20.06.2020

Продольные и поперечные деформации закон гука. Продольные и поперечные деформации


Законы Р. Гука и С. Пуассона

Рассмотрим деформации стержня, представленного на рис. 2.2.

Рис. 2.2 Продольные и поперечные деформации при растяжении

Обозначим через абсолютное удлинение стержня. При растяжении – это положительная величина. Через – абсолютную поперечную деформацию. При растяжении – это отрицательная величина. Знаки и соответственно меняются при сжатии.

Отношения

(эпсилон) или , (2.2)

называют относительным удлинением. Оно положительно при растяжении.

Отношения

Или , (2.3)

называют относительной поперечной деформацией. Она отрицательна при растяжении.

Р. Гук в 1660 г. открыл закон, который гласил: «Каково удлинение, такова сила». В современном написании закон Р. Гука записывается так:

то есть напряжение пропорционально относительной деформации. Здесь – модуль упругости первого рода Э. Юнга – это физическая постоянная в пределах действия закона Р. Гука. Для различных материалов она различна. Например, для стали она равна 2·10 6 кгс/см 2 (2·10 5 МПа), для дерева – 1·10 5 кгс/см 2 (1·10 4 МПа), для резины – 100 кгс/см 2 (10 МПа) и т.д.

Учитывая, что , а , получим

где – продольная сила на силовом участке;

– длина силового участка;

– жесткость при растяжении-сжатии.

То есть абсолютная деформация пропорциональна продольной силе, действующей на силовом участке, длине этого участка и обратно пропорциональна жесткости при растяжении-сжатии.

При подсчете по действию внешних нагрузок

где – внешняя продольная сила;

– длина участка стержня, на котором она действует. В этом случае применяют принцип независимости действия сил*).

С. Пуассон доказал, что соотношение – есть постоянная величина, различная для различных материалов, то есть

или , (2.7)

где – коэффициент С. Пуассона. Это, вообще говоря, отрицательная величина. В справочниках ее значение дается «по модулю». Например, для стали она равна 0,25…0,33, для чугуна – 0,23…0,27, для резины – 0,5, для пробки – 0, то есть . Однако для древесины он может быть и больше 0,5.

Экспериментальное исследование процессов деформации и

Разрушения растянутых и сжатых стержней

Русский ученый В.В. Кирпичев доказал, что деформации геометрически подобных образцов подобны, если подобно расположить действующие на них силы, и что по результатам испытаний небольшого образца можно судить о механических характеристиках материала. При этом, конечно, учитывается масштабный фактор, для чего вводится масштабный коэффициент, определяемый экспериментально.

Диаграмма растяжения малоуглеродистой стали

Испытания производят на машинах разрывного действия с одновременной записью диаграммы разрушения в координатах – сила, – абсолютная деформация (рис. 2.3, а). Затем производят пересчет эксперимента с целью построения условной диаграммы в координатах (рис. 2.3, б).

По диаграмме (рис. 2.3, а) можно проследить следующее:

– до точки справедлив закон Гука;

– от точки до точки деформации остаются упругими, но закон Гука уже не справедлив;

– от точки до точки деформации растут без увеличения нагрузки. Здесь происходит разрушение цементного каркаса ферритовых зерен металла, и нагрузка передается на эти зерна. Появляются линии сдвига Чернова–Людерса (под углом 45° к оси образца);

– от точки до точки – стадия вторичного упрочнения металла. В точке нагрузка достигает максимума, и затем появляется сужение в ослабленном сечении образца – «шейка»;

– в точке – образец разрушается.

Рис. 2.3 Диаграммы разрушения стали при растяжении и сжатии

Диаграммы позволяют получить следующие основные механические характеристики стали:

– предел пропорциональности – наибольшее напряжение, до которого справедлив закон Гука (2100…2200 кгс/см 2 или 210…220 МПа);

– предел упругости – наибольшее напряжение, при котором деформации еще остаются упругими (2300 кгс/см 2 или 230 МПа);

– предел текучести – напряжение, при котором деформации растут без увеличения нагрузки (2400 кгс/см 2 или 240 МПа);

– предел прочности – напряжение, соответствующее наибольшей нагрузке, выдерживаемой образцом за время опыта (3800…4700 кгс/см 2 или 380…470 МПа);

Отношение абсолютного удлинения стержня к его первоначальной длине называетсяотносительным удлинением (– эпсилон) или продольной деформацией. Продольная деформация – это безразмерная величина. Формула безразмерной деформации:

При растяжении продольная деформация считается положительной, а при сжатии – отрицательной.
Поперечные размеры стержня в результате деформирования также изменяются, при этом при растяжении они уменьшаются, а при сжатии – увеличиваются. Если материал является изотропным, то его поперечные деформации равны между собой:
.
Опытным путем установлено, что при растяжении (сжатии) в пределах упругих деформаций отношение поперечной деформации к продольной является постоянной для данного материала величиной. Модуль отношения поперечной деформации к продольной, называемый коэффициентом Пуассона иликоэффициентом поперечной деформации, вычисляется по формуле:

Для различных материалов коэффициент Пуассона изменяется в пределах. Например, для пробки, для каучука, для стали, для золота.

