08.03.2019

Потеря пара и конденсата, их пополнение. Технологические процессы и оборудование ТЭС


Потери в системах конденсации пара

    А. Пролетный пар , вызываемый отсутствием или отказом конденсатоотводчика (к.о.). Самым существенным источником потерь является пролетный пар. Классическим примером неверно понимаемой системы является преднамеренный отказ от установки к.о. в так называемых закрытых системах, когда пар всегда где-то конденсируется и возвращается в котельную.
В этих случаях отсутствие видимых утечек пара создает иллюзию полной утилизации скрытой теплоты в паре. Фактически же скрытая теплота в паре, как правило, не выделяется вся на теплообменных агрегатах, а ее значительная часть расходуется на нагрев конденсатопровода или выбрасывается в атмосферу вместе с паром вторичного вскипания. Конденсатоотводчик позволяет полностью утилизировать скрытую теплоту в паре при данном давлении. В среднем потери от пролетного пара составляют 20-30%.

Б. Утечки пара , вызываемые периодической продувкой систем пароиспользования (СПИ), при нерегулируемом отводе конденсата, неправильно выбранном к.о. или его отсутствии.

Данные потери особенно велики при пуске и прогреве СПИ. «Экономия» на к.о. и их установка с недостаточной пропускной способностью, необходимой для автоматического отвода повышенного объема конденсата, приводят к необходимости открытия байпасов или сбросу конденсата в дренаж. Время прогрева систем увеличивается в несколько раз, потери очевидны. Поэтому к.о. должен иметь достаточный запас по пропускной способности, чтобы обеспечить отвод конденсата при пусковых и переходных режимах. В зависимости от типов теплообменного оборудования запас по пропускной способности может составлять от 2-х до 5.

Чтобы избежать гидроударов и непроизводительных ручных продувок, следует обеспечивать автоматический дренаж конденсата при остановах СПИ или при колебаниях нагрузок с помощью установки к.о. с разными диапазонами рабочих давлений, промежуточных станций сбора и перекачки конденсата или принудительной автоматической продувки теплообменных агрегатов. Конкретная реализация зависит от фактических технико-экономических условий. В частности, следует иметь в виду, что к.о. с перевернутым стаканом при перепаде давления, превышающим его рабочий диапазон, закрывается. Поэтому схема автоматического дренажа теплообменника при падении давления пара, приведенная ниже, является просто реализуемой, надежной и эффективной.

Следует иметь в виду, что потери пара через нерегулируемые отверстия непрерывны, и любые средства имитации к.о. нерегулируемыми устройствами типа «прикрытый вентиль», гидрозатвор и т.п. в конечном итоге приводят к большим потерям, чем первоначальный выигрыш. В табл.1 приведен пример количества пара, безвозвратно теряемого за счет утечек через отверстия при различных давлениях пара.


    Таблица 1. Утечки пара через отверстия различного диаметра

    Давление. бари

    Условный диаметр отверстия

    Потери пара, тонн / мес

    21/8" (3.2 мм)

    ¼" (6.4 мм)

    15.1

    ½" (25 мм)

    61.2

    81/8" (3.2 мм)

    11.5

    ¼" (6.4 мм)

    41.7

    ½" (25 мм)

    183.6

    105/64" (1.9 мм)

    #38 (2.5 мм)

    14.4

    1/8" (3.2 мм)

    21.6

    205/64" (1.9 мм)

    16.6

    #38 (2.5 мм)

    27.4

    1/8" (3.2 мм)

    41.8

В. Невозврат конденсата при отсутствии системы сбора и возврата конденсата.

Неконтролируемый сброс конденсата в дренаж не может быть оправдан ничем, кроме как недостаточным контролем за водоотведением. Затраты на химводоподготовку, забор питьевой воды и тепловая энергия в горячем конденсате учтены в расчете потерь, представленном на сайте:

Исходные данные для расчета потерь при не возврате конденсата приняты следующие: стоимость холодной воды на подпитке, химикатов, газа и электроэнергии.
Следует иметь в виду также потерю внешнего вида зданий и, более того, разрушение ограждающих конструкций при постоянном «парении» дренажных точек.

Г. Присутствие воздуха и неконденсируемых газов в паре

Воздух, как известно, обладает отличными теплоизоляционными свойствами и по мере конденсации пара может образовывать на внутренних поверхностях теплообмена своеобразное покрытие, препятствующее эффективности теплообмена (табл.2).

