09.03.2019

Клапан соленоидный и принципы его работы. Электромагнитный (соленоидный) клапан


Электромагнитный клапан (клапан соленоидный) состоит из следующих основных деталей: корпуса, крышки, мембраны (поршня), пружины, плунжера, штока и электрической катушки (соленоида). Корпуса и крышки клапанов отливают из латуни, нержавеющей стали, чугуна или полимеров: полипропилена, эколона, нейлона и др. Клапаны рассчитаны для использования при различных рабочих средах, давлениях и температурах. Для плунжеров и штоков применяют специальные магнитные материалы. Электрокатушки (соленоиды) для клапанов изготовливают в пылезащищенном или герметичном корпусе. Обмотка катушек выполнена высококачественным эмаль проводом из электротехнической меди. Присоединение к трубопроводу резьбовое или фланцевое. Для подключения к электрической сети используется штекер. Управление осуществляется подачей напряжения (или импульса) на катушку.

Напряжения питания:
Переменного тока, AC: 24В, 110В, 220В;
Постоянного тока, DC: 12В, 24В;
Допуск по напряжению: ± 10%.
Класс защиты: IP65.

Основные рабочие положения:
Клапаны электромагнитные по исполнениям бывают: «НЗ» - нормально закрытые клапаны, «НО» - нормально открытые клапаны и "БС" - бистабильные (импульсные) клапаны, переключающиеся с открытого на закрытое положение по управляющему импульсу.

По принципу действия:
Для различных условий эксплуатации применяют клапаны прямого действия, срабатывающие при нулевом перепаде давлении и пилотные клапаны (непрямого действия) - срабатывающие только при минимальном перепаде давления. Так же электромагнитные клапаны подразделяются на запорные (2/2 ходовые), распределяющие трехходовые (3/2 ходовые), и переключающие клапаны (2/3 ходовые).

Мембраны и уплотнения:
Мембраны клапанов изготовлены из эластичных полимерных материалов специальной конструкции и химического состава - EPDM, NBR, FKM, а уплотнения из PTFE или TEFLON. Так же в конструкции клапанов используются новейшие составы силиконовых резин - VMQ и другие полимеры.

Свойства материалов:

EPDM - Этилен-пропилен-диен-каучук. Недорогой, химически и износостойкий эластичный полимер. Высокая устойчивость к старению и атмосферным воздействиям. Устойчив к кислотам, щелочам, окислителям, соленым растворам, воде, пару низкого давления, нейтральным газам. Неустойчив к бензину, бензолу и углеводородами. Температура применения −40… +140 °С.

NBR - Нитрил-бутадиен-каучук. Распространенный и недорогой эластичный полимер, нейтральный к воздействию бензина, минерального масла, дизельного топлива, растворов щелочей, неорганических кислот, пропана, бутана и воды. Температурный диапазон −30… +100 °С. Разрушается бензолом, окислителями и ультрафиолетом.

FKM - Фторкаучук. Термостойкий и эластичный синтетический полимер. Высокая стойкость к старению, озону и ультрафиолету. Химически устойчивый для кислотных и щелочных сред, нефтепродуктов, для топлива и углеводородов. Применяется для спиртов, воды, воздуха и пара низкого давления при температуре −30… +150 °С. Разрушается эфирами, органическими кислотами.

PTFE - Политетрафторэтилен. Фторполимер, один из самых химически стойких полимерных материалов. Применяется в химической промышленности для кислот и их смесей высокой концентрации, щелочей, растворителей. Устойчив к бензолу, окислителям, маслам и топливам. Используется для агрессивных газов, углеводородов, воздуха, воды и пара. Температурный диапазон −50… +200 °С. Разрушается трифторидом хлора и жидкими щелочными металлами.

TEFLON - Политетрафторэтилен. Запатентованное название фторполимера, на основе PTFE с улучшенными эксплуатационными характеристиками. Рабочая температура применения в диапазоне −50… +250 °С.

Полимеры, устойчивость химических соединений и рабочие среды,
общие технические данные и материалы.

