20.06.2020

Методы и технические средства защиты окружающей среды. Основные способы защиты атмосферы от загрязнения Методы и способы защиты атмосферы


Все известные методы и средства защиты атмосферы от химических примесей можно объединить в три группы.

В первую группу входят мероприятия, направленные на снижение мощности выбросов, т.е. уменьшение количества выбрасываемого вещества в единицу времени. Во вторую группу входят мероприятия, направленные на защиту атмосферы путем обработки и нейтрализации вредных выбросов специальными системами очистки. В третью группу входят мероприятия по нормированию выбросов как на отдельных предприятиях и устройствах, так и в регионе в целом.

Для снижения мощности выбросов химических примесей в атмосферу наиболее широко используют:

Замену менее экологичных видов топлива экологичными;

Сжигание топлива по специальной технологии;

Создание замкнутых производственных циклов.

В первом случае применяют топливо с более низким баллом загрязнения атмосферы. При сжигании различных топлив такие показатели, как зольность, количество диоксида серы и оксидов азота в выбросах, могут сильно различаться между собой, поэтому введен суммарный показатель загрязнения атмосферы в баллах, который отражает степень вредного воздействия на человека. Так, для сланцев он равен 3,16, подмосковного угля - 2,02, экибастузского угля - 1,85, березовского угля - 0,50, природного газа - 0,04.

Сжигание топлива по особой технологии (рис. 4.2) осуществляется либо в кипящем (псевдоожиженном) слое, либо предварительной их газификацией.

Для уменьшения мощности выброса серы твердое, порошкообразное или жидкое топливо сжигают в кипящем слое, который формируется из твердых частиц золы, песка или других веществ (инертных или реакционно-способных). Твердые частицы вдуваются в проходящие газы, где они завихряются, интенсивно перемешиваются и образуют принудительно равновесный поток, который в целом обладает свойствами жидкости.

Рис. 4.2. Схема тепловой электростанции с использованием дожигания топочных газов и впрыскиванием сорбента: 1 - паровая турбина; 2 - горелка; 3 - бойлер; 4 - электроосадитель; 5 - генератор

Предварительной газификации подвергаются уголь и нефтяные топлива, однако на практике чаще всего применяют газификацию угля. Поскольку в энергетических установках получаемый и отходящий газы могут быть эффективно очищены, то концентрации диоксида серы и твердых частиц в их выбросах будут минимальными.

Одним из перспективных способов защиты атмосферы от химических примесей является внедрение замкнутых производственных процессов, которые сводят к минимуму выбрасываемые в атмосферу отходы, вторично используя их и потребляя, т. е. превращая их в новые продукты.

  1. Классификация систем очистки воздуха и их параметры

По агрегатному состоянию загрязнители воздуха подразделяются на пыли, туманы и газопарообразные примеси. Промышленные выбросы, содержащие взвешенные твердые или жидкие частицы, представляют собой двухфазные системы. Сплошной фазой в системе являются газы, а дисперсной - твердые частицы или капельки жидкости.

Системы очистки воздуха от пыли (рис. 4.3) делятся на четыре основные группы: сухие и мокрые пылеуловители, а также электрофильтры и фильтры.

Рис. 4.3. Системы и методы очистки вредных выбросов

При повышенном содержании пыли в воздухе используют пылеуловители и электрофильтры. Фильтры применяют для тонкой очистки воздуха с концентрацией примесей менее 100 мг/м 3 .

Для очистки воздуха от туманов (например, кислот, щелочей, масел и др. жидкостей) используют системы фильтров, называемых туманоуловителями.

Средства защиты воздуха от газопарообразных примесей зависят от выбранного метода очистки. По характеру протекания физико-химических процессов выделяют метод абсорбции (промывка выбросов растворителями примеси), хемосорбции (промывка выбросов растворами реагентов, связывающих примеси химически), адсорбции (поглощение газообразных примесей за счет катализаторов) и термической нейтрализации. Все процессы извлечения из воздуха взвешенных частиц включают, как правило, две операции: осаждение частиц пыли или капель жидкости на сухих или смоченных поверхностях и удаление осадка с поверхностей осаждения. Основной операцией является осаждение, по ней собственно и классифицируются все пылеуловители. Однако вторая операция, несмотря на кажущуюся простоту, связана с преодолением ряда технических трудностей, часто оказывающих решающее влияние на эффективность очистки или применимость того или иного метода.

Выбор того или иного пылеулавливающего устройства, которое представляет систему элементов, включающую пылеуловитель, разгрузочный агрегат, регулирующее оборудование и вентилятор, предопределяется дисперсным составом улавливаемой частицы промышленной пыли. Поскольку частицы имеют разнообразную форму (шарики, палочки, пластинки, игла, волокна и т.д.), то для них понятие размера условно. В общем случае принято характеризовать размер частицы величиной, определяющей скорость ее осаждения, - седиментационным диаметром. Под ним подразумевают диаметр шара, скорость осаждения и плотность которого равны скорости осаждения и плотности частиц.

Для очистки выбросов от жидких и твердых примесей применяют различные конструкции улавливающих аппаратов, работающих по принципу:

Инерционного осаждения путем резкого изменения направления вектора скорости движения выброса, при этом твердые частицы под действием инерционных сил будут стремиться двигаться в прежнем направлении и попадать в приемный бункер;

Осаждения под действием гравитационных сил из-за различной кривизны траекторий движения составляющих выброса (газов и частиц), вектор скорости движения которого направлен горизонтально;

Осаждения под действием центробежных сил путем придания выбросу вращательного движения внутри циклона, при этом твердые частицы отбрасываются центробежной силой к сетке, так как центробежное ускорение в циклоне до тысячи раз больше ускорения силы тяжести, это позволяет удалить из выброса даже весьма мелкие частицы;

Механической фильтрации - фильтрации выброса через пористую перегородку (с волокнистым, гранулированным или пористым фильтрующим материалом), в процессе которой аэрозольные частицы задерживаются, а газовая составляющая полностью проходит через нее.

