05.08.2020

Критическая сила по эйлеру. Формула Эйлера


Задача определения критической силы была впервые поставлена и решена математиком Л.Эйлером*, в дальнейшем она была обобщена на другие случаи концевых закреплений стержня.

Эта формула имеет вид:

где Е – модуль упругости первого рода материала стержня;

I min – минимальный главный центральный момент инерции поперечного сечения стержня;

l – длина стержня;

m - коэффициент приведения длины стержня, зависящий от способа закрепления его концов;

m l – приведенная длина стержня.

На рис. 8.2 показаны наиболее распространенные способы закрепления концов сжатого стержня (штриховыми линиями изображены примерные формы упругих линий стержней при нагрузках, больших критических):

1) оба конца стержня закреплены шарнирно - m = 1 (рис. 8.2,а);

2) один конец жестко защемлен, а другой свободен - m = 2 (рис. 8.2,б);

3) оба конца жестко защемлены, но могут сближаться - m = 0,5 (рис. 8.2,в); 4) один конец стержня закреплен жестко, а другой – шарнирно - m = 0,7 (рис. 8.2,г).

m = 0,7
m = 0,5
m = 2
m = 1
F
F
F
а)
б)
в)
г)
Рис. 8.2
F

Формула Эйлера справедлива лишь при условии, что потеря устойчивости происходит в пределах упругих деформаций стержня, т.е. в пределах действия закона Гука.

Если обе части формулы Эйлера (8.3) разделить на площадь поперечного сечения стержня А, то получим так называемое критическое напряжение s кр , т.е. то напряжение, которое возникает в сечении стержня под действием критической силы F kp . При этом критическое напряжение не должно превышать предела пропорциональности:

где i min – минимальный радиус инерции.

Момент инерции берется минимальный потому, что стержень стремится изогнуться в плоскости наименьшей жесткости.

Разделим числитель и знаменатель формулы (8.4) на минимальный момент инерции I min , представленный формулой (8.5):

где - безразмерная величина называемая гибкостью стержня.

Условие применимости формулы Эйлера удобно выразить через гибкость стержня. Выразим из неравенства (8.6) значение l:

Правую часть этого неравенства обозначают l пред и называют предельной гибкостью стержня из данного материала, т.е.

Таким образом, получим окончательное условие применимости формулы Эйлера - l ³ l пред. Формула Эйлера применима, когда гибкость стержня не меньше предельной гибкости .

Так, например, для стали Ст.3 (Е = 2*10 5 Мпа; s пц = 200 МПа):

т.е. формула Эйлера применима в этом случае при l ³ 100.

Аналогично можно вычислить предельную гибкость и для других материалов.



В конструкциях нередко встречаются стержни, у которых l < l пред. Расчет таких стержней ведется по эмпирической формуле, выведенной профессором Ф.С.Ясинским* на основании обширного опытного материала:

где a, b, c – коэффициенты, зависящие от свойств материала.

В таблице приведены значения а, b и c для некоторых материалов, а также значения гибкостей, в пределах которых применима формула (8.9).

Таблица 8.1

При гибкости l < l 0 стержни можно рассчитывать на прочность без учета опасности потери устойчивости.

Из формул Эйлера и Ясинского следует, что значение критической силы возрастает с увеличением минимального момента инерции поперечного сечения стержня. Так как устойчивость стержня определяется значением минимального момента инерции его поперечного сечения, то, очевидно, рациональны сечения, у которых главные моменты инерции равны между собой. Стойка, имеющая такое сечение, обладает равноустойчивостью во всех направлениях. Из сечений такого типа следует выбирать такие, которые обладают наибольшим моментом инерции при наименьшей площади (затрате материала). Таким сечением является кольцевое сечение.

На рис. 8.3 представлена диаграмма зависимости критического напряжения в стержне от его гибкости. В зависимости от гибкости стержни условно делят на три категории. Стержни большой гибкости (l ³ l пред) рассчитывают на устойчивость по формуле Эйлера; стержни средней гибкости (l 0 £l £l пред) рассчитывают на устойчивость по формуле Ясинского; стержни малой гибкости (l рассчитывают не на устойчивость, а на прочность.

ДЕТАЛИ МАШИН

«Соединения деталей машин»

В процессе изготовления машины некоторые ее детали соединяют между собой, при этом образуются неразъемные или разъемные соединения.

Неразъемными называют соединения, которые невозможно разобрать без разрушения или повреждения деталей. К ним относятся заклепочные, сварные и клеевые соединения.