Принцип действия пилотного электромагнитного клапана

Клапан нормально закрытый
В статичном положении напряжение на катушке отсутствует - электро клапан закрыт. Запорный орган (мембрана или поршень, в зависимости от типа клапана) герметично прижат, силой действия пружины и давления рабочей среды к седлу уплотнительной поверхности. Пилотный канал закрыт подпружиненным плунжером. Давление в верхней полости клапана (над мембраной) поддерживается через перепускное отверстие в мембране (или через канал в поршне) и равно давлению на входе в клапан. Клапан электромагнитный находится в закрытом положении, пока катушка не окажется под напряжением.

Для открытия клапана напряжение подается на катушку. Плунжер, под воздействием магнитного поля поднимается и открывает пилотный канал. Так как диаметр пилотного канала больше перепускного, давление в верхней полости клапана (над мембраной) понижается. Под действием разницы давлений, мембрана или поршень поднимается вверх и клапан открывается. Клапан останется в открытом положении, пока катушка находится под напряжением.

Клапан нормально открытый
Принцип действия нормально открытого клапана наоборот - в статичном положении клапан находится в открытом положении, а при подаче напряжения на катушку клапан закрывается. Для удержания нормально открытого клапана в закрытом состоянии, напряжение необходимо подавать на катушку долговременно.

Для правильной работы любых клапанов пилотного действия необходим минимальный перепад давления, ΔP - разница давлений на входе и на выходе клапана. Пилотные клапаны назвают клапанами непрямого действия, т.к. кроме подачи напряжения, необходимо выполнение условия по перепаду давления. Подходит в большинстве случаев, для эксплуатации в системах водоснабжения, отопления, системах ГВС, системах пневмоуправления и др. - везде, где присутствует давление в трубопроводе.

Принцип действия клапана электромагнитного прямого действия

У электромагнитного клапана прямого действия пилотный канал отсутствуют. Эластичная мембрана в центре имеет жесткое металлическое кольцо и через пружину соединена с плунжером. При открытии клапана, под воздействием магнитного поля катушки, плунжер поднимается вверх и снимает усилие с мембраны, которая моментально поднимается и открывает клапан. При закрытии (отсутствии магнитного поля), подпружиненный плунжер опускается и с усилием прижимает мембрану, через кольцо к уплотнительной поверхности.

Для клапана электромагнитного прямого действия, минимальный перепад давления на клапане не требуется, ΔPmin=0 бар. Клапаны прямого действия, могут работать как в системах с давлением в трубопроводе, так и на сливных емкостях, накопительных ресиверах и в других местах, где давление минимально или отсутствует.

Принцип действия бистабильного клапана

Бистабильный клапан имеет два устойчивых положения: "Открыто" и "Закрыто". Переключение между ними осуществляется последовательно, подачей короткого импульса на катушку клапана. Особенностью управления является необходимость подачи импульсов переменной полярности, поэтому бистабильные клапаны работают только от источников постоянного тока. Для удержания открытого или закрытого положения подавать напряжение на катушку не требуется! Конструктивно, бистабильные импульсные клапаны выполнены как пилотные клапаны, т.е. необходим минимальный перепад давления.

Клапан электромагнитный соленоидный (англ. solenoid valve) - это функциональная и надежная трубопроводная арматура. Ресурс работы специальных электромагнитных катушек составляет до 1 миллиона включений. Время, необходимое для срабатывания мембранного магнитного клапана в среднем составляет от 30 до 500 миллисекунд, в зависимости от диаметра, давления и исполнения. Клапаны электромагнитные можно применять как запорные устройства дистанционного управления, так и для безопасности, в качестве отсечных, переключающих или отключающих электроклапанов.

Клапан электромагнитный или как его ещё называют соленоидный клапан это вид запорной арматуры с электромеханическим принципом действия. Он выполняет функции автоматизации и удаленного контроля направления газообразных и жидких рабочих сред на трубопроводе. Дозированная подача необходимого объема потока в момент времени обеспечивается с помощью электромагнитной катушки.

Соленойдный вентиль широко применяется как на бытовом уровне, так и в крупных промышленных системах. При большом диапазоне рабочих температур. электромагнитный вентиль выполняет регулирование потока среды. , .