Закон Гука
Сила упругости, возникающая в теле при его деформации, прямо пропорциональна величине этой деформации
Для тонкого растяжимого стержня закон Гука имеет вид:

Здесь - сила, которой растягивают (сжимают) стержень, - абсолютное удлинение (сжатие) стержня, а - коэффициент упругости (или жёсткости).
Коэффициент упругости зависит как от свойств материала, так и от размеров стержня. Можно выделить зависимость от размеров стержня (площади поперечного сечения и длины) явно, записав коэффициент упругости как

Величина называется модулем упругости первого рода или модулем Юнга и является механической характеристикой материала.
Если ввести относительное удлинение

И нормальное напряжение в поперечном сечении

То закон Гука в относительных единицах запишется как

В такой форме он справедлив для любых малых объёмов материала.
Также при расчёте прямых стержней применяют запись закона Гука в относительной форме

Модуль Юнга
Модуль Юнга (модуль упругости) - физическая величина, характеризующая свойства материала сопротивляться растяжению/сжатию при упругой деформации.
Модуль Юнга рассчитывается следующим образом:

Где:
E - модуль упругости,
F - сила,
S - площадь поверхности, по которой распределено действие силы,
l - длина деформируемого стержня,
x - модуль изменения длины стержня в результате упругой деформации (измеренного в тех же единицах, что и длина l).
Через модуль Юнга вычисляется скорость распространения продольной волны в тонком стержне:

Где - плотность вещества.
Коэффициент Пуассона
Коэффициент Пуассона (обозначается как или) - абсолютная величина отношения поперечной к продольной относительной деформации образца материала. Этот коэффициент зависит не от размеров тела, а от природы материала, из которого изготовлен образец.
Уравнение
,
где
- коэффициент Пуассона;
- деформация в поперечном направлении (отрицательна при осевом растяжении, положительна при осевом сжатии);
- продольная деформация (положительна при осевом растяжении, отрицательна при осевом сжатии).

Рассмотрим прямой брус постоянного сечения длиной l, заделанный одним концом и нагруженный на другом конце растягивающей силой Р (рис. 2.9, а). Под действием силы Р брус удлиняется на некоторую величину?l, которая называется полным, или абсолютным, удлинением (абсолютной продольной деформацией).

В любых точках рассматриваемого бруса имеется одинаковое напряженное состояние, и, следовательно, линейные деформации для всех его точек одинаковы. Поэтому значение можно определить как отношение абсолютного удлинения?l к первоначальной длине бруса l, т.е. . Линейную деформацию при растяжении или сжатии брусьев называют обычно относительным удлинением, или относительной продольной деформацией, и обозначают

Следовательно,

Относительная продольная деформация измеряется в отвлеченных единицах. Деформацию удлинения условимся считать положительной (рис. 2.9, а), а деформацию сжатия - отрицательной (рис. 2.9, б).

Чем больше величина силы, растягивающей брус, тем больше, при прочих равных условиях, удлинение бруса; чем больше площадь поперечного сечения бруса, тем удлинение бруса меньше. Брусья из различных материалов удлиняются различно. Для случаев, когда напряжения в брусе не превышают предела пропорциональности, опытом установлена следующая зависимость:

Здесь N - продольная сила в поперечных сечениях бруса;

F - площадь поперечного сечения бруса;

Е - коэффициент, зависящий от физических свойств материала.

Учитывая, что нормальное напряжение в поперечном сечении бруса получаем

Абсолютное удлинение бруса выражается формулой

т.е. абсолютная продольная деформация прямо пропорциональна продольной силе.

Впервые закон о прямой пропорциональности между силами и деформациями сформулировал Р. Гук (в 1660 г.).

Более общей является следующая формулировка закона Гука относительная продольная деформация прямо пропорциональна нормальному напряжению. В такой формулировке закон Гука используется не только при изучении растяжения и сжатия брусьев, но и в других разделах курса.

Величина Е, входящая в формулы, называется модулем продольной упругости (сокращенно - модулем упругости). Эта величина - физическая постоянная материала, характеризующая его жесткость. Чем больше значение Е, тем меньше, при прочих равных условиях, продольная деформации.

Произведение EF называется жесткостью поперечного сечения бруса при растяжении и сжатии.