Разъемными называют соединения, которые можно разбирать и вновь собирать без повреждения деталей. К разъемным соединениям относятся резьбовые, шпоночные, зубчатые (шлицевые) и другие.

Иркутский государственный университет путей сообщения

Лабораторная работа № 16

по дисциплине«Сопротивление материалов»

ОПЫТНОЕ ОПРЕДЕЛЕНИЕ КРИТИЧЕСКИХ СИЛ

ПРИ ПРОДОЛЬНОМ ИЗГИБЕ

Кафедра ПМ

Лабораторная работа № 16

Опытное определение критических сил при продольном изгибе

Цель работы: исследование явления потери устойчивости сжатого стального стержня в упругой

стадии. Экспериментальное определение значений критических нагрузок сжатых

стержней при различных способах закрепления и сравнение их с теоретическими

значениями.

Общие положения

Сжатые стержни недостаточно проверять на прочность по известному условию:

,

где [σ] – допускаемое напряжение для материала стержня, P – сжимающая сила, F – площадь поперечного сечения.

В практической деятельности инженеры имеют дело с подвергающимися сжатию гибкими стержнями, тонкими сжатыми пластинами, тонкостенными конструкциями, выход из строя которых вызывается ен потерей несущей способности, а потерей устойчивости.

Под потерей устойчивости понимается потеря первоначальной формы равновесия.

В сопротивлении материалов рассматривается устойчивость элементов конструкций, работа­ющих на сжатие.



Рассмотрим длинный тонкий стержень (рис. 1), нагруженный осевой сжимающей силой P .

P < P кр P > P кр

Рис. 1. Стержень, нагруженный осевой сжимающей силой P .

При малых значениях силы F стер­жень сжимается, оставаясь прямолинейным. Причем, если стержень отклонить от этого положения небольшой поперечной нагрузкой, то он изогнется, но при снятии ее стержень возвращается в прямолинейное состояние. Это значит, что при данной силе P прямолинейная форма равновесия стержня устойчива.

Если продолжить увеличивать сжимающую силу P , то при неко­тором ее значении прямолинейная форма равновесия становит­ся неустойчивой и возникает новая форма равновесия стержня - криволинейная (рис. 1, б). Вследствие изгиба стержня в его сече­ниях появится изгибающий момент, который вызовет дополнитель­ные напряжения, и стержень может внезапно разрушиться.

Искривление длинного стержня, сжимаемого продольной силой, называется продольным изгибом .

Наибольшее значение сжимающей силы, при котором прямоли­нейная форма равновесия стержня устойчива, называется критичес­ким - P кр .

При достижении критической нагрузки происходит резкое каче­ственное изменение первоначальной формы равновесия, что ведет к выходу конструкции из строя. Поэтому критическая сила рассмат­ривается как разрушающая нагрузка.

Формулы Эйлера и Ясинского

Задачу определения критической силы сжатого стержня впер­вые решил член Петербургской академии наук Л. Эйлер в 1744 г. Формула Эйлера имеет вид

(1)

где Е модуль упругости материала стержня; J min - наименьший момент инерции поперечного сечения стержня (поскольку искривление стержня при потере устойчивости происходит в плоскости наименьшей жесткости, т. е. поперечные сечения стержня повора­чиваются вокруг оси, относительно которой момент инерции ми­нимален, т.е. либо вокруг оси x , либо вокруг оси y );

(μ·l ) – приведенная длина стержня, это произведение длины стержня l на коэффициент μ, зависящий от способов закреп­ления концов стержня.

Коэффициент μ называют коэффициентом приведения длины ;его значение для наиболее часто встречающихся случаев закрепления концов стержня приведены на рис. 2:

а - оба конца стержня закреплены шарнирно и могут сближаться;

б - один конец жестко защемлен, другой свободен;

в - один конец закреплен шарнирно, второй имеет «поперечно-плавающую заделку»;

г - один конец жестко защемлен, второй имеет «поперечно-плавающую заделку»;

д - один конец заделан жестко, на другом шарнирно-подвижная опора;

е - оба конца жестко защемлены, но могут сближаться.

Из этих примеров видно, что коэффициент μ представляет со­бой величину, обратную числу полуволн упругой линии стержня при потере устойчивости.

Рис. 2. Коэффициент μ для наиболее часто

встречающихся случаев закрепления концов стержня.

Нормальное напряжение в поперечном сечении сжатого стержня, соответствующее критическому значению сжимающей силы, также называется критическим.