Принцип работы и конструкция электромагнитного клапана

При производстве электромагнитного клапана применяются материалы, которые соответствуют требованиям ГОСТ и международным стандартам. Соленойдный клапан состоит из следующих элементов:

При этом корпус может изготавливаться из , . убрана в герметичный корпус, а обмотка выполнена из высокопрочной технической меди. Для обеспечения максимальной герметичности для изготовления используются такие материалы как термостойкая резина, силикон, каучук, фторопласт, политетрафторэтилен (PTFE). Нержавеющую маркированную сталь так же используют для производства .

Принцип работы электроклапана основан на работе такого элемента как электромагнитная катушка. Когда постоянный или переменный ток отсутствует на катушке, то под механическом воздействии пружины, мембрана или поршень клапана расположены в седле устройства. Однако при подаче напряжения различной мощности на соленоид, плунжер втягивается внутрь катушки, тем самым обеспечивая открытие или закрытие протокового отверстия. Прекращение подачи напряжения на катушку приводит к закрытию створок. Соленоидный клапан может иметь разные конструктивные особенности которые зависят от его типа.

Типы электромагнитного клапана

Электромагнитные клапаны разделяют по типу рабочего положения, принципу действия, присоединения к трубопроводу, уплотнительной мембраны и уплотнению поршня.

По типу рабочего положения клапаны бывают:

· Поломка индукционной катушки вызывается неправильной мощностью напряжения, которое подаётся на катушку или превышением граничных показателей температуры или давления внутри трубопровода, так же попадание влаги внутрь катушки может вызвать короткое замыкание и сгорание катушки. Данная неисправность устраняется заменой . Так же Вы можете установить , для предотвращения перегрева катушки.

· Если клапан открывается и закрывается не полностью, то это может быть вызвано засорением управляющего отверстия, дефектом мембраны, прокладки или уплотнения поршня, а так же остаточным напряжением на катушке.

Ремонт соленоидного клапана производится квалифицированными специалистами, которые имеют доступ к работе с электросетями.

Производство электромагнитных клапанов осуществляется на специальных заводах трубопроводной арматуры, которые расположены практически в каждой стране мира.

Стоимость соленоидного клапана зависит от его функций, типа конструкции, диаметра, фирмы производителя электромагнитных (соленоидных) клапанов. Наши специалисты могут помочь определить необходимый вид устройства.

Замечателен тем, что может управляться электрическим сигналом, приходящим по проводам. Время срабатывания не превышает полсекунды, что позволяет использовать подобные устройства в качестве автоматизированной быстродействующей трубной запорной арматуры, работающей от сигнализирующих датчиков. Но прежде всего поговорми немного о составе и принципе действия.

Клапан соленоидный образуют бронзовый корпус с каналом и соленоид с разделенным сердечником в виде неподвижного стержня и штока, заключенных в герметичную гильзу. Последний соединяется с мембраной посредством плунжера. Пара пружин регулирует плавность хода подвижной части. Плунжер чаще всего снабжается осевым отверстием с боковой проточинкой. Оно выравнивает давления, действующие на мембрану с обеих сторон. Вследствие этого клапан соленоидный переключается минимальным усилием из открытого состояния в закрытое и наоборот. Соленоид ввинчивается в корпус с уплотнительным кольцом по периметру. Мембрана ложится при этом на седло, образуемое каналом тока жидкости. Верхняя часть сердечника содержит неподвижный элемент и оборудована экранирующей катушкой. Это необходимо для улучшения свойств во внутреннем пространстве гильзы и предотвращения вибраций при питании устройства переменным током.

Каждому, думается, знаком гул проводов под линиями электропередач — это и есть следствие вибраций, вызванных переменным напряжением. Проходной канал перекрывается мембраной с якорем из подвижной части сердечника соленоида — проволочной катушки. В нормальном состоянии проход для жидкости может быть свободным, а может быть и блокирован. В зависимости от этого клапан соленоидный может быть:

    нормально открытым;

    нормально закрытым.

Нормальное состояние в этом случае — исходное, когда внешнее напряжение отсутствует. Блокирующий сердечник приводится в движение электрическим током, подаваемым на внешнюю обмотку соленоида. Как только на электроды подается управляющее напряжение, металлический шток, связанный с диафрагмой, приводит ее в действие. Тогда путь для протекания среды через клапан блокируется или открывается. Лишь только внешний сигнал исчезает, система возвращается в исходное состояние.