Если поперечный размер бруса до приложения к нему сжимающих сил Р обозначить b, а после приложения этих сил b+?b (рис. 9.2), то величина?b будет обозначать абсолютную поперечную деформацию бруса. Отношение является относительной поперечной деформацией.

Опыт показывает, что при напряжениях, не превышающих предела упругости, относительная поперечная деформацией прямо пропорциональна относительной продольной деформации е, но имеет обратный знак:

Коэффициент пропорциональности в формуле (2.16) зависит от материала бруса. Он называется коэффициентом поперечной деформации, или коэффициентом Пуассона, и представляет собой отношение поперечной деформации к продольной, взятое по абсолютной величине, т.е.

Коэффициент Пуассона, наряду с модулем упругости Е, характеризует упругие свойства материала.

Величина коэффициента Пуассона определяется экспериментально. Для различных материалов она имеет значения от нуля (для пробки) до величины, близкой к 0,50 (для резины и парафина). Для стали коэффициент Пуассона равен 0,25-0,30; для ряда других метало (чугуна, цинка, бронзы, меди) он имеет значения от 0,23 до 0,36.

Таблица 2.1 Значения модуля упругости.

Таблица 2.2 Значения коэффициента поперечной деформации (коэффициент Пуассона)

Рассмотрим деформации, возникающие при растяжении и сжатии стержней. При растяжении длина стержня увеличивается, а поперечные размеры сокра­щаются. При сжатии, наоборот, длина стержня уменьшается, а поперечные размеры увеличиваются. На рис.2.7 пунктиром показан деформированный вид растянутого стержня.

ℓ – длина стержня до приложения нагрузки;

ℓ 1 – длина стержня после приложения нагрузки;

b – поперечный размер до приложения нагрузки;

b 1 – поперечный размер после приложения нагрузки.

Абсолютная продольная деформация ∆ℓ = ℓ 1 – ℓ.

Абсолютная поперечная деформация ∆b = b 1 – b.

Значение относительной линейной деформации ε можно определить как отношение абсолютного удлинения ∆ℓ к первоначальной длине бруса ℓ

Аналогично находятся поперечные деформации

При растяжении поперечные размеры уменьшаются: ε > 0, ε′ < 0; при сжатии: ε < 0, ε′ > 0. Опыт показывает, что при упругих деформациях поперечная всегда прямо пропорциональна продольной.

ε′ = – νε. (2.7)

Коэффициент пропорциональности ν называется коэффициентом Пуассона или коэффициентом поперечной деформации . Он представляет собой абсолютную величину отношения поперечной деформации к продольной при осевом растяжении

Назван по имени французского учёного, впервые предложившего его в начале XIX века. Коэффициент Пуассона есть величина постоянная для материала в пределах упругих деформаций (т.е. деформаций, исчезающих после снятия нагрузки). Для различных материалов коэффициент Пуассона изменяется в пределах 0 ≤ ν ≤ 0,5: для стали ν = 0,28…0,32; для резины ν = 0,5; для пробки ν = 0.

Между напряжениями и упругими деформациями существует зависимость, известная под названием закон Гука :

σ = Еε. (2.9)

Коэффициент пропорциональности Е между напряжением и деформацией называется модулем нормальной упругости или модулем Юнга. Размерность Е такая же, как и у напряжения. Так же, как и ν, Е – упругая постоянная материала. Чем больше значение Е, тем меньше, при прочих равных условиях, продольная деформация. Для стали Е = (2...2,2)10 5 МПа или Е = (2...2,2)10 4 кН/см 2 .

Подставляя в формулу (2.9) значение σ по формуле (2.2) и ε по формуле (2.5) , получим выражение для абсолютной деформации

Произведение EF называется жёсткостью бруса при растяжении и сжатии .

Формулы (2.9) и (2.10) – это разные формы записи закона Гука, предложенного в середине XVII века. Современная форма записи этого фундаментального закона физики появилась гораздо позже – в начале XIX века.


Формула (2.10) справедлива лишь в пределах тех участков, где сила N и жёсткость EF постоянны. Для ступенчатого стержня и стержня, нагруженного несколькими силами, удлинения подсчитываются по участкам с постоянными N и F и результаты суммируются алгебраически

Если эти величины изменяются по непрерывному закону, ∆ℓ вычисляется по формуле

В ряде случаев для обеспечения нормальной работы машин и сооружений размеры их деталей должны быть выбраны так, чтобы кроме условия прочности обеспечивалось условие жёсткости

где ∆ℓ – изменение размеров детали;

[∆ℓ] – допускаемая величина этого изменения.

Подчёркиваем, что расчет на жёсткость всегда дополняет расчёт на прочность.

2.4. Расчёт стержня с учетом собственного веса

Простейшим примером задачи о растяжении стержня с переменными по длине параметрами является задача о растяжении призматического стержня под действием собственного веса (рис.2.8,а). Продольная сила N x в поперечном сечении этого бруса (на расстоянии x от его нижнего конца) равна силе тяжести нижележащей части бруса (рис.2.8,б), т.е.