Процесс очистки от вредных примесей характеризуется тремя основными параметрами: общей эффективностью очистки, гидравлическим сопротивлением, производительностью. Общая эффективность очистки показывает степень снижения вредных примесей в применяемом средстве и характеризуется коэффициентом

где С вх и С вых - концентрации вредных примесей до и после средства очистки. Гидравлическое сопротивление определяется как разность давления на входе Р вх и выходе Р вых из системы очистки:

где ξ - коэффициент гидравлического сопротивления; р и V - плотность (кг/м 3) и скорость воздуха (м/с) в системе очистки соответственно.

Производительность систем очистки показывает, какое количество воздуха проходит через нее в единицу времени (м 3 /ч).

Пассивные методы делятся на:

1) ограничение выбросов:

Санитарно-защитная зона- это полоса земли, которая отделяет предприятие от жилой застройки. Ширина зависит от мощности, объема выбросов, концентрации выбросов, создаваемого шума. Территория санитарно-защитных зон должна быть обязательно озеленена (>

Методы обеспыливания воздуха. Основные технические показатели пылеуловителей.

Для очистки от пыли используют сухие и мокрые пылеуловители, а также сухие и мокрые электрофильтры. Выбор метода и аппарата для улавливания аэрозолей зависит от дисперсного состава (размера частиц, находящихся в воздухе), эффективности, расхода или производительности аппарата.

Эффективность улавливания или степень очистки - выражается количеством уловленного материала, поступившего в газоочистной аппарат с газовым потоком за определенный период времени. (G 1 , G 2 - массовый расход (концентрация) частиц пыли, содержащихся в газе на входе и на выходе из аппарата [кг/ч]).

В основе работы сухих аппаратов лежат гравитационные, инерционные и центробежные механизмы осаждения или фильтрационные механизмы. К основным аппаратам сухой очистки относятся: пылеосадительные камеры, циклоны, фильтры, электрофильтры.

«+»- температура выбросов после очистки достигает до 50()°С (есть возможность утилизации):

При выбросе горячих газов улучшается их рассеивание в атмосфере;

Отсутствие потребления воды и образования сточных вод;

Возможность возвратить уловленную пыль обратно в производство.

«-» - возможная конденсация паров на стенках аппарата, что приводит к коррозии стенок и образование трудно улавливаемых отложений пыли;

Трудности с удалением уловленной пыли (возможность вторичного загрязнения воздуха).

Центробежные пылеуловители.

К ним относятся различные типы циклонов и вихревые пылеуловители.

Циклон . Получили наибольшее распространение в промышленности (для улавливания золы на ТЭС, на деревообрабат-их заводах). η=90%, d>10мкм.

«+» -отсутствие движущихся частей в аппарате;

Надежность работы при высоких температурах (до 500°C)-при работе с более высокими °t изготовляются из спец. материалов;

Возможность улавливания абразивных материалов (внутренняя поверхность циклона обрабатывается спец.покрытием);

Постоянное гидравлическое сопротивление;

Хорошая работа при высоких давлениях газа;

Простота изготовления.

«-» -низкая эффективность при улавливании частиц меньше 5мкм;

Высокое гидравлическое сопротивление (1,2-1,5кПа).

1-входной патрубок

В циклоне происходит спиралеобразное закручивание потока, в результате чего частицы отбрасываются к стенкам и постепенно опускаются в бункер 2. ОВ через выходное отверстие 3 выбрасывается в атмосферу. Частицы аэрозоли движутся вдоль результирующей силы Fp и прижимаются к внутренним поверхностям корпуса (трубы) и по этой поверхности скользят вниз и попадают в пылесборник. Периодически нижняя часть пылесборника открывается и таким образом удаляется пыль, на это время заслонку на патрубке закрывают. Эффективность улавливания частиц пыли в циклоне прямо пропорциональна скорости газа в степени ½ и обратно пропорциональна диаметру аппарата.

Для увеличения центробежной силы Fц необходимо (для повышения эффективности):

Увеличивать скорость пылевоздушной струи;

Уменьшать диаметр циклона.

Из практики известно, что скорость струи должна быть от 15 до 18 м/с. Отношение высоты циклона к D д.б. 2/3.

При больших расходах очищенных газов применяются групповые/батарейные циклоны – это позволяет не увеличивать D циклона. Запыленный газ входит в общий коллектор и распределяется по циклонам (работают параллельно).

Вихревые пылеуловители. Η<90%, d>2мкм.

Основным отличием от циклонов является наличие вспомогательного закручив-ся потока. В аппарате соплового типа запыленный газовый поток подается снизу аппарата и закручивается при помощи лопаточного завихрителя. Закрученный газовый поток движется вверх, при этом подвергаясь действию нескольких струй вторичного газа. Вторичный газ подается из тангенциально расположенных сопел вверху аппарата. Под действием центробежных сил частицы отбрасываются к периферии корпуса аппарата, а оттуда в создаваемый струями поток вторичного газа, направляющий их вниз в кольцевое межтрубное пространство. Кольцевое межтрубное пространство вокруг входного патрубка оснащено подпорной шайбой, обеспечивающей спуск пыли в бункер.

1-камера; 2-выходной патрубок; 3-сопла;

4-лопаточный завихритель; 5-входной патрубок; 6-подпорная шайба;

7-пылевой бункер.

Электрофильтры.

Электрофильтр - наиболее современный пылеулавливающий аппарат. η=99-99,5%, d=0,01-100мкм. температура очищ-го газа до 450°C.

В электрофильтре используется высоковольтное электростатическое поле. Напряжение на электродах до 50 кВ. Частицы проходят через 2 зоны. В 1-й зоне частица приобретает Эл. потенциал (заряжается), во 2-й зоне заряженная пыль движется к противоположенному электростатическому заряду и оседает на нем. Поэтому для очистки воздуха от пыли используется 3 вида сил: сила тяжести; сила воздушного напора и электростатическая сила.

По конструкции они м.б. вертикальными игоризонтальными.