Соленоидный клапан, принцип работы которого основан на смешении двух входных потоков в один выходной или отведении части входного потока, имеет более двух раструбов для подсоединения труб.

В зависимости от числа входов и выходов различают модели:

    двухходовые;

    трехходовые;

    четырехходовые.

Если первая разновидность предназначена непосредственно для работы в качестве запорной арматуры, то более сложные модификации позволяют решать достаточно специфические задачи. При возникновении определенных условий часть потока спускается в ответвление. Либо же осуществляется перемешивание двух потоков в определенных пропорциях. Клапан соленоидный трехходовый можно использовать для поддержания заданной температуры в контуре горячей воды или отопления. При слишком высокой температуре водный трафик через котел будет блокироваться. И наоборот, снижение температуры ниже заданной точки приведет к тому, что основная часть воды непременно будет нагреваться.

Любая электрическая машина работает благодаря наличию многих специальных деталей. Предлагаем рассмотреть, что такое нормально закрытый соленоидный клапан, его принцип действия и где его купить.

Общие сведения

Электромагнитный соленоидный водяной или газовый клапан – это электромеханическое устройство, предназначенное для контроля потока жидкости или газа в приборах мощностью до v308 (EV220B, Tecofi, Castel, ESM, EVR, GBP, GBV, NBR, PARKER, SCE, SYDZ, АКПП, КСВМ, ЗСК, ИСП, Burkert, КСП). Данный клапан управляется с помощью электрического тока, который пропускает катушка. При подаче тока, создается магнитное поле и заставляет двигаться поршень внутри катушки. В зависимости от конструкции, поршень откроется при подаче электричества, либо закроется пропускной кран. Когда ток перестанет поступать катушке клапана, он вернется к своему обычному состоянию.

Фото – Соленоидный клапан danfoss

Механизмы бывают :

  • прямого и непрямого типа действия;
  • вакуумный, гидравлический, пневматический клапан;
  • 2-, 3-, много-ходовой.

Электрические клапаны прямого действия открывают и закрывают отверстие внутри клапана. В опытно-управляемых клапанах (их еще называют запорный прибор), поршень, открывает и закрывает отверстие. В клапанах высокого давления (к примеру, фланцевый клапан) используются поршни и специальные уплотнители, которые контролируют состояние отверстия.

Видео: соленоидные клапаны Danfoss

Описание конструкции стандартного устройства

Наиболее простой соленоидный электромагнитный клапан имеет два порта: на входе и выходе. Дополнительно может быть три или более портов.

Фото – Конструкция соленоидного клапана

Вода или газ поступает через входное отверстие (2). Любое вещество должно проходить через отверстие бака (9), прежде чем поступить в выходное отверстие (3). Выходное отверстие закрыто поршнем (7).

Электроклапан на фото выше – это нормально закрытый соленоидный электромагнитный клапан типа ASCO, ТОРК или Данфосс (Danfoss). Работает он следующим образом: данные устройства соединены с пружиной (8), которая давит на поршень против открытия проходного сечения. Уплотнительный материал на кончике поршня содержит защиту (прокладку) от попадания в отверстия воды или газа, до тех пор, пока поршень поднимается с помощью электромагнитного поля, создаваемого катушки. Схема демонстрирует работу стандартного.


Фото – Соленоидный клапан

Есть много вариаций конструкции клапана. Обычные клапаны могут иметь множество портов и поршней. Двухходовой клапан непрямого действия (обратный) имеет 2 порта – EV1140, ДУ50, ДУ32, ДУ100, ДУ15, ДУ25, серия РУ16; если клапан открыт, два порта подключены и жидкость перемещается между ними; если клапан закрыт, то порты находятся в изоляции. Если клапан открыт, то соленоид не под напряжением, затем клапан называется нормально разомкнутый (Н.Р.). Аналогично, если клапан закрыт, то соленоид не под напряжением, такой клапан называется нормально замкнутый, скажем, YCD21, YCPS31, YCWS1. Есть также трех портовые и более сложных конструкций устройства, у них обозначение имеет вид 30 (3, 33, и т.д.). Трехходовой клапан имеет 3 порта для управления электроприводом; он соединяет один порт, либо два из них (как правило, порт поступления и выхлопной канал).