Определим его исходя из формулы Эйлера:

(2)

Геометрическую характеристику сечения i min , определяемую по формуле

называют радиусом инерции сечения (относительно оси с J min ). Для прямоугольного сечения

С учетом (3) формула (2) примет вид:

(4)

Отношение приведенной длины стержня к минимальному ра­диусу инерции его поперечного сечения по предложению профес­сора Санкт-Петербургского института инженеров путей сообще­ния Ф.С. Ясинского (1856-1899) называют гибкостью стержня и обозначают буквой λ :

В этой безразмерной величине одновременно отражаются такие параметры: длина стержня, способ его закрепления и характеристи­ка поперечного сечения.

Окончательно, подставив (5) в формулу (4), получим

При выводе формулы Эйлера предполагалось, что материал стер­жня упруг и следует закону Гука. Следовательно, формулу Эйлера можно применять только при напряжениях, меньших предела про­порциональности σ пц , т. е. когда

Этим условием определяется предел применимости формулы Эйлера:

Величину, стоящую в правой части этого неравенства, называют предельной гибкостью :

ее значение зависит от физико-механических свойств материала стержня.

Для низкоуглеродистой стали Ст. 3, у которой σ пц = 200 МПа, Е = 2· 10 5 МПа:

Аналогично можно вычислить значение предельной гибкости для других материалов: для чугуна λ пред = 80, для сосны λ пред = 110.

Таким образом, формула Эйлера применима для стержней, гиб­кость которых больше или равна предельной гибкости , т. е.

λ λ пред

Понимать это надо так: если гибкость стержня больше предельной гибкости, то критическую силу надо определять по формуле Эйлера.

При λ < λ пред формула Эйлера для стержней неприменима. В этих случаях, когда гибкость стержней меньше предельной, при расчетах пользуются эмпирической формулой Ясинского :

σ кр = a λ , (7)

где а и b - определяемые опытным путем коэффициенты, по­стоянные для данного материала; они имеют размерность напря­жения.

При некотором значении гибкости λ о напряжение σ кр , вычис­ленное по формуле (7), становится равным предельному напря­жению при сжатии, т. е. пределу текучести σ т для пластичных мате­риалов или пределу прочности при сжатии σ вс – для хрупких материалов. Стер­жни малой гибкости (λ < λ о )рассчитывают не на устойчивость, а на прочность при простом сжатии.

Таким образом, в зависимости от гибкости расчет сжатых стер­жней на устойчивость производится различно.

Задача определения критической силы для сжатого стержня впервые была решена в 1744 году выдающимся математиком Леонардом Эйлером. Формула для критической силы была выведена Эйлером на примере идеального прямого стержня постоянного сечения, шарнирно закрепленного на концах (Рис.2).

Одна из опор стержня допускает возможность продольного перемещения соответствующего конца стержня. Собственный вес стержня не учитывалась. Искомая формула выглядела:

(2)

Формула Эйлера (2) для критической силы выводилась для стержня с шарнирным закрепления концов. Этот случай закрепления концов стержня принято называть основным случаем. В этом случае на длине стержня укладывается одна полуволна синусоиды. Однако, в практике встречаются различные другие случаи закрепления концов стержня. На рис.3 приведены некоторые из них, которые наиболее часто встречаются.

Для определения значения критической силы для каждого из приведенных случаев закрепления концов на практике применяется способ, который использует геометрическую аналогию между поведением упругой линии сжатого стержня с шарнирным закреплением концов (основной случай) и другим способом закрепления концов стержня. Согласно этим способом все остальные случаев закрепления концов стержня сводится к основному путем введения так называемой сводной или свободной длины стержня.
Сводной или свободной длиной стержня называется условная длина шарнирно закрепленного стержня, имеет такую ​​же критическую силу, как и стержень с заданным закреплением концов. Судить о сводную длину стержня можно по числу полуволн, которые укладываются на длине стержня. С геометрической аналогии следует, что в пределах сводной длины стержень с произвольным закреплением концов вести себя так же, как стержень с шарнирным закреплением концов.
Сводная длина стержня вычисляется следующим образом: , где длина стержня с заданным закреплением концов; коэффициент сводной длины.
Из определения сводной длины следует, что коэффициент есть такое число, на которое необходимо умножить длину стержня с заданным закреплением концов, чтобы получить такую ​​длину условного стержня с шарнирным закреплением концов, на котором заключается одна полуволна синусоиды.
Для стержня, изображенного на рис.3 , а длина условного стержня с шарнирным закреплением концов должно быть в два раза больше, чем заданная длина стержня. Верхняя часть условного стержня с шарнирным закреплением концов вести себя точно так же, как и стержень с заданным закреплением концов. Коэффициент возведения длины для этого случая равна. На рис.3 , в одна полуволна размещается на длине, составляющей 0,7 реальной длины стержня. Коэффициент возведения длины в этом случае составляет. Для случая жесткого закрепления обоих концов стержня (Рис.3 , г) длина полуволны, замеренная между двумя точками перегиба, составляет половину длины стержня. Для этого случая коэффициент. Для основного случая (Рис.3 , б) коэффициент, поскольку на его длине укладывается одна полуволна и, следовательно, сведена длина стержня равна реальной его длине.
Преобразуем формулу Эйлера (2) , подставляя в нее вместо реальной длины стержня сводную длину. Получаем формулу Эйлера для критической силы в окончательном виде:


(3)

На рис.3 приведены значения критической силы для стержней с различными условиями закрепления концов при одинаковых начальной длине и жесткости поперечного сечения. Следует отметить, что наибольшее значение критическая сила достигает для стержня с жестким закреплением концов (Рис.3 , г). В этом случае критическая сила оказывается в четыре раза больше, чем для основного случае закрепления концов. Наименее эффективным типом закрепления концов стержня является случай, приведенный на рис.3 , а. Критическая сила в этом случае оказывается в четыре раза меньше, чем для основного случая.

6.Структурный анализ плоского механизма. Формула Чебышева
Механизмом называется механическая система тел, в которой заданныедвижения одного или нескольких тел преобразуются в необходимое движениедругих тел. Таким образом, механизмы служат для преобразованиядвижения.
Механизмы часто являются составной частью машины (см. определение ма-шины в ) преобразуя движение ее двигателя
в необходимое движение рабочего органа.
Рассмотрим структуру механизма на примере
кривошипно-ползунного механизма (рис.1).
Механизм состоит из звеньев 1, 2, 3 и 4
которые представляют одну деталь или груп-
пу жестко соединенных деталей, имеющих
общий закон движения.
Звено 1 – ведущее звено, закон движе-
ния которого задан. Это звено также называют
входным звеном. Оно всегда обозначается со
стрелкой.
Звенья 2, 3 – ведомые звенья; звено 3 – называют также исполнительным
или выходным звеном. Оно совершает движение для получения, которого по-
лучен механизм.
Звено 4 – стойка или базовое звено, на котором устанавливаются осталь-
ные звенья. Движение всех звеньев в механизме рассматривается относительно
стойки.

Формула Эйлера : , где Е – модуль Юнга; – минимальный главный центральный момент инерции поперечного сечения стержня (очевидно, что при потере устойчивости изгиб стержня произойдет в плоскости наименьшей изгибной жесткости); – коэффициент приведения длины, зависящий от формы потери устойчивости; l – длина стержня. Произведение - приведенная длина стержня .

Формула Эйлера для шарнирно-опертого стержня, сжатого по концам

Для шарнирно опертого стержня, сжатого по концам, формула Эйлера для определения : (коэффициент приведения длины ).

Основной случай потери устойчивости – случай, когда при закреплении концов стержня и приложении нагрузки форма потери устойчивости представляет собой одну полуволну синусоиды (рис. 12.2, а).

Некоторые другие способы закрепления концов стержня (нагрузка по-прежнему приложена по торцам) легко могут быть приведены к основному случаю потери устойчивости путем сопоставления формы изогнутой оси с формой потери устойчивости шарнирно опертого стержня.

Формула Эйлера для стержня с защемленным и свободным концами

При потере устойчивости стержень с жестко защемленным одним и свободным другим концом изогнется, как показано на (рис. 12.2, б). Форма потери устойчивости этого стержня представляет собой четверть синусоиды. Приведенная длина равна (полуволна синусоиды имеет длину ), а эйлерова сила в четыре раза меньше, чем для основного случая. Формула Эйлера для стержня с защемленным и свободным концами: .

Формула Эйлера для стержня с защемленными концами

Для стержня, оба конца которого жестко защемлены, форма потери устойчивости такова, что одна полуволна синусоиды занимает половину длины стержня (рис. 12.2, в). Поэтому приведенная длина стержня равна (), а формула эйлеровой нагрузки .

Критической () принято называть истинную, а эйлеровой () – теоретическую нагрузку, при которой происходит потеря .