1 – коронирующий электрод

2 – осадительный электрод

3 – бункер

4 – источник напряжения

При подаче высоковольтного напряжения между коронирующим и осадительным электродами создается электростатическое поле высокой напряженности. При поступлении загрязненного воздуха через патрубок образуется ламинарная струя (поток), которая движется ветрикально вверх через электростатическое поле. При этом на частицу действуют силы: G, Fh, и Рэл.ст.. При этом Fh превышает G на несколько процентов. При такой схеме сил частица отклоняется от вертикальной оси и движется в сторону осадительного электрода и прилипает к внутренней поверхности трубы. Происходит передача отрицательного заряда частицам пыли и их осаждение на осадительных электродах. Регенерация фильтра осуществляется встряхиванием.

«-» большой расход энергии (0,36-1,8 МДж на 1000 м 3 газа).

Чем выше напряженность поля и ниже скорость газа в аппарате, тем лучше улавливание пыли.

Процеживание и отстаивание.

Процеживание - это процесс пропускания сточных вод через решётки и сита перед более тонкой очисткой

Решётки улавливают примеси не менее 10-20 мм, решётки периодически очищают;

Эффективность работы не более 70%

Процеживание используется только для предварительной очистки СВ

В некоторых областях используют сита с размером ячеек до 1 мм, которые позволяют удалять вещества 0,5-1 мм.

С помощью расчёта осуществляется подбор решётки, и определяются потери напора в ней.

Отстаивание - это осаждение грубодисперсных примесей под действием силы тяжести.

Используются:

1) песколовки, применяются для удаления минеральных частиц и песка (0,15-0,25 мм). Песколовка - это резервуар с тропецеидальным или треугольным основанием (<0,3м/с, эффективность не более 95%).

Бывают: - вертикальные (движение снизу вверх); - горизонтальные; -аэрируемые.

Н = 0,25 – 2 м

v = 0,15 -0,3 м/с

В = 3 – 4,5 м

Длина рабочей части:

L = (1000*k s *H s *υ s)/ u s, где:

H s -расчётная глубина песколовки, k s – к-т, принимаемый в зависимости от типа песколовки, υ s – скорость движения воды в песколовке, u s – гмдравлическая крупность (14 – 24 мм/с)

2) отстойники.

По конструктивному исполнению: горизонтальные, вертикальные, радиальные, трубчатые и с наклонными пластинами. По назначению: первичные, - вторичные.

Горизонтальные – прямоугольные резервуары, имеющие 2 и более одновременно работающих отделения.

1 – входной латок;

2 – выходной лоток;

3 – камера отстаивания;

4 –лоток для удаления всплывших примесей.

Q – более 15 000 м 3 / сут

Н =1,5 – 4 м, L = 8 -27м, В = 3-6 м, v =0,01 м/с.

Вертикальные – круглые в плане резервуары, диаметром 4, 6, 9м с коническим днищем. Сточную воду подводят по центру к трубе, и после поступления внутрь она движется снизу вверх.

1- центральная труба;

2- жёлоб для отверстия;

3- цилиндрическая часть;

4- коническая часть.

Q – менее 20000 м 3 / сут;

Диаметр – 4, 6, 9; высота- 4 -5 м, скорость – 0,5 – 0,6 м/с.

Радиальные – круглые в плане резервуары, вода поступает через центр трубы и движется от центра к периферии.

2- распределительное устройство;

3- скребковый механизм;

Q – более 20000 м 3 / сут;

Высота – 1,5–5 м, диаметр – 16 – 60 м.

Расчёт отстойника производиться по кинетике выпадения взвешенных веществ с учётом необходимого эффекта осветления. Расчётом определяется гидравлическая крупность, по которой рассчитываются параметры отстойника.

Увеличить эффективность осаждения можно:

Увеличив размеры частиц коагуляцией; - уменьшая вязкость воды (например, нагреванием); - увеличив площадь отстаивания.

3) нефтеловушка

1- корпус;

2- слой нефти;

3- труба для сбора нефти (жира);

4- перегородка для удержания всплывших нефтепродуктов;

5- приямок для осадков

Степень очистки менее 70%. Для увеличения эффективности снизу подают воздух. Рассчитываются как отстойники с учётом гидравлической крупности всплывающих частиц.

Осветлители, применяются для очистки природных вод и для предварительного осветления СВ. в осветлителях создается взвешенный слой осадка через который фильтруются СВ.

Процесс отстаивания используется и для очистки частиц, имеющих плотность меньше, чем плотность воды, такие частицы всплывают и убираются с поверхности отстойника (жироловушки и нефтеловушки). Эффективность для нефти 96-98% для жира не более 70%..

Методы защиты атмосферы, их классификация.

Активные - они предусматривают экологизацию технологических процессов, т.е. создание безотходных технологий, создание замкнутых технологических циклов (редко).

Пассивные методы делятся на:

1) ограничение выбросов:

Усовершенствование топлива и замена другим видом;

Обеспечение более полного сгорания топлива;

Предварительная очистка сырья от летучих примесей;

Повышение роли безотходных источников энергии (АЭС, солнечная, ветровая).

2) рассредоточение, локализация и рассеивание выбросов

Выбор производится на стадии проектирования, строительства объекта выброса;

Нельзя строить в местах застоя воздуха;

На определенном расстоянии от жилых зон с учетом розы ветров;

Д. б. минимальное количество дней в году, в которые ветер дует от предприятия к городу;

Расположение производственных и жилых зданий должны способствовать сквозному проветриванию;

При компоновке зданий около магистрали следует: в центре больницы, дет. сады...

Локализация - это устройство вытяжных шкафов для удаления ЗВ. Централизация - несколько мелких источников объединяют в один крупный источник для наиболее эффективной работы очистных сооружений (низкая стоимость очистки воздуха). Рассеивание - выброс ЗВ в верхний слой атмосферы через трубы и дальнейшее его разбавление с чистым (наиболее опасен из низких труб). Рассредоточение – расположение предприятий на территории с учетом расположения города, розы ветров (на стадии проектировния).