Небольшой электромагнитный клапан можете создать ограниченную силу. Примерное соотношение между необходимыми электромагнитными силами Fs, давлением жидкости P и площадью отверстия A для клапана прямого действия имеет значение:

Fs = P*A = P*pi *d 2 / 4

Где d – диаметр отверстия.

В некоторых электромагнитных клапанах электромагнитные силы действуют непосредственно на главную арматуру. Другие используют небольшие, полные электромагнитные клапаны, известные как пилотируемые. Пилотируемые клапаны требуют гораздо меньше энергии, но они намного медленнее. Такие соленоиды, как правило, нуждаются в полной мощности все время, чтобы полностью открыться и удерживать такое положение.

Конструкция и назначение пилотируемого клапана

Газовый отсечной пилотный клапан SCE238A002 (200 бар), Немен, VIKING, SPOOL, JOUCOMATIC, ЭВЕЛЕН, SMART TORK, состоит из двух основных частей: пропускного устройства и клапана прямого действия. Пропускной механизм преобразует электрическую энергию в механическую, которая, в свою очередь, открывает или закрывает деталь. В клапане прямого действия осуществляется управление потоком жидкости или газа.

Фото – Электромагнитный клапан

Электромагнитные клапаны могут использовать металлические пломбы или резиновые уплотнители, также его легко контролировать. Пружина используется для хранения клапана нормально разомкнутым или сомкнутым, в то время, когда он не используется.

Вода под давлением поступает в камеру. Входное отверстие представляет собой эластичную мембрану, а над ней расположена пружина, толкающая её вниз. Диафрагма имеет отверстие, проходящее через центр, оно позволяет контролировать количество воды, зачастую пропускается очень малая часть. Эта вода заполняет полости на другой стороне диафрагмы, так что давление одинаково по обе стороны клапана.

После того, как диафрагма закрывается клапаном, давление на выходе дна уменьшается, и большее давление держит клапан закрытым. Таким образом, пружина не имеет отношения к закрытию или открытию клапана.

Если ток проходит через мембранный соленоид, вода в камере вытекает через прямой проход быстрее, чем пополняется камера. Входящее давление поднимает диафрагму.

Когда соленоид снова выключается, проход закрыт пружиной, нужно очень мало сил, чтобы толкнуть диафрагму вниз, главный клапан снова закрывается. На практике часто отсутствует отдельная пружина; эластомера диафрагмы адаптирована так, что работает, как собственный источник, в основном в закрытой форме.

Фото – Соленоидные клапаны Sirai

Из объяснения видно, что этот тип клапана зависит от перепада давления между входом и выходом, так как для его работы давление на входе должно быть всегда больше, чем давление на выходе. Если давление на выходе, по любой причине, выше входного, клапан слишком быстро откроется, чтобы этого не допустить разница размеров должна быть не больше половины дюйма.

Для усиления давления часто используется пластиковый уплотнитель, который закрепляется в районе входящего отверстия.

Способ подключения у каждого прибора немного отличается, поэтому очень рекомендуем при покупке прочитать сертификат, проверить паспорт определенной модели. Инструкция подробно описывает монтаж каждого отдельного клапана.

Область применения

Область применения напрямую зависит от материала клапаны. Деталь, основной материал которой латунь, не применяется в агрессивных средах, скажем, для контроля дизельного топлива, жидкости с кислотной основой.

Электромагнитные клапаны используются в для контроля гидравлики и пневматических систем, для управления цилиндрами или крупных промышленных клапанов с большим диаметром.

Фото – Двухходовой соленоидный клапан

Чаще всего производство использует клапан для механизмов и устройств, где необходимо ограниченное поступление воды, газа, воздуха, т.д. – стиральная машина, посудомоечная установка, контроль системы отопления. Импульсный клапан двойного типа действия используется как устройство для подачи воздуха и воды в стоматологических кабинетах, для полива земли, подпитки разнообразных приборов при помощи дизтоплива, контроля работы машины с газовой мини-установкой и даже для холодильника.