N x = γFx, (2.14)

где γ – объёмный вес материала стержня.

Продольная сила и напряжения меняются по линейному закону, достигая максимума в заделке. Осевое перемещение произвольного сечения равно удлинению вышерасположенной части бруса. Поэтому определить его нужно по формуле (2.12), интегрирование вести от текущего значения х до х = ℓ:

Получили выражение для произвольного сечения стержня

При х = ℓ перемещение наибольшее, оно равно удлинению стержня

На рис.2.8,в,г,д приведены графики N x , σ х и u x

Умножим числитель и знаменатель формулы (2.17) на F и получим:

Выражение γFℓ равно собственному весу стержня G. Поэтому

Формула (2.18) может быть сразу получена из (2.10)., если помнить, что равнодействующая собственного веса G должна быть приложена в центре тяжести стержня и поэтому она вызывает удлинение только верхней половины стержня (рис.2.8,а).

Если стержни, кроме собственного веса, нагружены ещё сосредоточенными продольными силами, то напряжения и деформации определяют на основе принципа независимости действия сил отдельно от сосредоточенных сил и от собственного веса, после чего результаты складывают.

Принцип независимости действия сил вытекает из линейной деформируемости упругих тел. Суть его заключается в том, что любая величина (напряжение, перемещение, деформация) от действия группы сил может быть получена как сумма величин, найденных от каждой силы в отдельности.

Изменение размеров, объема и возможно формы тела, при внешнем воздействии на него, называют в физике деформацией. Тело деформируется при растяжении, сжатии или (и), при изменении его температуры.

Деформация появляется тогда, когда разные части тела совершают разные перемещения. Так, например, если резиновый шнур тянуть за концы, то разные его части сместятся относительно друг друга, и шнур окажется деформированным (растянется, удлинится). При деформации изменяются расстояния между атомами или молекулами тел, поэтому возникают силы упругости.

Пусть прямой брус, длиной и, имеющий постоянное сечение, закреплен одним концом. За другой конец его растягивают, прикладывая силу (рис.1). При этом тело удлиняется на величину , которую называют абсолютным удлинением (или абсолютной продольной деформацией).

В любой точке рассматриваемого тела имеется одинаковое напряженное состояние. Линейную деформацию () при растяжении и сжатии подобных объектов называют относительным удлинением (относительной продольной деформацией):

Относительная продольная деформация

Относительная продольная деформация - величина безразмерная. Как правило относительное удлинение много меньше единицы ().

Деформацию удлинения обычно считают положительной, а деформацию сжатия отрицательной.

Если напряжение в брусе не превышает некоторого предела, экспериментально установлена зависимость:

где - продольная сила в поперечных сечениях бруса; S - площадь поперечного сечения бруса; E - модуль упругости (модуль Юнга) - физическая величина, характеристика жёсткости материала. Принимая о внимание то, что нормальное напряжение в поперечном сечении ():

Абсолютное удлинение бруса можно выразить как:

Выражение (5) является математической записью закона Р. Гука, который отражает прямую зависимость между силой и деформацией при небольших нагрузках.

В следующей формулировке, закон Гука используется не только при рассмотрении растяжения (сжатия) бруса: Относительная продольная деформация прямо пропорциональна нормальному напряжению.

Относительная деформация при сдвиге

При сдвиге относительную деформацию характеризуют при помощи формулы:

где - относительный сдвиг; - абсолютный сдвиг слоев параллельных по отношению друг к другу; h — расстояние между слоями; - угол сдвига.

Закон Гука для сдвига записывают как:

где G - модуль сдвига, F - сила, вызывающая сдвиг, параллельная сдвигающимся слоям тела.

Примеры решения задач

ПРИМЕР 1

Задание Каково относительное удлинение стального стержня, если его верхний конец закреплен неподвижно (рис.2)? Площадь поперечного сечения стержня . К нижнему концу стержня прикреплен груз массой кг. Считайте, что собственная масса стержня много меньше, чем масса груза.

Решение Сила, которая заставляет стержень растягиваться, равна силе тяжести груза, который находится на нижнем конце стержня. Эта сила действует вдоль оси стержня. Относительное удлинение стержня найдем как:

где . Прежде чем проводить расчет, следует найти в справочниках модуль Юнга для стали. Па.

Ответ

ПРИМЕР 2

Задание Нижнее основание металлического параллелепипеда с основанием в виде квадрата со стороной a и высотой h закреплено неподвижно. На верхнее основание параллельно основанию действует сила F (рис.3). Какова относительная деформация сдвига ()? Модуль сдвига (G) считайте известным.