в разных отраслях промышленности для измерения давления таких газов, как аммиак, водород, кислород, ацетилен и т.д. Чаще всего измерение манометром специальным возможно только одного типа газа. Для каждого такого манометра указывается для измерения давления которого он предназначается. Также и сам манометр окрашивается в определенный цвет, соответствующий цвету газа, для которого этот прибор предназначен. В обозначении прибора также применяется определенная литера. К примеру, аммиачные манометры всегда окрашиваются в желтый цвет, обозначаются литерой A и имеют коррозионостойкое исполнение.

Существуют специальные виброустойчивые приборы, которые работают в условиях большого пульсирующего давления окружающей среды и сильных вибраций. Если в таких условиях использовать обычный манометр, то долго он не прослужит, т.к. передаточный механизм быстро выйдет из строя. Основной критерий виброустойчивого манометра - это герметичность и коррозионностойкая сталь корпуса.

Самопишущие

Основное отличие таких манометров следует из названия. Эти приборы непрерывно записывают измеряемое давление на диаграмме, что позже позволяет увидеть график изменения давления в определенном временном отрезке. Используются такие приборы в энергетике и промышленности для измерения получения показателей в неагрессивных средах.

Судовые

Эти предназначаются для измерения вакуумметрического давления газов, пара и жидкостей (масла, дизельного топлива, воды). Такие приборы отличаются более высокой влагозащитой, устойчивостью к климатическим воздействиям и вибрациям. Исходя из названия, можно понять их область применения - речной и морской транспорт.

Железнодорожные

В отличие от обычных манометров, показывающих значение давления, железнодорожные приборы не показывают, а преобразовывают давление в сигнал другого вида (цифровой, пневматический и т.д.). Для этого могут быть использованы различные методы.

Такие преобразователи давления активно используются в системах управления технологическими процессами, автоматики и, несмотря на свое прямое название, они применяются в отраслях нефтедобычи, химической и атомной энергетике.

Заключение

Измерение давления требуется во многих отраслях, и для каждой из них существуют специальные манометры со своими уникальными особенностями. Есть даже специальные эталонные манометры, которые предназначаются для настройки и обязательной проверки рабочих приборов. Они хранятся в Ростехнадзоре.

Но в любой отрасли и любой тип этих приборов предназначается для измерения только давления. Теперь вы знаете, что такое манометр, какие бывают виды и приблизительно понимаете принцип измерения давления.

Давлением называют физическую величину, равную отношению силы, действующей на элемент поверхности нормально к ней, к площади этого элемента.

Различают абсолютное и избыточное давление. Абсолютным (полным) называют давление, отсчитываемое от абсолютного нуля, т. е. истинное давление. Оно может быть как выше, так и ниже атмосферного. Если абсолютное давление ниже атмосферного, его называют остаточным. Разность между атмосферным и остаточным давлением называют вакуумом или разрежением. Избыточное давление представляет собой разность между абсолютным давлением и давлением окружающей среды.

Основная единица давления по Международной системе единиц (СИ) - паскаль (Па). Паскаль равен давлению, вызываемому силой 1Н (1 ньютон), равномерно распределенной по нормальной к ней поверхности площадью 1 м2, т. е. 1 Па - 1 Н/м2.

Соотношения между паскалем и некоторыми внесистемными единицами представлены ниже:

Классификация приборов для измерения давления

Приборы для измерения давления и разрежения обычно классифицируют по роду измеряемой величины и по принципу действия. Деление по первому принципу представлено ниже:

По второму принципу приборы подразделяются на жидкостные, деформационные и электрические манометры.

Жидкостные манометры

Жидкостные стеклянные манометры широко применяются в лабораториях для измерения барометрического давления атмосферного воздуха, вакуума, разности давлений, для градуировки и проверки приборов других систем.

Жидкостные манометры - самые простые и точные приборы для измерения давления. Верхний Предел измеряемых величин - 0,2 МПа (2кгс/см2).

Ртутные барометры

Для измерения атмосферного или близкого к нему давления в открытом пространстве применяют барометры, показывающие абсолютное давление воздуха.