Табл. 2. Снижение температуры паровоздушной смеси в зависимости от содержания воздуха.

    Давление Температура насыщенного пара Температура паровоздушной смеси в зависимости от количества воздуха по объему, °С

    Бар абс.

    °С

    10%20%30%

    120,2

    116,7113,0110,0

    143,6

    140,0135,5131,1

    158,8

    154,5150,3145,1

    170,4

    165,9161,3155,9

    179,9

    175,4170,4165,0


Психрометрические диаграммы позволяют определить процентное отношение количества воздуха в паре при известном давлении и температуре путем нахождения точки пересечения кривых давления, температуры и процентного содержания воздуха. Например, при давлении в системе 9 бар абс. и температуре в теплообменнике 160 °С по диаграмме находим, что в паре содержится 30% воздуха.

Выделение СО2 в газообразной форме при конденсации пара ведет при наличии влаги в трубопроводе к образованию крайне вредной для металлов угольной кислоты, которая является основной причиной коррозии трубопроводов и теплообменного оборудования. С другой стороны, оперативная дегазация оборудования, являясь эффективным средством борьбы с коррозией металлов, выбрасывает СО2 в атмосферу и способствует формированию парникового эффекта. Только снижение потребления пара является кардинальным путем борьбы с выбросами СО2 и рациональное применение к.о. является здесь наиболее эффективным оружием. Д. Неиспользование пара вторичного вскипания .


При значительных объемах пара вторичного вскипания следует оценивать возможность его непосредственного использования в системах, имеющих постоянную тепловую нагрузку. В табл. 3 приведен расчет образования пара вторичного вскипания.
Пар вторичного вскипания является следствием перемещения горячего конденсата под высоким давлением в емкость или трубопровод, находящийся под меньшим давлением. Типичным примером является "парящий" атмосферный конденсатный бак, когда скрытая теплота в конденсате высокого давления высвобождается при более низкой температуре кипения.
При значительных объемах пара вторичного вскипания следует оценивать возможность его непосредственного использования в системах, имеющих постоянную тепловую нагрузку.
На номограмме 1 приведена доля вторичного пара в % от объема конденсата, вскипающего в зависимости от перепада давлений, испытываемого конденсатом. Номограмма 1. Расчет пара вторичного вскипания.
Е. Использование перегретого пара вместо сухого насыщенного пара.

Если технологические ограничения не требуют использования перегретого пара высокого давления, следует всегда стремиться к применению насыщенного сухого пара возможно самого низкого давления.
Это позволяет использовать всю скрытую теплоту парообразования, которая имеет более высокие значения при низких давлениях, добиться устойчивых процессов теплопередачи, снизить нагрузки на оборудование, увеличить срок службы агрегатов, арматуры и трубных соединений.
Применение влажного пара имеет место, как исключение, только при его использовании в конечном продукте, в частности, при увлажнении материалов. Поэтому целесообразно использовать в таких случая специальные средства увлажнения на последних этапах транспортировки пара к продукту.

Ж. Невнимание к принципу необходимого разнообразия
Невнимание к разнообразию возможных схем автоматического управления, зависящих от конкретных условий применения, консерватизм и стремление использовать типовую схему может быть источником непреднамеренных потерь.

З. Термоудары и гидроудары.
Термо- и гидроудары разрушают системы пароиспользования при неправильно организованной системе сбора и отвода конденсата. Использование пара невозможно без тщательного учета всех факторов его конденсации и транспортировки, влияющих не только на эффективность, но и на работоспособность, и на безопасность ПКС в целом.

Возможно, я со временем перепишу этот важный раздел. А пока постараюсь отразить хотя бы некоторые основные моменты.

Обычная для нас, наладчиков, ситуация заключается в том, что, приступая к очередной задаче, мы слабо представляем то, что будет или должно быть в конце. Но всегда нам нужна хотя бы какая-то начальная зацепка, чтобы не упасть в растерянность, а уточняя и обретая детали, организовывать движение вперед.

С чего нам следует начать? Видимо, с понимания того, что скрыто под термином потери пара и воды. На ТЭС есть группы учета, которые и ведут учет этих потерь и вам надо знать терминологию, чтобы иметь с ними продуктивный контакт.