3) устройство санитарно-защитных зон:

Для снижения воздействия предприятий на окружающую среду вокруг них делаются санитарно-защитные зоны;

Санитарно-защитная зона- это полоса земли, которая отделяет предприятие от жилой застройки. Ширина зависит от мощности, объема выбросов, концентрации выбросов, создаваемого шума. Территория санитарно-защитных зон должна быть обязательно озеленена (>=60% от площади) и благоустроена (кроме больниц, парков, стадионов...)

4) очистка выбросов - это улавливание ЗВ из отходящих газов.

Все выбросы делятся на парогазовые и аэрозольные выбросы, на производстве всегда производится очистка от пыли затем от газов.

Очистка от пыли: -сухие методы (пылеосадительные камеры, пылеуловители (инерционные, динамические, вихревые), циклоны, фильтры (волокнистые, тканевые, зернистые, керамические)); -мокрые методы (газопромыватели (полые, насадочные, тарельчатые, ударно-инерционные, центробежные, механические, скоростные)); -электрические методы (сухие и мокрые электрофильтры).

Очистка от туманов и брызг: - фильтры туманоуловители; - сетчатые брызгоуловители.

Министерство Образования Российской Федерации

САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ

ИНЖЕНЕРНО-ЭКОНОМИЧЕСКИЙ УНИВЕРСИТЕТ

Гуманитарный факультет

Кафедра современного естествознания и экологии

КОНТРОЛЬНАЯ работа по дисциплине

ПРИРОДООХРАННЫЕ СИСТЕМЫ И СООРУЖЕНИЯ

На тему: Защита атмосферы

Санкт-Петербург


Защита атмосферы

Для атмосферы характерна чрезвычайно высокая динамичность, обусловленная как быстрым перемещением воздушных масс в латеральном и вертикальном направлениях, так и высокими скоростями, разнообразием протекающих в ней физико-химических реакций. Атмосфера рассматривается как огромный «химический котел», который находится под воздействием многочисленных и изменчивых антропогенных и природных факторов. Газы и аэрозоли, выбрасываемые в атмосферу, характеризуются высокой реакционной способностью. Пыль и сажа, возникающие при сгорании топлива, лесных пожарах, сорбируют тяжелые металлы и радионуклиды и при осаждении на поверхность могут загрязнить обширные территории, проникнуть в организм человека через органы дыхания.

Загрязнением атмосферы считается прямое или косвенное введение в нее любого вещества в таком количестве, которое воздействует на качество и состав наружного воздуха, нанося вред людям, живой и неживой природе, экосистемам, строительным материалам, природным ресурсам – всей окружающей среде.

Очистка воздуха от примесей.

Для защиты атмосферы от негативного антропогенного воздействия используют следующие меры:

Экологизацию технологических процессов;

Очистку газовых выбросов от вредных примесей;

Рассеивание газовых выбросов в атмосфере;

Устройство санитарно-защитных зон, архитектурно-планировочные решения.

Безотходная и малоотходная технология.

Экологизация технологических процессов – это создание замкнутых технологических циклов, безотходных и малоотходных технологий, исключающих попадание в атмосферу вредных загрязняющих веществ.

Наиболее надежным и самым экономичным способом охраны биосферы от вредных газовых выбросов является переход к безотходному производству, или к безотходным технологиям. Термин «безотходная технология» впервые предложен академиком Н.Н. Семеновым. Под ним подразумевается создание оптимальных технологических систем с замкнутыми материальными и энергетическими потоками. Такое производство не должно иметь сточных вод, вредных выбросов в атмосферу и твердых отходов и не должно потреблять воду из природных водоемов. То есть понимают принцип организации и функционирования производств, при рациональном использовании всех компонентов сырья и энергии в замкнутом цикле: (первичные сырьевые ресурсы – производство – потребление – вторичные сырьевые ресурсы).

Конечно же, понятие «безотходное производство» имеет несколько условный характер; это идеальная модель производства, так как в реальных условиях нельзя полностью ликвидировать отходы и избавиться от влияния производства на окружающую среду. Точнее следует называть такие системы малоотходными, дающими минимальные выбросы, при которых ущерб природным экосистемам будет минимален. Малоотходная технология является промежуточной ступенью при создании безотходного производства.

В настоящее время определилось несколько основных направлений охраны биосферы, которые в конечном счете ведут к созданию безотходных технологий:

1) разработка и внедрение принципиально новых технологических процессов и систем, работающих по замкнутому циклу, позволяющих исключить образование основного количества отходов;

2) переработка отходов производства и потребления в качестве вторичного сырья;

3) создание территориально-промышленных комплексов с замкнутой структурой материальных потоков сырья и отходов внутри комплекса.

Важность экономного и рационального использования природных ресурсов не требует обоснований. В мире непрерывно растет потребность в сырье, производство которого обходится всё дороже. Будучи межотраслевой проблемой, разработка малоотходных и безотходных технологий и рациональное использования вторичных ресурсов требует принятия межотраслевых решений.

Разработка и внедрение принципиально новых технологических процессов и систем, работающих по замкнутому циклу, позволяющих исключить образование основного количества отходов, является основным направлением технического прогресса.

Очистка газовых выбросов от вредных примесей

Газовые выбросы классифицируются по организации отвода и контроля – на организованные и неорганизованные, по температуре на нагретые и холодные.

Организованный промышленный выброс – это выброс, поступающий в атмосферу через специально сооруженные газоходы, воздуховоды, трубы.

Неорганизованные называют промышленные выбросы, поступающие в атмосферу в виде ненаправленных потоков газа в результате нарушения герметичности оборудования. Отсутствие или неудовлетворительной работы оборудования по отсосу газа в местах загрузки, выгрузки и хранения продукта.

Для снижения загрязнения атмосферы от промышленных выбросов используют системы очистки газов. Под очисткой газов понимают отделение от газа или превращение в безвредное состояние загрязняющего вещества, поступающего от промышленного источника.

Механическая очистка газов

Она включает сухие и мокрые методы.

Очистка газов в сухих механических пылеуловителях.

К сухим механическим пылеуловителям относятся аппараты, в которых использованы различные механизмы осаждения: гравитационный (пылеосадительная камера), инерционный (камеры, осаждение пыли в которых происходит в результате изменения направления движения газового потока или установки на его пути препятствия) и центробежный.