Формула Эйлера получена из предположения, что в момент потери устойчивости напряжения сжатия в стержне не превышают предела пропорциональности : . Модуль Юнга (Е) в формуле Эйлера свидетельствует о том, что вплоть до момента потери устойчивости выполнялся . Если потеря устойчивости происходит при напряжении меньшем, чем , то .

Для стержней, теряющих устойчивость при напряжении, превышающем предел пропорциональности (), использование формулы Эйлера принципиально неправильно и крайне опасно, поскольку критическая нагрузка (истинная нагрузка, при которой происходит потеря устойчивости) меньше эйлеровой нагрузки: .

Пределы применимости формулы Эйлера

Пределы применимости формулы Эйлера можно установить, предварительно введя понятие гибкости стержня. Определим эйлеровы напряжения , исходя из формулы Эйлера:

.

Во всем предыдущем изложении мы определяли поперечные размеры стержней из условий прочности. Однако разрушение стержня может произойти не только потому, что будет нарушена прочность, но и оттого, что стержень не сохранит той формы, которая ему придана конструктором; при этом изменится и характер напряженного состояния в стержне.

Наиболее типичным примером является работа стержня, сжатого силами Р . До сих пор для проверки прочности мы имели условие

Это условие предполагает, что стержень все время, вплоть до разрушения работает на осевое сжатие. Уже простейший опыт показывает, что далеко не всегда возможно разрушить стержень путем доведения напряжений сжатия до предела текучести или до предела прочности материала.

Если мы подвергнем продольному сжатию тонкую деревянную линейку, то она может сломаться, изогнувшись; перед изломом сжимающие силы, при которых произойдет разрушение линейки, будут значительно меньше тех, которые вызвали бы при простом сжатии напряжение, равное пределу прочности материала. Разрушение линейки произойдет потому, что она не сможет сохранить приданную ей форму прямолинейного, сжатого стержня, а искривится, что вызовет появление изгибающих моментов от сжимающих сил Р и, стало быть, добавочные напряжения от изгиба; линейка потеряет устойчивость.

Поэтому для надежной работы конструкции мало, чтобы она была прочна; надо, чтобы все ее элементы были устойчивы : они должны при действии нагрузок деформироваться в таких пределах, чтобы характер их работы оставался неизменным. Поэтому в целом ряде случаев, в частности, для сжатых стержней, помимо проверки на прочность, необходима и проверка на устойчивость. Для осуществления этой проверки надо ближе ознакомиться с условиями, при которых устойчивость прямолинейной формы сжатого стержня нарушается.


Рис.1. Расчетная схема

Возьмем достаточно длинный по сравнению с его поперечными размерами стержень, шарнирно-прикрепленный к опорам (Рис.1), и нагрузим его сверху центрально силой Р , постепенно возрастающей. Мы увидим, что пока сила Р сравнительно мала, стержень будет сохранять прямолинейную форму. При попытках отклонить его в сторону, например путем приложения кратковременно действующей горизонтальной силы, он будет после ряда колебаний возвращаться к первоначальной прямолинейной форме, как только будет удалена добавочная сила, вызвавшая отклонение.

При постепенном увеличении силы Р стержень будет все медленнее возвращаться к первоначальному положению при проверках его устойчивости; наконец, можно довести силу Р до такой величины, при которой стержень, после небольшого отклонения его в сторону, уже не выпрямится, а останется искривленным. Если мы, не удаляя силы Р , выпрямим стержень, он уже, как правило, не сможет сохранить прямолинейную форму. Другими словами, при этом значении силы Р , называемом критическим , мы будем иметь такое состояние равновесия, когда исключается вероятность сохранения стержнем заданной ему прямолинейной формы).

Переход к критическому значению силы Р происходит внезапно ; стоит нам очень немного уменьшить сжимающую силу по сравнению с ее критической величиной, как прямолинейная форма равновесия вновь делается устойчивой.

С другой стороны, при очень небольшом превышении сжимающей силой Р ее критического значения прямолинейная форма стержня делается крайне неустойчивой ; достаточно при этом небольшого эксцентриситета приложенной силы, неоднородности материала по сечению, чтобы стержень искривился, и не только не вернулся к прежней форме, а продолжал искривляться под действием все возрастающих при искривлении изгибающих моментов; процесс искривления заканчивается либо достижением совершенно новой (устойчивой) формы равновесия, либо разрушением.