Представим, что ТЭС отдает 100 т пара сторонним потребителям (скажем, некому бетонному заводу и/или заводу химического волокна), а получает от них возврат этого пара в виде так называемого производственного конденсата в размере 60 т. Разница в 100-60=40 т называется невозврат. Этот невозврат покрывается добавком подпиточной воды, который вводится в цикл ТЭС через рассечку между ПНД (подогреватели низкого давления), реже - через деаэраторы или, еще реже, как-то еще.

Если в цикле ТЭС есть потери пара и воды, - а они есть всегда и, как правило, немалые, - то размер добавка подпиточной воды равен невозврату плюс потери теплоносителя в цикле ТЭС. Скажем, размер добавка равен 70 т, невозврат - 40 т. Тогда потери, определяемые как разность между добавком и невозвратом, составят 70-40=30 т.

Если вы усвоили эту нехитрую арифметику, а я в этом не сомневаюсь, то продолжим наше продвижение вперед. Потери бывают внутристанционные и какие-то еще. Четкого разделения этих понятий в группе учета может и не быть по причине сокрытия в отчетности истинной причины этих потерь. Но логику разделения я постараюсь пояснить.

Обычное дело, когда станция отпускает тепло не только с паром, но и через бойлера с сетевой водой. В тепловой сети происходят потери, которые приходится восполнять подпиткой теплосети. Скажем, на подпитку теплосети идет 100 т воды с температурой 40 оС, которая предварительно направляется в деаэратор 1.2ата. Чтобы продеаэривовать эту воду, ее следует догреть до температуры насыщения при давлении 1.2 кгс/см2, а на это потребуется пар. Энтальпия нагреваемой воды составит 40 ккал/кг. Энтальпия нагретой воды согласно таблицам Вукаловича (Термодинамические свойства воды и водяного пара) составит на линии насыщения при давлении 1.2 кгс/см2 104 ккал/кг. Энтальпия пара, идущего на деаэратор, составляет примерно 640 ккал/кг (это значение можно уточнить в той же группе учета). Пар, отдав свое тепло и сконденсировавшись, будет также иметь энтальпию нагретой воды - 104 ккал/кг. Вам, как мастерам балансов, совсем не сложно записать очевидное соотношение 100*40+Х*640=(100+Х)*104. Откуда расход пара на догрев подпиточной воды в деаэраторе 1.2ата составит Х=(104-40)/(640-104)=11.9 т или 11.9/(100+11.9)=0.106 т пара на 1 т подпиточной воды после деаэратора 1.2ата. Это, так сказать, законные потери, а не результат дефектной работы обслуживающего персонала.

Но раз уж мы увлеклись тепловым расчетом, то развяжем еще один подобный узелок. Скажем есть у нас 10 т продувочной воды энергетических котлов. Это тоже почти законные потери. Чтобы сделать эти потери еще более законными, выпар из расширителей непрерывной продувки нередко возвращается в цикл ТЭС. Для определенности предположим, что давление в барабанах котлов составляет 100 кгс/см2, а давление в расширителях - 1 кгс/см2. Схема здесь такая: продувочная вода с энтальпией, отвечающей линии насыщения при давлении 100 кгс/см2, поступает в расширители, где вскипает и образует пар и воду с энтальпиями, отвечающими линии насыщения при давлении 1 кгс/см2. То, что сбрасывается после расширителей, и есть еще одни "законные" потери воды.

По таблицам Вукаловича находим: энтальпия продувочной воды - 334.2 ккал/кг; энтальпия воды после расширителей непрерывной продувки - 99.2 ккал/кг; энтальпия пара из расширителей - 638.8 ккал/кг. И снова мы сооружаем по-детски несложный баланс: 10*334.2=Х*638.8+(10-Х)*99.2. Откуда находим количество образовавшегося пара Х=10*(334.2-99.2)/(638.8-99.2)=4.4 т. Потери продувочной воды составят 10-4.4=5.6 т или 0.56 т на 1 т продувочной воды. При этом в цикл возвращается 4.4*638.8*1000 ккал или 4.4*638.8/(10*334.2)=0.84 ккал на каждую ккал, продувочной воды.