Гравитационное осаждение основано на осаждении взвешенных частиц под действием силы тяжести при движении запыленного газа с малой скоростью без изменения направления потока. Процесс проводят в отстойных газоходах и пылеосадительных камерах(рис.1). Для уменьшения высоты осаждения частиц в осадительных камерах установлено на расстоянии 40-100 мм множество горизонтальных полок, разбивающих газовый поток на плоские струи. Гравитационное осаждение действенно лишь для крупных частиц диаметром более 50-100 мкм, причем степень очистки составляет не выше 40-50%. Метод пригоден лишь для предварительной, грубой очистки газов.

Пылеосадительные камеры (рис. 1 ). Осаждение взвешенных в газовом потоке частиц в пылеосадительных камерах происходит под действием сил тяжести. Простейшими конструкциями аппаратов этого типа являются отстойные газоходы, снабжаемые иногда вертикальными перегородками для лучшего осаждения твердых частиц. Для очистки горячих печных газов широко применяют многополочные пылеосадительные камеры.Пылеосадительная камера состоит: 1 - входной патрубок; 2 - выходной патрубок; 3 - корпус; 4 - бункер взвешенных частиц.

Инерционное осаждение основано на стремлении взвешенных частиц сохранять первоначальное направление движения при изменении направления газового потока. Среди инерционных аппаратов наиболее часто применяют жалюзийные пылеуловители с большим числом щелей (жалюзи). Газы обеспыливаются, выходя через щели и меняя при этом направление движения, скорость газа на входе в аппарат составляет 10-15 м/с. Гидравлическое сопротивление аппарата 100 - 400 Па (10 - 40 мм вод. ст.). Частицы пыли с d < 20 мкм в жалюзийных аппаратах не улавливаются. Степень очистки в зависимости от дисперсности частиц составляет 20-70%. Инерционный метод можно применять лишь для грубой очистки газа. Помимо малой эффективности недостаток этого метода - быстрое истирание или забивание щелей.

Данные аппараты отличаются простотой изготовления и эксплуатации, их достаточно широко используют в промышленности. Но эффективность улавливания не всегда достаточна.

Центробежные методы очистки газов основаны на действии центробежной силы, возникающей при вращении очищаемого газового потока в очистном аппарате или при вращении частей самого аппарата. В качестве центробежных аппаратов пылеочистки применяют циклоны (рис.2) различных типов: батарейные циклоны, вращающиеся пылеуловители (ротоклоны) и др. Циклоны наиболее часто применяют в промышленности для осаждения твердых аэрозолей. Циклоны характеризуются высокой производительностью по газу, простотой устройства, надежностью в работе. Степень очистки от пыли зависит от размеров частиц. Для циклонов высокой производительности, в частности батарейных циклонов (производительностью более 20000 м 3 /ч), степень очистки составляет около 90% при диаметре частиц d > 30 мкм. Для частиц с d = 5-30 мкм степень очистки снижается до 80%, а при d == 2-5 мкм она составляет менее 40%.

Рис. 2 Рис. 3

На рис. 2 воздух вводится тангенциально во входной патрубок (4) циклона, представляющую собой закручивающий аппарат. Сформировавшийся здесь вращающийся поток опускается по кольцевому пространству, образованному цилиндрической частью циклона (3) и выхлопной трубой (5), в его конусную часть (2), а затем, продолжая вращаться, выходит из циклона через выхлопную трубу. (1) - пылевыпускное устройство.Аэродинамические силы искривляют траекторию частиц. При вращательно-нисходящем движении запыленного потока пылевые частицы достигают внутренней поверхности цилиндра, отделяются от потока. Под влиянием силы тяжести и увлекающего действия потока отделившиеся частицы опускаются и через пылевыпускное отверстие проходят в бункер.Более высокая степень очистки воздуха от пыли по сравнению с сухим циклоном может быть получена в пылеуловителях мокрого типа (рис.3), в которых пыль улавливается в результате контакта частиц со смачивающей жидкостью. Этот контакт может осуществляться на смоченных стенках, обтекаемых воздухом, на каплях или на свободной поверхности воды.

6.5. СРЕДСТВА ЗАЩИТЫ АТМОСФЕРЫ.

Воздух производственных помещений загрязняется выбросами технологического оборудования или при проведении технологических процессов без локализации отходящих веществ. Удаляемый из помещения вентиляционный воздух может стать причиной загрязнения атмосферного воздуха промышленных площадок и населенных мест. Кроме того, воздух

загрязняется технологическими выбросами цехов, таких как кузнечно-прессовые цеха, цеха термической и механической обработки металлов, литейные цеха и другие, на базе которых развивается современное машиностроение. В процессе производства машин и оборудования широко используют сварочные работы, механическую обработку металлов, переработку неметаллических материалов, лакокрасочные операции и т.д. Поэтому атмосфера нуждается в защите.

Средства защиты атмосферы должны ограничивать наличие вредных веществ в воздухе среды обитания человека на уровне не выше ПДК. Это достигается локализацией вредных веществ в месте их образования, отводом из помещения или от оборудования и рассеиванием в атмосфере. Если при этом концентрации вредных веществ в атмосфере превышают ПДК, то применяют очистку выбросов от вредных веществ в аппаратах очистки, установленных в выпускной системе. Наиболее распространены вентиляционные, технологические и транспортные выпускные системы.

На практике реализуются следующие варианты защиты атмосферного воздуха:

вывод токсичных веществ из помещения общеобменной вентиляцией;


вентиляцией, очистка загрязненного воздуха в специальных аппаратах и
его возврат в производственное или бытовое помещение, если воздух
после очистки в аппарате соответствует нормативным требованиям к
приточному воздуху,

локализация токсичных веществ в зоне их образования местной
вентиляцией, очистка загрязненного воздуха в специальных аппаратах,
выброс и рассеивание в атмосфере,

очистка технологических газовых выбросов в специальных аппаратах,
выброс и рассеивание в атмосфере; в ряде случаев перед выбросом
отходящие газы разбавляют атмосферным воздухом.