Ртутный барометр (рис. 109) состоит из вертикальной стеклянной трубки, наполненной ртутью; верхний конец трубки запаян, а нижний опущен в чашку с ртутью. В верхней части трубки образуется вакуум. При увеличении давления воздух давит на поверхность ртути в чашке и часть ртути входит в трубку, а при понижении давления происходит обратное. Трубка заключена в оправу, в верхней части которой имеется вертикальный прорез, позволяющий видеть мениск ртути. В пределах этого прореза на оправе нанесена шкала в миллиметрах ртутного столба. Дополнительно имеется подвижная шкала-нониус, позволяющая измерять давление с точностью до десятых долей миллиметра. Перед отсчетом давления необходимо слегка постучать пальцем по защитной оправе барометра, чтобы мениск ртути принял нормальную форму, и установить при помощи винта нулевое деление нониуса на одной линии с верхним мениском ртутного столба.

Пример. На барометре, изображенном на рис. 108, давление в целых числах равно 762 мм рт. ст. К нему следует прибавить столько десятых долей миллиметра, сколько делений по нониусу приходится до первого совпадения одного из них с делениями основной шкалы. В нашем примере - это 7-е деление, следовательно атмосферное давление равно 762 + 0,7 = 762,7 мм рт. ст.

Ртутные барометры устанавливают в помещениях вдали от дверей и окон, укрепляя их на контрольной стене во избежание сотрясения.

При измерении давления барометром необходимо ввести поправки на температуру и силу тяжести. На практике пользуются готовыми таблицами поправок, прилагаемых к барометру. Барометры имеют еще инструментальную поправку, которая приводится в паспорте прибора.

Точность определения давления обычными ртутными барометрами составляет 13,3 Па (0,1 мм рт. ст.).

Жидкостные манометры для измерения избыточного давления

Для измерения давления больше атмосферного выпускаются стеклянные U-образные ртутные манометры с пределами измерения 100 и 160 мм рт. ст., а также U-образные жидкостные манометры, заполненные водой, силиконовым маслом, спиртом, этилфталатом, с пределами измерения 100, 160, 250, 400, 600, 1000 мм жидкостного столба.

Жидкостные манометры представляют собой открытую с обеих сторон стеклянную U-образную трубку, укрепленную на деревянном штативе со шкалой, расположенной между ветвями трубки (рис. 110) .Трубку манометра заполняют запирающей жидкостью до нулевой отметки шкалы. Левый конец трубки присоединяют к установке, в которой измеряется давление, а правый сообщается с атмосферой. Под действием измеряемого давления жидкость в трубке перемещается из одного колена в другое. Когда измеряемое давление уравновесится гидростатическим давлением столба жидкости, перемещение жидкости прекратится. Поскольку давление в системе выше атмосферного, высота столба жидкости в правом колене больше, чем в левом. Разность высот равна величине столба жидкости, измеряемой по градуированной шкале.

Ртутные манометры для измерения вакуума

Для измерения низкого вакуума (более 133 Па) наиболее распространен U-образный стеклянный ртутный вакуумметр (рис. 111). В U-образной манометрической трубке находится ртуть, полностью заполняющая левое колено. Когда вакуумметр будет присоединен к вакуумируемой установке, ртуть в левом колене начнет опускаться и остановится, когда разность уровней в обоих коленах будет соответствовать давлению в системе.

В вакуумметрах заводского изготовления манометрическая трубка сужена в месте нижнего изгиба, чтобы уменьшить скорость движения ртути и предупредить сильный удар в запаянный конец трубки при быстром впускании воздуха в манометр.

Иногда манометрические трубки изготавливают и заполняют ртутью в лаборатории. Манометр монтируют на деревянной подставке либо присоединяют его к установке для вакуумирования и шкалу с делениями укрепляют непосредственно на манометре. Перед заполнением манометрической трубки ртутью ее необходимо вымыть разбавленной азотной кислотой, водой и тщательно высушить; ртуть должна быть также тщательно очищена и осушена.

Предложено много методов заполнения манометра ртутью. По одному из них, заполнение проводят следующим образом: встряхиванием переводят в запаянное колено часть ртути и при помощи вакуум-насоса осторожно откачивают воздух из трубки, держа ее почти в горизонтальном положении. Когда пузырьки воздуха будут удалены, ртуть осторожно нагревают в вакууме спиртовой или газовой горелкой до кипения, непрерывно встряхивая трубку. После дегазации добавляют новую порцию ртути и повторяют эту операцию до тех пор, пока в правом колене уровень ртути не поднимется на 20-25 мм выше изгиба.