Теперь подойдем к котлу, к тому месту, к которому чаще всего приходится подходить, - к пробоотборным точкам. Хорошо ли отрегулированы расходы по этим точкам? Вроде бы норма расхода на уровне 0.4 л/мин, но реально это будет, пожалуй, не менее 1 л/мин или 0.001*60=0.06 т/ч. Если на котле, скажем, 10 таких пробоотборных точек, то мы будем иметь 0.6 т/ч потерь теплоносителя только с одного котла. А если точки парят, "плюются" и т.п.? А есть еще и разные импульсные линии на приборы, где тоже могут быть потери по технологии или из-за неплотностей этих линий. А еще могут быть на котлах установлены концентраторы-солемеры. Это просто кошмар, сколько могут они отбирать на себя воды. И это все "законные" или назовите их как угодно иначе потери пара и воды.

Далее вам в группе учета, или у нач. ПТО, или у главного инженера подскажут, что есть еще потери пара на собственные нужды. Обычное дело, пар производственного отбора (есть такой на турбинах) идет на нужды мазутохозяйства. Есть довольно жесткие нормы на эти нужды, а конденсат пара должен возвращаться в цикл. Ни то, ни другое из этих требований обычно не выдерживается. А могут быть и еще "законные" потери на баню, на оранжерею или на что-то еще.

Бак низких точек... Это, нередко, одна из главных составляющих питательной воды. Если вода в баке загрязнена сверх предела, то химики не дают добро на использование этой воды. И это тоже потери или, как выразился уважаемый Борис Аркадиевич, внутренний невозврат. Может по тем или иным причинам не использоваться возвращаемый от внешнего потребителя производственный конденсат и этот факт может не регистрироваться в группе учета.

Когда вы со всем этим при необходимости разберетесь, то останется еще 5-6% каких-то непонятных, необъяснимых потерь. Может быть меньше, а может быть и побольше, в зависимости от уровня эксплуатации на конкретной ТЭС. Где же искать эти потери? Надо, так сказать, идти по ходу пара и воды. Протечки, парения и прочие подобного рода "мелочи" могут составить существенную величину, превосходящую по размерам рассмотренные нами потери на пробоотборных точках пара и воды. Однако все, о чем мы до сих пор здесь говорили, может быть более или менее очевидным для персонала ТЭС и без наших объяснений. Поэтому продолжим наш мысленный путь по ходу пара и воды.

Куда поступает вода? В котлы, в баки, в деаэраторы. Потери через неплотности в котлах это тоже, наверное, не новый для эксплуатации вопрос. А вот о переливах в баках и деаэраторах могут и забыть. А здесь неконтролируемые потери могут составить более, чем существенную величину.

Окрыленные первым успехом, давайте продолжим наш путь по ходу пара. Куда поступает пар с точки зрения интересующего нас предмета? На разные клапаны, уплотнения, в деаэраторы 1.2 и 6 ата... Клапаны, как и все у нас, работают не идеально. Иначе говоря, парят всюду, где они есть, в т.ч. и в деаэраторах. Эти парения попадают в выхлопные трубы, которые выводятся на крышу главного корпуса ТЭС. Если вы подыметесь на эту крышу в зимнее время, то возможно обнаружите там производственный туман. Может быть вы замеряете расходы пара из труб с помощью тахометра и найдете, что этого пара достаточно, чтобы организовать на крыше оранжерею или зимний сад.

Однако непонятные и невыясненные потери все же остаются. И однажды при обсуждении этого вопроса главный инженер, или начальник турбинного цеха, или кто-то еще вспоминает, что у нас (т.е. у них) пар используется на основной эжектор и этот пар не возвращается в цикл. Вот такая может происходить раскрутка ситуации во взаимодействии с персоналом ТЭС.

Неплохо было бы прибавить к этим общим соображениям и какой-то инструментарий для оценки и локализации потерь. Такие балансовые схемы составить в общем-то не сложно. Сложно оценить где данные, отвечающие факту, а где погрешности расходомеров. Но все же кое-что порой удается прояснить, если брать не разовые замеры, а результаты за достаточно длительный период. Более или менее надежно мы знаем размер потерь пара и конденсата как разность между расходом подпиточной воды и невозвратом производственного конденсата. Подпитка, как уже говорилось, обычно осуществляется через контур турбин. Если в этом контуре нет своих потерь, то суммарный расход питательной воды после ПВД (подогреватели высокого давления) турбин будет превышать расход острого пара на турбины на величину потерь в цикле ТЭС (иначе, без этого превышения, нечем будет восполнить потери в контуре котлов). Если есть потери в контуре турбин, то разность двух разностей подпитка_минус_невозврат и расход_за_ПВД_минус_расход_острого_пара - и составит потери в контуре турбин. Потери в контуре турбин - это потери на уплотнениях, в системе регенерации (в ПВД и ПНД), в отборах пара от турбин, поступающего в деаэраторы и бойлера (т.е. не столько в собственно отборах, как в деаэраторах и бойлерах) и в конденсаторах турбин. На деаэраторах есть клапаны с их неплотностями, с конденсаторами связаны эжектора, использующие пар. Если мы сумели разделить потери пара и конденсата на потери в контуре котлов и в контуре турбин, то задача дальнейшей конкретизации потерь существенно облегчается и для нас, и для эксплуатационного персонала.