Для соблюдения ПДК вредных веществ в атмосферном воздухе населенных мест устанавливают предельно-допустимый выброс (ПДВ) вредных веществ из систем вытяжной вентиляции, различных технологических и энергетических установок.

В соответствии с требованиями ГОСТ 17.2.02 для каждого проектируемого и действующего промышленного предприятия устанавливается ПДВ вредных веществ в атмосферу при условии, что выбросы вредных веществ от данного источника в совокупности с другими источниками (с учетом перспективы их развития) не создают приземную концентрацию, превышающую ПДК.

Аппараты очистки вентиляционных и технологических выбросов в атмосферу делятся на:

пылеуловители (сухие, электрические фильтры, мокрые фильтры);

туманоуловители (низкоскоростные и высокоскоростные);

аппараты для улавливания паров и газов (абсорбционные,
хемосорбционные, адсорбционные и нейтрализаторы);

аппараты многоступенчатой очистки (уловители пыли и газов,
уловители туманов и твердых примесей, многоступенчатые
пылеуловители).

Электрическая очистка (электрофильтры) - один из наиболее совершенных видов очистки газов от взвешенных в них частиц пыли и тумана. Этот процесс основан на ударной ионизации газа в зоне коронирующего разряда, передаче заряда ионов частицам примесей и осаждении последних на осадительных коронирующих электродах. Для этого применяются электрофильтры.


Схема электрофильтра.

1-коронирующий электрод

2-осадительный электрод

Аэрозольные частицы, поступающие в зону между коронирующим 1 и осадительным 2 электродами, адсорбируют на своей поверхности ионы, приобретая электрический заряд, и получает тем самым ускорение, направленное в сторону электрода с зарядом противоположного знака. Учитывая, что в воздухе и дымовых газах подвижность отрицательных ионов выше, чем положительных, электрофильтры обычно делают с короной отрицательной полярности. Время зарядки аэрозольных частиц невелико и измеряется долями секунд. Движение заряженных частиц к осадительному электроду происходит под действием аэродинамических сил и силы взаимодействия электрического поля и заряда частицы.

Фильтр представляет собой корпус 1, разделенный пористой перегородкой (фильтроэлементом) 2 на две полосы. В фильтр поступают загрязненные газы, которые очищаются при прохождении фильтроэлемента. Частицы примесей оседают на входной части пористой перегородки и задерживаются в порах, образуя на поверхности перегородки слой 3. Для вновь поступающих частиц этот слой становится частью фильтровой перегородки, что увеличивает эффективность очистки

фильтра и перепад давления на фильтроэлементе. Осождение частиц на поверхности пор фильтроэлемента происходит в результате совокупного действия эффекта касания, а также диффузионного, инерционного и гравитационного.

К мокрым пылеуловителям относят барботажно-пенные пылеуловители с провальной и переливной решетками.


Схема барботажно-пенные пылеуловители с провальной(а) и (б)

переливной решетками.

3-решетка

В таких аппаратах газ на очистку поступает под решетку 3, проходит через отверстия в решетке и, барботируя через слой жидкости и пены 2, очищается от пыли путем осаждения частиц на внутренней поверхности газовых пузырей. Режим работы аппаратов зависит от скорости подачи воздуха под решетку. При скорости до 1 м/с наблюдается барботажный режим работы аппарата. Дальнейший рост скорости газа в корпусе 1 аппарата до 2...2,5 м/с сопровождает возникновением пенного слоя над жидкостью, что приводит к повышению эффективности очистки газа и брызгоуноса из аппарата. Современные барботажно-пенные аппараты обеспечивают эффективность очистки газа от мелкодисперсной пыли -0,95...0,96 при удельном расходе воды 0,4...0,5 л/м. Практика эксплуатации этих аппаратов показывает, что они весьма чувствительны к неравномерности подачи газа под провальные решетки. Неравномерная подача газа приводит к местному сдуву пленки жидкости с решетки. Кроме того, решетки аппаратов склонны к засорению.

Для очистки воздуха от туманов кислот, щелочей, масел и других жидкостей используют волокнистые фильтры - туманоуловители. Принцип их действия основан на осаждении капель на поверхности пор с последующим стеканием жидкости по волокнам в нижнюю часть туманоуловителя. Осаждение капель жидкости происходит под действием броуновской диффузии или инерционного механизма отделения частиц загрязнителя от газовой фазы на фильтроэлементах в зависимости от скорости фильтрации W. Туманоуловители делят на низкоскоростные (W< 0,15 м/с), в которых преобладает механизм диффузного осаждения капель, и высокоскоростные (W=2...2,5 м/с), где осаждение происходит главным образом под воздействием инерционных сил.

В качестве фильтрующей набивки в таких туманоуловителях используют войлоки из полипропиленовых волокон, которые успешно работают в среде разбавленных и концентрированных кислот и щелочей.

В тех случаях, когда диаметры капель тумана составляют 0,6...0,7 мкм и менее, для достижения приемлемой эффективности очистки приходится увеличивать скорость фильтрации до 4,5...5 м/с, что приводит к заметному брызгоуносу с выходной стороны фильтроэлемента (брызгоунос обычно возникает при скоростях 1,7...2,5 м/с) значительно уменьшить брызгоунос можно применением брызгоуловителей в конструкции туманоуловителя. Для улавливания жидких частиц размером более 5 мкм применяют брызгоуловители из пакетов сеток, где захват частиц жидкости происходит за счет эффектов касания и инерционных сил. Скорость фильтрации в брызгоуловителях не должна превышать 6 м/с.

Схема высокоскоростного туманоуловителя.

1 -брызгоуловитель

3-фильтрующий элемент

Высокоскоростной туманоуловитель с цилиндрическим фильтрующим элементом 3, который представляет собой перфорированный барабан с глухой крышкой. В барабане установлен грубоволокнистый войлок 2 толщиной 3...5 мм. Вокруг барабана по его внешней стороне расположен брызгоуловитель 1, представляющий собой набор перфорированных плоских и гофрированных слоев винипластовых лент. Брызгоуловитель и фильтроэлемент нижней частью установлены в слой жидкости.