По другому способу, при помощи отрезка вакуумной резиновой трубки к манометру присоединяют почти встык стеклянный шар со ртутью, соединенный с масляным вакуумным насосом (рис. 112). Вакуумировав систему до предельного давления, создаваемого масляным насосом, закрывают кран и, поднимая шар, переливают часть ртути в трубку манометра. Затем манометр переворачивают сгибом вверх и снаружи осторожно нагревают пламенем горелки до тех пор, пока ртуть не закипит и из нее не удалятся пузырьки воды и воздуха. После этого в манометр подливают еще ртути, прогретой предварительно в шаре, и повторяют операцию кипячения. Наконец, заполняют и согнутую часть манометра, переворачивают манометр в нормальное положение и добавляют нужное количество ртути.

Затруднения, связанные с заполнением вакуумметра ртутью, могут быть значительно уменьшены, если закрытое колено манометрической трубки не запаяно, а имеет хорошо пришлифованный стеклянный кран (рис. 113). Для заполнения вакуумметра чистую ртуть с помощью водоструйного насоса засасывают в манометрическую трубку при открытом верхнем кране. Кран закрывают, когда ртуть попадает в расширение над ним. Затем ртуть с большой осторожностью нагревают в вакууме для удаления остатков адсорбированного воздуха.

Если манометр правильно заполнен ртутью и не загрязнен воздухом или парами веществ, то при присоединении его к масляному насосу ртуть в обоих коленах должна находиться на одинаковом уровне. Если внутрь закрытого конца манометра попадет воздух или пары веществ, то может возникнуть большая погрешность.

Точность измерений давления таким манометром составляет 66,5-133 Па (0,5-1,0 мм рт. ст.).

При выполнении работ под вакуумом до впуска воздуха в эвакуированную систему необходимо закрывать кран манометра, иначе ртуть загрязняется. Кран следует ненадолго открывать только непосредственно при снятии показаний.

Если в результате неосторожного обращения вода из водоструйного насоса или жидкость, с которой производилась работа в вакууме, попадет в манометр, его нужно разобрать, тщательно вымыть, высушить и вновь заполнить сухой ртутью.

Перед заполнением манометра сухой ртутью, чтобы предотвратить загрязнение ртути, рекомендуется прокипятить резиновый шланг в 5% растворе Na2CO3, тщательно промыть его дистиллированной водой, затем спиртом и высушить струей сухого чистого воздуха.

Уравнительный (подвижный) сосуд со ртутью следует поднимать осторожно, чтобы ртуть не попала в аппаратуру или насос.

Масса ртути для заполнения манометра обычно значительна (2,5-6 кг), потому необходимо очень осторожно обращаться с прибором и строго соблюдать правила работы со ртутью.

Для измерения давления в диапазоне 1330-0,0133 Па (10-0,0001 мм рт. ст.) часто применяют компрессионный ртутный манометр Мак-Леода, принцип действия которого основан на закономерном уменьшении известного объема газа при сжатии под действием ртути. Благодаря этому давление газа достигает заметной величины, а исходный объем газа, равный 100-300 мл, сокращается обычно в 10000-100000 раз. Наиболее употребительны измерительные баллоны шарообразной или грушевидной форм объемом в 100 мл.

Предложено много конструкций компрессионного манометра; две модели приведены на рис. 114. Чувствительность манометра Мак-Леода зависит от отношения объемов измерительного сосуда и измерительного капилляра (от степени сжатия).

Увеличивая объем измерительного сосуда при одновременном уменьшении объема капилляра, можно достигнуть любой степени точности измерения высокого вакуума. На практике точность показания манометра ограничивается массой ртути, препятствующей увеличению объема измерительного сосуда, и диаметром измерительного капилляра. Если диаметр капилляра меньше 0,5 мм, ртуть прилипает к стенкам и капилляр легко забивается.

Манометры Мак-Леода применяют для абсолютных измерений и калибровки вакуумметров других типов. Однако ими нельзя измерять давление паров углеводородов, воды и ртути, так как эти вещества при сжатии конденсируются и адсорбируются на стеклянных стенках прибора.