Хорошо бы в этом плане как-то разделить, пусть оценочно, потери пара и конденсата на потери собственно пара и собственно конденсата или воды. Мне приходилось делать такие оценки и я постараюсь кратко отразить их суть с тем, чтобы вы, при желании, могли проделать нечто подобное во взаимодействии с турбинистами или с той же группой учета на ТЭС. Идея заключается в том, что если нам известны энергетические потери, которые не к чему больше отнести кроме как к потерям теплоты с паром и водой, и если нам известен общий размер потерь теплоносителя (а он должен быть известен), то после деления первого на второе мы относим потери к одному килограмму теплоносителя и по величине этих удельных потерь можем оценить энтальпию теряемого теплоносителя. А по этой усредненной энтальпие мы можем судить о соотношении потерь пара и воды.

Однако вернемся к вопросу разрезания пирога... На ТЭС приходит топливо, скажем, газ. Расход его известен по коммерческим расходомерам и по коммерческим расходомерам известно сколько ТЭС отпустила тепла. Расход газа, умноженный на его теплотворную способность в ккал/м3, минус отпуск тепла в ккал, минус выработка электроэнергии, умноженная на ее удельный расход в ккал/кВтч, это и есть в первом приближении наш пирог. Правда, отпуск теплоты считают, конечно же, не в килокалориях, а в гигакалориях, но это детали, которыми не обязательно здесь досаждать. Теперь из этой величины надо вычесть то, что при сжигании газа вылетело в трубу и ушло с потерями через тепловую изоляцию котлов. В общем, теплотворную способность газа умножаем на его расход, затем все это умножаем на кпд котлов, которые в группе учетов мастерски умеют определять (и подделывать, но об этом мы помолчим), и, таким образом, определяем так называемое Qбрутто котлов. Из Qбрутто вычитаем отпуск тепла и выработку электроэнергии, о чем уже говорил, и в результате получаем тот пирог, который и предстоит разрезать.

В этом пироге остаются всего лишь три составляющих - собственные нужды котлов и турбин, потери с отпуском тепла, потери теплового потока. Потери теплового потока это нечто с не совсем понятным смыслом, что-то вроде узаконивания части не совсем оправданных потерь. Но благо на это дело существует норматив, который мы и можем вычесть из нашего пирога. Теперь в оставшейся части пирога только собственные нужды и потери с отпуском тепла. Потери с отпуском тепла это законные потери при приготовлении воды (потери при сбросе нагретых регенерационных и отмывочных вод, потери теплоты с продувкой осветлителей и др.) плюс потери на охлаждение трубопроводов, корпусов деаэраторов и прочее, что считается по специально разработанным нормативам в зависимости от температуры окружающей среды. Вычитаем и эти потери, после чего в нашем пироге должны были бы остаться только собственные нужды котлов и турбин. Далее, в группе учета вам скажут, если не соврут, сколько именно потрачено тепла на собственные нужды. Это потери теплоты с водой непрерывной продувки, расход тепловой энергии на мазутохозяйсво, на отопление и т.д. Вычитаете эти собственные нужды из остатка пирога и что получаете - нуль? Случается и такое при нашей точности замеров в том числе и по официальным коммерческим замерам. Однако после этого вычитания обычно остается изрядный кусок, который умельцы разбрасывают на те же собственные нужды и удельные расходы на выработку электроэнергии. Ну да, устаревшее оборудование, экономия на ремонтах, плюс требование сверху ежегодно повышать экономичность работы причины этой неизбежной туфты. Но наша задача - определить истинную причину дисбаланса электроэнергии и тепла, составляющего остаток нашего пирога. Если мы все совместно с группой учета проделали аккуратно, а приборы если и соврали, то не чересчур, то остается только одна крупная причина - потери энергии с потерями пара и воды.