Схема фильтрующего элемента низкоскоростного туманоуловителя

3-цилиндры

4-волокнистый фильтроэлемент

5-нижний фланец

6-трубка гидрозатвора

В пространство между цилиндрами 3, изготовленными из сеток,
помещают волокнистый фильтроэлемент 4, который крепится с помощью
фланца 2 к корпусу туманоуловителя 1. Жидкость, осевшая на
фильтроэлементе; стекает на нижний фланец 5 и через трубку
гидрозатвора 6 и стакан 7 сливается из фильтра. Волокнистые
низкоскоростные туманоуловители обеспечивают высокую

эффективность очистки газа (до 0,999) от частиц размером менее 3 мкм и полностью улавливают частицы большого размера. Волокнистые слои формируются из стекловолокна диаметром 7...40 мкм. Толщина слоя составляет 5... 15 см, гидравлическое сопротивление сухих фильтроэлементов - 200... 1000 Па.

Высокоскоростные туманоуловители имеют меньшие размеры и обеспечивают эффективность очистки, равную 0,9... 0,98 при Ар=1500...2000 Па, от тумана с частицами менее 3 мкм.


СПИСОК ЛИТЕРАТУРЫ.

Аршинов В. А., Алексеев Г. А. Резание металлов и режущий
инструмент. Изд. 3-е, перераб. и доп. Учебник для машиностроительных техникумов. М.: Машиностроение, 1976.

Барановский Ю. В., Брахман Л. А., Бродский Ц. 3. и др. Ре­
жимы резания металлов. Справочник. Изд. 3-е, переработанное и дополненное. М.: Машиностроение, 1972.

Барсов А. И. Технология инструментального производства.
Учебник для машиностроительных техникумов. Изд. 4-е, исправленное и дополненное. М.: Машиностроение, 1975.

ГОСТ 2848-75. Конусы инструментов. Допуски. Методы и
средства контроля.

ГОСТ 5735-8IE. Развертки машинные, оснащенные пластинами твердого сплава. Технические условия.

Грановский Г. И., Грановский В. Г. Резание металлов: Учеб­
ник для машиностр. и приборостр. спец. вузов. М.: Высш. шк.,
1985.

Иноземцев Г. Г. Проектирование металлорежущих инструментов: Учеб. пособие для втузов по специальности
«Технология машиностроения, металлорежущие станки и инструменты». М.: Машиностроение, 1984.

Нефедов Н. А., Осипов К. А. Сборник задач и примеров по
резанию металлов и режущему инструменту: Учеб. пособие для
техникумов по предмету «Основы учения о резании металлов и
режущий инструмент». 5-е изд., перераб. и доп. М.: Машино­
строение, 1990.

Основы технологии машиностроения. Под ред. B.C. Корсакова. Изд. 3-е, доп. и перераб. Учебник для вузов. М.: Маши­ностроение, 1977.


Отраслевая методика по определению экономической эффективности использования новой техники, изобретений и рационализаторских предложений.

Сахаров Г. П., Арбузов О. Б., Боровой Ю. Л. и др. Металлорежущие инструменты: Учебник для вузов по специальностям «Технология машиностроения», «Металлорежущие стан­ки и инструменты». М.: Машиностроение, 1989.


Изд. 3-е переработ. Т. 1. Под ред. А. Г. Косиловой и Р. К. Мещерякова. М.: Машиностроение, 1972.

Справочник технолога-машиностроителя. В двух томах.
Изд. 3-е переработ. Т. 2. Под ред. А. Н. Малова. М.: Машино­
строение, 1972.

Таратынов О. В., Земсков Г. Г., Баранчукова И. М. и др.
Металлорежущие системы машиностроительных производств:
Учеб. пособие для студентов технических вузов. М.: Высш.
шк., 1988.

Таратынов О. В., Земсков Г. Г., Тарамыкин Ю. П. и др.
Проектирование и расчет металлорежущего инструмента на
ЭВМ:. Учеб. пособие для втузов. М.: Высш. шк., 1991.

Турчин А. М., Новицкий П. В., Левшина Е. С. и др. Электрические измерения неэлектрических величин. Изд. 5-е, перераб. и доп. Л.: Энергия, 1975.

Худобин Л. В., Гречишников В. А. и др. Руководство к дипломному проектированию по технологи машиностроения, металлорежущим станкам и инструментам: Учеб. пособие для вузов по специальности «Технология машиностроения, метал­лорежущие станки и инструменты». М., Машиностроение, 1986.

Юдин Е. Я., Белов С. В., Баланцев С. К. и др. Охрана труда
в машиностроении: Учебник для машиностроительных вузов.
М.: Машиностроение, 1983.

Методические указания к практическому занятию «Расчет
механической вентиляции производственных помещений»./ Б.
С. Иванов, М.: Ротапринт МАСИ (ВТУЗ-ЗИЛ), 1993.

Методические указания по дипломному проектированию
«Нормативно-техническая документация по охране труда и окружающей среды». Часть 1./ Э. П. Пышкина, Л. И. Леонтьева, М.: Ротапринт МГИУ, 1997.

Методические указания по лабораторной работе «Изучение
устройства и порядка использования средств пожаротушеия»./
Б. С. Иванов, М.: Ротапринт Завода-втуза при ЗИЛе, 1978.

А Дубина. «Машиностроительные расчеты в среде Excel 97/2000.» - СПб.: БХВ – Санкт-Петербург, 2000.

ВВЕДЕНИЕ

Возрождение Российской промышленности первейшая задача укрепления экономики страны. Без сильной, конку­рентоспособной промышленности невозможно обеспечить нормальную жизнь страны и народа. Рыночные отношения, самостоятельность заводов, отход от планового хозяйства диктуют производителям выпускать продукцию пользую­щуюся мировым спросом и с минимальными затратами. На инженерно-технический персонал заводов возложены задачи по выпуску данной продукции с минимальными затратами в кратчайшие сроки, с гарантированным качеством.