При пользовании простым манометром Мак-Леода поступают следующим образом: через отвод 8 манометр присоединяют к установке. Резервуар с ртутью 6 опускают так, чтобы ртуть вытекла из баллона 1 и капилляра 2. После того как вакуум в системе установится, резервуар 6 поднимают на такую высоту, чтобы уровень ртути в боковом, открытом капилляре 4 оказался на высоте верхнего конца запаянного капилляра 2. Объем воздуха, оставшегося в капилляре 2, пропорционален первоначальному остаточному давлению. Давление, в соответствии с законом Бойля-Мариотта, может быть вычислено по формуле:

где V1 - обьем баллона 1 вместе с капилляром; V2 - объем воздуха в капилляре 2 после сжатия; dh - разность уровней ртути в капиллярах.

Обычно манометры снабжаются шкалой, прокалиброванной для прямого отсчета давления по величине dh.

В некоторых случаях в паспорте манометра приводится постоянная капилляра К, измеряемая объемом на единицу длины капилляра. В этом случае давление может быть рассчитано по формуле:

Этот метод позволяет построить линейную шкалу зависимости разности уровней ртути от измеряемого давления для данного манометра. Зная разность уровней ртути dh, точный объем V1 и площадь сечения капилляра S, измеряемый вакуум можно также вычислить по формуле:

На основе этих вычислений можно заранее изготовить нелинейную квадратичную шкалу для данного манометра. Линейная шкала удобнее для измерения более высоких давлений, а квадратичная - для более низких.

Показывающие манометры для измерения избыточного давления

Для измерения избыточного давления применяются манометры с одновитковой и многовитковой трубчатыми пружинами. Показывающие лабораторные манометры изготовляют с одновитковой трубчатой пружиной. Последняя представляет собой полую металлическую трубку овального сечения, изогнутую по дуге и закрытую с одного конца. Второй конец пружины впаян в штуцер, соединяющий манометрическую трубку с установкой, в которой измеряется давление. Под действием давления трубчатая пружина меняет форму своего сечения, в результате чего ее запаянный конец перемещается пропорционально измеряемому давлению (трубка разгибается).

Для измерения давления до 5 МПа (50 кгс/см2) трубки изготовляют из латуни и бронзы, для более высоких давлений - из стали.

Показывающие манометры выпускают в круглом корпусе диаметром от 40 до 250 мм с верхними пределами измерений от 0,1 до 160 МПа. Нижний предел у всех манометров равен нулю.

Корпуса манометров, предназначенных для измерения давления различных газов, окрашиваются в соответствующие цвета: для кислорода - в голубой, водорода - в темно-зеленый, ацетилена - в белый, хлора и фосгена - в серовато-зеленый, горючих газов - в красный, а остальных негорючих газов - в черный.

Вакуумметры для различных диапазонов давления

Диапазон давлений, измеряемых вакуумметрами, значителен 1013 - 1,33 * 10 в минус 12 Па (760-10 в минус 13 мм рт. ст.), поэтому в настоящее время применяют различные манометры, каждый из которых имеет свой диапазон измеряемого давления.

Термопарный манометр типа ВТ-3 предназначен для индикации давления в диапазоне 665-66,5 Па (5-0,5 мм рт. ст.) и для измерения давления в диапазоне 13,3 - 0,133 Па (0,1 – 0,001 мм рт. ст.). Прибор состоит из измерительной установки и термопарного манометрического преобразователя (лампы) ЛТ-2 или ЛТ-4М. Измерительная установка обеспечивает питание манометрического преобразователя, измерение тока подогревателя и т. э. д. с.

В диапазоне индикации давления вакуумметр работает только с преобразователем ЛТ-2, работающим в режиме постоянства т. э. д. с., в диапазоне измерения давления - с преобразователями ЛТ-2 или ЛТ-4М, работающими в режиме постоянства тока нагревателя.

Отсчет давлений производится по градуировочным графикам, приведенным в приложении к выпускному аттестату, и инструкции по эксплуатации прибора.

Принцип действия термопарного манометрического преобразователя давления основан на зависимости теплопроводности газа от давления. Температура нагревателя определяет электродвижущую силу термопарного преобразователя. Если в преобразователе, вакуумно соединенном с обследуемым объемом, ток нагревателя поддерживать постоянным, то т. э. д. с. термопарного преобразователя будет определяться давлением окружающего газа, так как изменение температуры нагревателя зависит от теплопроводности окружающего газа. Следовательно, при понижении давления теплопроводность газа уменьшится, температура нагревателя увеличится, и возрастет т. э. д. с. термопары.