А потери энергии, в том числе ее потери с потерями пара и воды, это всегда резонансный на ТЭС вопрос.

Естественно, потери неизбежны, поэтому на этот счет есть нормативы ПТЭ. А если где-нибудь в учебнике для ВУЗов вы прочтете, что можно обойтись и без потерь, то это глупость и не более того, в особенности применительно к нашим ТЭС.

Конечно, я отразил здесь не все достойные внимания моменты. При желании, вы можете найти полезные сведения в технических отчетах или где-то еще. Я, например, обнаружил полезный, на мой взгляд, фрагмент по данной теме в книге наших гигантов от химии в энергетике М.С. Шкроба и Ф.Г. Прохорова "Водоподготовка и водный режим паротурбинных электростанций" за 1961 год. К сожалению, здесь в один ряд выстроены все мухи и слоны. При необходимости вы можете проконсультироваться у наших специалистов или у персонала ТЭС о размерах перечисленных в фрагменте величин, а также об уместности использования всех приведенных в фрагменте рекомендаций. Я привожу этот фрагмент без дальнейших комментариев.

"В процессе эксплуатации часть конденсата или пара как внутри электростанции, так и вне ее теряется и не возвращается в цикл станции. Основными источниками безвозвратных потерь пара и конденсата в пределах электростанции являются:

а) котельная, где теряется пар на привод вспомогательных механизмов, на обдувку от золы и шлака, на грануляцию шлаков в топке, на распыливание в форсунках жидкого топлива, а также пар, уходящий в атмосферу при периодическом открытии предохранительных клапанов и при продувке пароперегревателей во время растопки котлов;

б) турбоагрегаты, где имеют место непрерывные потери пара через лабиринтовые уплотнения и в воздушных насосах, отсасывающих пар вместе с воздухом;

в) конденсатные и питательные баки, где происходят потери воды через перелив, а также испарение горячего конденсата;

г) питательные насосы, где происходят утечки воды через неплотности сальниковых уплотнений;

д) трубопроводы, где происходят утечки пара и конденсата через неплотности фланцевых соединений и запорной арматуры.

Внутристанционные потери пара и конденсата на конденсационной электростанции (КЭС) и чисто отопительной ТЭС могут быть снижены до 0.25-0.5% от общего расхода пара при условии реализации следующих мероприятий: а) замена, где только возможно, паровых приводов электрическими; б) отказ от использования паровых форсунок и обдувочных аппаратов; в) применение устройств для конденсирования и улавливания отработавшего пара; г) ликвидация всякого рода парения клапанов; д) создание плотных соединений трубопроводов и теплообменных аппаратов; е) борьба с утечками конденсата, излишними спусками воды из элементов оборудования и расходами конденсата на непроизводственные нужды; ж) тщательный сбор дренажей.

Возмещение внутристанционных и внешних потерь конденсата может быть осуществлено несколькими способами, в том числе:

а) химической обработкой исходной воды в тем, чтобы смесь конденсата с этой водой обладала необходимыми для питания котлов качественными показателями;

б) заменой потерянного конденсата конденсатом такого же качества, полученного в паропреобразовательной установке (в этом случае пар отдается производственным потребителям не непосредственно из отбора, а в виде вторичного пара паропреобразователя);

в) установкой испарителей, рассчитанных на выпаривание добавочной воды с конденсацией вторичного пара и получением высококачественного дистиллята".

Более короткий фрагмент я нашел в книге А.А. Громогласова, А.С. Копылова, А.П. Пильщикова "Водоподготовка: процессы и аппараты" за 1990 год. Здесь я позволю себе повториться и заметить, что если бы обычные потери пара и конденсата на наших ТЭС не превышали, как утверждают авторы, 2-3%, я бы не посчитал нужным составлять этот раздел:

"При эксплуатации ТЭС и АЭС возникают внутристанционные потери пара и конденсата: а) в котлах при непрерывной и периодической продувке, при открытии предохранительных клапанов, при обдувке водой или паром наружных поверхностей нагрева от золы и шлака, на распыливание жидкого топлива в форсунках, на привод вспомогательных механизмов; б) в турбогенераторах через лабиринтовые уплотнения и паровоздушные эжекторы; б) в пробоотборных точках; г) в баках, насосах, трубопроводах при переливе, испарении горячей воды, просачивании через сальники, фланцы и т.п. Обычные внутристанционные потери пара и конденсата, восполняемые добавочной питательной водой, не превышают в различные периоды эксплуатации на ТЭС 2-3%, на АЭС 0.5-1% их общей паропроизводительности".