Этого можно достичь применяя современные техноло­гии обработки деталей, оборудование, материалы, системы автоматизации производства и контроля качества продук­ции. От принятой технологии производства во многом за­висит надежность работы выпускаемых машин, а также экономика их эксплуатации.

Актуальна задача повышения технологического обес­печения качества производимых машин, и в первую очередь их точности. Точность в машиностроении имеет большое значение для повышения эксплуатационного качества ма­шин и для технологии их производства. Повышение точно­сти изготовления заготовок снижает трудоемкость механи­ческой обработки, а повышение точности механической об­работки сокращает трудоемкость сборки в результате устра­нения пригоночных работ и обеспечения взаимозаменяемо­сти деталей изделия.

По сравнению с другими методами получения дета­лей машин обработка резанием обеспечивает наибольшую их точность и наибольшую гибкость производственного про­цесса, создает возможности быстрейшего перехода от обра­ботки заготовок одного размера к обработке заготовок дру­гого размера.

Качество и стойкость инструмента во многом определя­ют производительность и эффективность процесса обработ­ки, а в некоторых случаях и вообще возможность получения деталей требуемых формы, качества и точности. Повышение качества и надежности режущего инструмента способствуют повышению производительности обработки металлов резани­ем.

Развертка - это режущий инструмент, позволяющий полу­чить высокую точность обрабатываемых деталей. Она являет­ся недорогим инструментом, а производительность труда при работе разверткой высока. Поэтому она широко использу­ется при окончательной обработке различных отверстий деталей машин. При современном развитии машинострои­тельной промышленности номенклатура производимых дета­лей огромна и разнообразие отверстий требующих обра­ботки развертками очень велико. Поэтому перед конструк­торами часто стоит задача разработать новую развертку. По­мочь в этом им может пакет прикладных программ на ЭВМ, рассчитывающий геометрию режущего инструмента и выводящий на плоттере рабочий чертеж развертки.

Последовательность проектирования и методы расче­та режущего инструмента основаны как на общих законо­мерностях процесса проектирования, так и на специфических особенностях, характерных для режущего инструмента. Каж­дый вид инструмента имеет конструктивные особенности, ко­торые необходимо учитывать при проектировании.

Специалисты, которым предстоит работать в металло­обрабатывающих отраслях промышленности, должны уметь грамотно проектировать различные конструкции режущих инструментов для современных металлообрабатывающих систем, эффективно используя вычислительную технику (ЭВМ) и достижения в области инструментального производ­ства.

Для сокращения сроков и повышения эффективности проектирования режущего инструмента используются автома­тизированные расчеты на ЭВМ, основой которых является программно-математическое обеспечение.

Создание пакетов прикладных программ для расчета геометрических параметров сложного и особо сложного ре­жущего инструмента на ЭВМ позволяет резко сократить за­траты конструкторского труда и повысить качество проекти­рования режущего инструмента.

Места, %; Тотд - время на отдых и личные потребности, %; К - коэффициент, учитывающий тип производства; Кз - коэффициент, учитывающий условия сборки. Для общей сборки гидрозамка норма времени: =1,308 мин. Расчет потребного количества сборочных стендов и коэффициентов его загрузки Найдем расчетное количество сборочных стендов, шт. =0,06 шт. Округляем в большую сторону СР=1. ...

Защита атмосферы

В целях защиты атмосферы от загрязнения применяют следующие экозащитные мероприятия:

– экологизация технологических процессов;

– очистка газовых выбросов от вредных примесей;

– рассеивание газовых выбросов в атмосфере;

– соблюдение нормативов допустимых выбросов вредных веществ;

– устройство санитарно-защитных зон, архитектурно-планировочные решения и др.

Экологизация технологических процессов – это в первую очередь создание замкнутых технологических циклов, безотходных и малоотходных технологий, исключающих попадание в атмосферу вредных загрязняющих веществ. Кроме того необходима предварительная очистка топлива или замена его более экологичными видами, применение гидрообеспыливания, рециркуляция газов, перевод различных агрегатов на электроэнергию и др.

Актуальнейшая задача современности – снижение загрязнения атмосферного воздуха отработанными газами автомобилей. В настоящее время ведется активный поиск альтернативного, более «экологически чистого» топлива, чем бензин. Продолжаются разработки двигателей автомобилей, работающих на электроэнергии, солнечной энергии, спирте, водороде и др.

Очистка газовых выбросов от вредных примесей. Нынешний уровень технологий не позволяет добиться полного предотвращения поступления вредных примесей в атмосферу с газовыми выбросами. Поэтому повсеместно используются различные методы очистки отходящих газов от аэрозолей (пыли) и токсичных газо- и парообразных примесей (NО, NО2, SO2, SO3 и др.).

Для очистки выбросов от аэрозолей применяют различные типы устройств в зависимости от степени запыленности воздуха, размеров твердых частиц и требуемого уровня очистки: сухие пылеуловители (циклоны, пылеосадительные камеры), мокрые пылеуловители (скрубберы и др.), фильтры, электрофильтры (каталитические, абсорбционные, адсорбционные) и другие методы для очистки газов от токсичных газо- и парообразных примесей.

Рассеивание газовых примесей в атмосфере – это снижение их опасных концентраций до уровня соответствующего ПДК путем рассеивания пылегазовых выбросов с помощью высоких дымовых труб. Чем выше труба, тем больше ее рассеивающий эффект. К сожалению, этот метод позволяет снизить локальное загрязнение, но при этом проявляется региональное.

Устройство санитарно-защитных зон и архитекгурно-планировочные мероприятия.

Санитарно-защитная зона (СЗЗ) – это полоса, отделяющая источники промышленного загрязнения от жилых или общественных зданий для защиты населения от влияния вредных факторов производства. Ширина этих зон составляет от 50 до 1000 м в зависимости от класса производства, степени вредности и количества выделяемых в атмосферу веществ. При этом граждане, чье жилище оказалось в пределах СЗЗ, защищая свое конституционное право на благоприятную среду, могут требовать либо прекращения экологически опасной деятельности предприятия, либо переселения за счет предприятия за пределы СЗЗ.