Исходя из этого, мы должны практически считать критическую величину сжимающей силы эквивалентной нагрузке, «разрушающей» сжатый стержень, выводящей его (и связанную с ним конструкцию) из условий нормальной работы. Конечно, при этом надо помнить, что «разрушение» стержня нагрузкой, превышающей критическую, может происходить при непременном условии беспрепятственного возрастания искривления стержня; поэтому если при боковом выпучивании стержень встретит боковую опору, ограничивающую его дальнейшее искривление, то разрушение может и не наступить.

Обычно подобная возможность является исключением; поэтому практически следует считать критическую сжимающую силу низшим пределом «разрушающей» стержень силы.


Рис.2. Аналогия понятия устойчивости из механики твердого тела

Явление потери устойчивости при сжатии можно по аналогии иллюстрировать следующим примером из механики твердого тела (рис.2). Будем вкатывать цилиндр на наклонную плоскость ab , которая потом переходит в короткую горизонтальную площадку и наклонную плоскость обратного направления cd . Пока мы поднимаем цилиндр по плоскости ab , поддерживая его при помощи упора, перпендикулярного к наклонной плоскости, он будет в.состоянии устойчивого равновесия; на площадке его равновесие делается безразличным; стоит же нам поместить цилиндр в точку с, как его равновесие сделается неустойчивым— при малейшем толчке вправо цилиндр начнет двигаться вниз.

Описанную выше физическую картину потери устойчивости сжатым стержнем легко осуществить в действительности в любой механической лаборатории на очень элементарной установке. Это описание не является какой-то теоретической, идеализированной схемой, а отражает поведение реального стержня под действием сжимающих сил.

Потерю устойчивости прямолинейной формы сжатого стержня иногда называют «продольным изгибом», так как она влечет за собой значительное искривление стержня под действием продольных сил. Для проверки на устойчивость сохранился и до сих пор термин «проверка на продольный изгиб», являющийся условным, так как здесь речь должна идти не о проверке на изгиб, а о проверке на устойчивость прямолинейной формы стержня.

Установив понятие о критической силе, как о «разрушающей» нагрузке, выводящей стержень из условий его нормальной работы, мы легко можем составить условие для проверки на устойчивость, аналогичное условию прочности.

Критическая сила вызывает в сжатом стержне напряжение, называемое «критическим напряжением» и обозначаемое буквой . Критические напряжения являются опасными напряжениями для сжатого стержня. Поэтому, чтобы обеспечить устойчивость прямолинейной формы стержня, сжатого силами Р , необходимо к условию прочности добавить еще условие устойчивости:

где — допускаемое напряжение на устойчивость, равное критическому, деленному на коэффициент запаса на устойчивость, т. е. .

Для возможности осуществить проверку на устойчивость мы должны показать, как определять и как выбрать коэффициент запаса .

Формула Эйлера для определения критической силы.

Для нахождения критических напряжений надо вычислить критическую силу , т. е. наименьшую осевую сжимающую силу, способную удержать в равновесии слегка искривленный сжатый стержень.

Эту задачу впервые решил академик Петербургской Академии наук Л. Эйлер в 1744 году.

Заметим, что самая постановка задачи иная, чем во всех ранее рассмотренных отделах курса. Если раньше мы определяли деформацию стержня при заданных внешних нагрузках, то здесь ставится обратная задача: задавшись искривлением оси сжатого стержня, следует определить, при каком значении осевой сжимающей силы Р такое искривление возможно.

Рассмотрим прямой стержень постоянного сечения, шарнирно опертый по концам; одна из опор допускает возможность продольного перемещения соответствующего конца стержня (рис.3). Собственным весом стержня пренебрегаем.


Рис.3. Расчетная схема в «задаче Эйлера»

Нагрузим стержень центрально приложенными продольными сжимающими силами и дадим ему весьма небольшое искривление в плоскости наименьшей жесткости; стержень удерживается в искривленном состоянии, что возможно, так как .

Деформация изгиба стержня предположена весьма малой, поэтому для решения поставленной задачи можно воспользоваться приближенным дифференциальным уравнением изогнутой оси стержня. Выбрав начало координат в точке А и направление координатных осей, как показано на рис.3, имеем:

Возьмем сечение на расстоянии х от начала координат; ордината изогнутой оси в этом сечении будет у , а изгибающий момент равен

По исходной схеме изгибающий момент получается отрицательным, ординаты же при выбранном направлении оси у оказываются положительными. (Если бы стержень искривился выпуклостью книзу, то момент был бы положительным, а у — отрицательным и .)

Приведенное только что дифференциальное уравнение принимает вид:

деля обе части уравнения на EJ и обозначая дробь через приводим его к виду:

Общий интеграл этого уравнения имеет вид.