Кроме этого я нашел в интернете:

"Внутренние потери:

Потери пара, конденсата и питательной воды через неплотности фланцевых соединений и арматуры;

Потери пара через предохранительные клапаны;

Утечка дренажа паропроводов и турбин;

Расход пара на обдувку поверхностей нагрева, на разогрев мазута и на форсунки;

К внутренним потерям теплоносителя на электростанциях с котлами на докритические параметры относят также потери от непрерывной продувки из барабанов котлов".

Из моей переписки с инженером Курской ТЭЦ-1. К потерям воды, пара и конденсата:

Добрый день, Геннадий Михайлович! 30-31.05.00г

Снова обсудили с Приваловым (зам. нач. химцеха ДонОРГРЭС) проблему потерь теплоносителя. Наиболее крупные потери бывают на деаэраторах (1.2, 1.4 и в особенности 6 ата), в БЗК (бак запаса конденсата), на предохранительных клапанах и в дренажах (в т.ч. в дренажах ПВД с высоким теплосодержанием воды). Наладчики иногда берутся за подобную работу выявления потерь, но не бескорыстно.

Поговорил на эту же тему с котельщиком. Он добавил, что бывают также существенные утечки на уплотнениях турбин. Зимой утечки пара можно проследить по парениям над крышей. Где-то в отчетах у меня были данные по затронутому вопросу и помнится, что я отмечал большие потери на дренажах ПВД. Для ТЭЦ с производственной нагрузкой максимальный допустимый размер внутристанционных потерь теплоносителя, без расходов пара на мазутохозяйство, деаэраторы теплосети и т.п., по ПТЭ 1989г стр. 156 (других ПТЭ у меня нет под рукой) составляет 1.6*1.5=2.4% общего расхода пит.воды. Нормы этих потерь, согласно ПТЭ, должно ежегодно утверждать энергообъединение, руководствуясь приведенными значениями и "Методическими указаниями по расчету потерь пара и конденсата".

Для ориентира скажу, что в моем отчете по ТЭЦ Шосткинского химкомбината приведены средние расходы к-та из БНТ в размере 10-15% от расхода пит.воды. А при пусках первого э/блока Астраханской ТЭЦ-2 (там блоки) мы не могли обеспечить блок нужным количеством обессоленной воды до тех пор, пока не задействовали бак низких точек и конденсат его не направили в БЗК. При "законных" 12% от расхода пит.воды, ваш ожидаемый уровень потерь теплоносителя я могу полуинтуитивно оценить как 4% потерь пара (на клапанах, деаэраторах, неиспользуемых выпарах БНТ и т.д.), 5% потерь пит.воды и конденсата ПВД, 3% прочих потерь пара и воды. Первая часть включает громадную (до 5.5% от кпд брутто котлов), вторая - внушительную (около 2%) и последняя - терпимую (менее 0.5%) части тепловых потерь. Наверное, вы (ТЭЦ) все же правильно считаете общие потери пара и конденсата. Но, наверное, вы неправильно считаете потери тепла и еще менее правильно действуете в части сокращения всех этих потерь.

P.S. Ну вот, мы вроде бы уже и прошли с вами все главные темы, так или иначе касающиеся ВХРБ. Возможно, какие-то вопросы покажутся слишком сложными. Но это не потому, что они действительно сложны, а потому, что они пока еще непривычны для вас. Читайте не напрягаясь. Что-то станет понятным с первого раза, что-то - при повторном чтении, а что-то - при третьем. При третьем чтении какие-то допущенные мною длинноты возможно станут вас раздражать. Это нормально и при нашей компьютерной технике не страшно. Сделайте себе копии файлов и убирайте ненужные фрагменты или заменяйте их меньшим количеством понятных для вас слов. Сжатие информации по мере ее усвоения это непременный и полезный процесс.