Обзор цен

Купить соленоидный воздушный, дренчерный или газовый клапан мощностью до 380 вольт в России, Украине, Беларуси, можно в любом специализированном магазине. Вы найдете устройства такого типа: фреона, Хонда, СВМ, CEME (СЕМЕ), СКН для разнообразных установок. Каждый производитель предлагает свой прайс-лист, мы собрали средние цены на клапаны производства России, Италии, Германии и стран СНГ:

Все фирмы предоставляют гарантию на свою продукцию год, продажа осуществляется в официальных дилерских магазинах.

Соленоидный вентиль (магнитный) - это прибор для автоматического регулирования потока жидкости или пара. Он устанавливается на рассольных, водяных, жидкостных и паровых трубопроводах для регулирования подачи жидкого или парообразного хладагента (аммиака, фреона). Вентиль может быть полностью открыт или закрыт.

Имеются различные конструкции соленоидных вентилей, но все они работают по одной и той же схеме и состоят из катушки и сердечника, связанного с разгрузочными и основными клапанами вентиля. Соленоидные вентили бывают поршневыми и мембранными .

В корпусе (1) поршневого соленоидного вентиля СВФ-40 (рис. 1) находятся седло (2) клапана и втулка (3), в которой расположен основной клапан (4) в виде поршня. В торец основного клапана ввернуто разгрузочное седло (13) управляющего клапана (10). В крышке (6) помещен соленоид (8) с втулкой (9) из немагнитной стали и сердечник (7). Управляющий клапан (10) и сердечник свободно соединены стержнем с гайкой (5). При включении электрического тока в катушке возникает магнитное поле, под действием которого сердечник (7) втягивается, поднимая клапан (10). При этом открывается отверстие в разгрузочном седле (13), полости вентиля над клапаном и под клапаном соединяются и давления в них выравниваются. При дальнейшем втягивании сердечника основной клапан (4) поднимается над седлом (2) и вентиль открывается.

Рис. 1 - Соленоидный вентиль СВФ-40

При выключении тока стержень сердечника вместе с управляющим клапаном под действием силы тяжести опускается, отверстие в разгрузочном седле закрывается. Через зазор между наружной поверхностью основного клапана (4) и втулкой (3), а также через специальную канавку на поверхности клапана жидкость проходит в полость над клапаном. Давление в этой полости повышается, клапан опускается на седло (2) и вентиль закрывается. Плотное закрытие клапанов обеспечивается резиновыми прокладками (11) и (12). Внизу размещен винт ручного управления (15) с сальником (14), закрытый колпаком (16). На рисунке 2 показан поршневой соленоидный вентиль холодильной установки рефрижераторного подвижного состава.

Рис. 2 - Схема поршневого соленоидного вентиля: 1 - клапан; 2 и 6 - седла; 3 и 4 - кольцевые опорные гильзы; 5 - корпус вентиля; 7 - соединительный штуцер; 8 и 12 - кольца; 9 - направляющая втулка; 10 - кожух; 11 - пружина; 13 - нажимная шайба; 14 - корпус электромагнитной катушки; 15 - крышка корпуса; 16 - шпилька; 17 - колодка выводов катушки; 18 - пробка; 19 - электромагнитная катушка; 20 - сердечник катушки; 21 - контргайка; 22 - шток; 23 - распорная втулка; 24 - сетчатый фильтр; 25 - резиновая прокладка; 26 - болт; 27 - нижняя крышка; 28 - шпиндель; 29 - колпачок; 30 - корпус сальника

Фирмы «Данфосс» (рис. 3) состоит из следующих основных частей: корпуса (1), резиновой мембраны (19) с пружиной и электромагнитного клапана управления.

При обесточенной катушке (10) вентиль закрыт. Давление в полостях на входе вентиля и над мембраной одинаковое, так как полости эти соединены через отверстие с уравнительным соплом (6). Поверхность мембраны больше поверхности седла (3), поэтому давление над мембраной способствует плотному закрытию отверстия в седле. Пружина (4) дополнительно содействует прижатию мембраны к седлу, обеспечивая таким образом плотное закрытие вентиля даже при одинаковом давлении на входе и выходе.