Ионизационно-термопарный вакуумметр ВИТ-2 имеет два диапазона измерений: 26,6-0,133 Па (0,2 – 0,001 мм рт. ст.) и 0,133 - 1,33 * 10 в минус 5 Па (10 в минус 3 – 10 в минус 7 мм рт. ст.). Точность измерения давлений в области высокого вакуума не очень велика, и порой определяется лишь порядок величины давления.

Прибор состоит из датчика, соединяемого с вакуумной системой, и отдельного блока электрического питания и измерения. Показания прибора зависят от вида газа, и он требует предварительной градуировки по каждому газу.

Принцип действия ионизационно-термопарных приборов основан на том, что при создании потока электронов в разреженном газе будет происходить ионизация и между двумя электродами, к которым подводится электрическое напряжение, возникнет ионный ток. Сила ионного тока при прочих равных условиях будет пропорциональна плотности газа, а следовательно, при определенной температуре пропорциональна его давлению.

Вакуумметр радиоизотопный ВР-4 предназначен для измерения давления газов в диапазоне давлений 1,33 * 0,01 - 1013 Па (10 в минус 4 - 760 мм рт. ст.) как в лабораторных, так и в производственных условиях.

Вакуумметр ВР-4 состоит из измерительной установки с выносным каскадом и радиоизотопного преобразователя МР-8.

Принцип действия преобразователя основан на свойстве а-частиц ионизировать газ, в результате чего образуется ионный ток, пропорциональный давлению газа.

Плутоний-238, используемый в преобразователе в качестве радиоактивного вещества, не обладает проникающим излучением. Прибор безопасен в эксплуатации. Вскрывать преобразователь категорически запрещается.

Регулирование давления

Приспособления, при помощи которых можно регулировать давление в вакуумируемой системе, по характеру действия могут быть разделены на две группы:

1) регулирующие давление путем периодического впуска воздуха в систему, когда разрежение превышает заданную величину;
2) регулирующие давление путем периодического включения и выключения вакуум-насоса.

Простое и достаточно эффективное приспособление для регулирования давления путем впуска воздуха в вакуумированную систему представлено на рис. 115. На шлифованной поверхности крана имеются риски, начинающиеся у отверстий и постепенно сходящие на нет. Скорость впуска воздуха регулируется длиной и диаметром капилляра.

Для регулирования вакуума наиболее распространены маностаты, в основе действия которых лежит гидростатический принцип (рис. 116). Кран 1 остается открытым до тех пор, пока не будет достигнуто нужное разрежение, затем его закрывают. Если в процессе работы давление в системе повышается, то в промывную склянку 2 через слой жидкости поступит такое количество газа, что разность давлений снова окажется постоянной. Нужная разность давлений устанавливается путем регулирования высоты положения уравнительного сосуда 3.

В качестве маностатной жидкости лучше всего пользоваться дибутилфталатом, силиконовым маслом, маслом для вакуум-насосов.

Ртутные маностаты контактного действия с помощью реле замыкают или размыкают электрическую цепь, что сопровождается включением или выключением электродвигателя вакуумного насоса. Одна из моделей изображена на рис. 117, а. Маностат состоит из замкнутой О-образной стеклянной трубки с краном вверху и с боковым отводом, присоединяемым к вакуумируемой системе. Нижняя часть трубки наполнена ртутью, которая постоянно соприкасается с одним нижним контактом и почти достигает второго контакта. Вначале устанавливают требуемое разрежение при открытом кране маностата, после чего кран закрывают. При увеличении вакуума ртуть в правом колене поднимается и замыкает электрическую цепь, в результате чего реле отключает питание электродвигателя вакуум-насоса.

Маностат другой конструкции (рис. 117,6) представляет собой манометрическую трубку с небольшим резервуаром, который соединен краном с нижней частью открытого колена трубки и трехходовым краном с верхней частью открытого колена и с атмосферой. Один из контактов введен в нижний изгиб трубки, а другой - в закрытое колено на середине расстояния между уровнями ртути в обоих коленах. В этом положении маностат установлен на нуль. Открывая нижний кран, можно спустить некоторое количество ртути из первого колена в резервуар и, таким образом, установить маностат на желаемое остаточное давление, при достижении которого электрическая цепь будет разомкнута. Для уменьшения требуемого остаточного давления резервуар, маностата, включенного в эвакуированную систему, соединяют при помощи трехходового крана с атмосферой, в результате чего ртуть в правом колене поднимается на нужную высоту.