Рис. 3 - Мембранный соленоидный вентиль

Если на катушку (10) подать напряжение, якорь (8) втянется внутрь нее и полость над мембраной соединится с полостью на выходе вентиля через отверстие (7). Это приведет к понижению давления над мембраной, она в этом случае поднимется и вентиль откроется. При выключении тока якорь (8) опускается и закрывает отверстие (7). Давление над мембраной со стороны входа увеличивается и вентиль закрывается.

Катушка помещена в кожух (9), который имеет крышку с винтом (11). Винт ручного управления (2) закрыт колпачком (20). В приборе имеются направляющая втулка (5), кольцо короткого замыкания (12), пластинчатая пружина (13) и направляющая пластина (14). Втулка сердечника (17) прикреплена винтами (16) через уплотнительное кольцо (18). Кабель проходит через предохранительный штуцер (15). Корпус вентиля изготовлен из красной латуни, якорь - из нержавеющей стали, седло и мембрана - из резины. Такие соленоидные вентили применяют на рассольных и водяных трубопроводах.

Соленоидные вентили используют в качестве запорного механизма на трубопроводах холодильных установок рассольной системы. Хладоновые вентили устанавливают на трубопроводах жидкого хладона, байпасных линиях и трубопроводах оттаивания снеговой «шубы» на воздухоохладителе.

Хладоновый соленоидный вентиль СВМ-15 (рис. 4, а), применяемый в 5-вагонных секциях БМЗ на жидкостной и байпасной линиях (проходной, мембранный, бессальниковый, с разгрузочным золотником, с условным проходом 15 мм), рассчитан на рабочее давление 15,7·10 5 Па. Он состоит из корпуса (1), запорного механизма с мембраной, электромагнитного и ручного приводов. Запорный механизм включает в себя золотник (2), в кольцевой паз которого завулканизирован резиновый вкладыш (3), фильтрующую шайбу (4) с мембраной (5) из прорезиненного капрона и грибок (6), который прикреплен к фильтрующей шайбе. Электромагнитный привод вентиля состоит из катушки (7), кожуха (8), прикрепленного к резиновой шайбе на корпусе гайкой-колпачком, сердечника, разделительной трубки (10), сваренной с упором (11) и предохраняющей катушку от действия хладона. Ручной привод представляет собой винт (12), помещенный с сальником (13) в штуцер корпуса и закрытый колпачком (14).

Для работы соленоидного вентиля необходимо, чтобы давление на входе в вентиль было больше давления на выходе, т. е. чтобы был перепад давлений. В первоначальном положении, когда электромагнит не включен, разгрузочное отверстие в золотнике (2) закрыто резиновым уплотнением сердечника (9). Давление хладона, поступающее через отверстие в фильтрующей шайбе (4) и грибке (6) в надмембранную полость, прижимает золотник (2) к седлу - вентиль закрыт.

Рис. 4 - Хладоновые соленоидные вентили типа СВМ (а) и типа EV1D-10 (б)

При включении тока электромагнит притянет сердечник (9), разгрузочное отверстие откроется и хладон из надмембранной полости через золотник перейдет в подзолотниковую полость. На мембрану будет действовать разность давлений, благодаря чему она поднимется вместе с золотником (2) до упора и откроет основной проход. При выключении тока сердечник электромагнита перекроет разгрузочное отверстие, давление в надмембранной полости повысится, и разность давлений начнет действовать в обратную сторону - вентиль закроется.

Хладоновый соленоидный вентиль EV1D-10 (рис. 4, б), применяемый в рефрижераторных вагонах постройки ГДР, также работает за счет перепада давлений. При подаче напряжения на катушку (7) сердечник (9) втягивается, поднимая клапан (15). Давление в полости над мембраной понижается. Мембрана поднимается вверх и открывает основной проход. Короткозамкнутое медное кольцо (16), находящееся в головке, обхватывает часть магнитопровода и устраняет вибрацию (гудение) сердечника в верхнем положении. При отключении электромагнита сердечник (9) опускается и закрывает разгрузочное отверстие (19). Давление над мембраной благодаря капиллярным отверстиям (17) в ней повышается, и мембрана плотно садится на гнездо (18).