Когда все или большинство из изложенного станет для вас понятным и привычным, вы уже не новички. Конечно, вы по-прежнему можете не знать каких-то элементарных вещей. Но в этом, уверяю вас, вы не одиноки. Эксплуатационный персонал тоже сплошь и рядом не знает каких-то самых элементарных вещей. Никто не знает всего. Но если у вас уже есть набор полезных знаний и если эксплуатация так или иначе заметит его, то вам, естественным образом, тогда простится и незнание некоторых элементарных моментов. Опирайтесь на достигнутое и двигайтесь вперед!

Жизнь современного человека на Земле немыслима без использования энергии
как электрической, так и тепловой. Большую часть этой энергии во всем
мире до сих пор производят тепловые электростанции: На их долю
приходится около 75 % вырабатываемой электроэнергии на Земле и около 80 %
производимой электроэнергии в России. А потому, вопрос снижения
энергозатрат на выработку тепловой и электрической энергии далеко не
праздный.

Виды и принципиальные схемы тепловых электрических станций

Основным назначением электрических станций является выработка
электроэнергии для освещения, снабжения ею промышленного и
сельскохозяйственного производства, транспорта, коммунального хозяйства и
бытовых нужд. Другим назначением электрических станций (тепловых)
является снабжение жилых домов, учреждений и предприятий теплом для
отопления зимой и горячей водой для коммунальных и бытовых целей или
паром для производства.

Тепловые электрические станции (ТЭС) для комбинированной выработки
электрической и тепловой энергии (для теплофикации) называются
теплоэлектроцентралями (ТЭЦ), а ТЭС, предназначенные только для
производства электроэнергии, называются конденсационными
электростанциями (КЭС) (рис. 1.1). КЭС оборудуются паровыми турбинами,
отработавший пар которых поступает в конденсаторы, где поддерживается
глубокий вакуум для лучшего использования энергии пара при выработке
электроэнергии (цикл Ренкина). Пар из отборов таких турбин используется
только для регенеративного подогрева конденсата отработавшего пара и
питательной воды котлов.

Рисунок 1. Принципиальная схема КЭС:

1 — котел (парогенератор);
2 — топливо;
3 — паровая турбина;
4 — электрический генератор;

6 — конденсатный насос;

8 — питательный насос парового котла

ТЭЦ оборудуются паровыми турбинами с отбором пара для снабжения
промышленных предприятий (рис. 1.2, а) или для подогрева сетевой воды,
поступающей к потребителям для отопления и коммунально-бытовых нужд
(рис. 1.2, б).

Рисунок 2. Принципиальная тепловая схема ТЭЦ

а- промышленная ТЭЦ;
б- отопительная ТЭЦ;

1 — котел (парогенератор);
2 — топливо;
3 — паровая турбина;
4 — электрический генератор;
5 — конденсатор отработавшего пара турбины;
6 — конденсатный насос;
7— регенеративный подогреватель;
8 — питательный насос парового котла;
7-сборный бак конденсата;
9- потребитель теплоты;
10- подогреватель сетевой воды;
11-сетевой насос;
12-конденсатный насос сетевого подогревателя.

Приблизительно с 50-х годов прошлого столетия на ТЭС для привода
электрических генераторов начали применяться газовые турбины. При этом в
основном получили распространение газовые турбины со сжиганием топлива
при постоянном давлении с последующим расширением продуктов сгорания в
проточной части турбины (цикл Брайтона). Такие установки называются
газотурбинными (ГТУ). Они могут работать только на природном газе или на
жидком качественном топливе (соляровом масле). Эти энергетические
установки требуют наличия воздушного компрессора, потребляемая мощность
которого достаточно велика.

Принципиальная схема ГТУ изображена на рис. 1.3. Благодаря большой
маневренности (быстрый пуск в работу и загрузка) ГТУ получили применение
в энергетике в качестве пиковых установок для покрытия внезапного
дефицита мощности в энергосистеме.

Рисунок 3. Принципиальная схема парогазовой установки

1-компрессор;
2-камера сгорания;
3-топливо;
4-газовая турбина;
5-электрический генератор;
6-паровая турбина;
7-котел-утилизатор;
8- конденсатор паровой турбины;
9-конденсатный насос;
10-регенеративный подогреватель в паровом цикле;
11-питательный насос котла-утилизатора;
12-дымовая труба.

Проблемы ТЭЦ

Наряду с известными всем проблемами высокой степени износа оборудования
и повсеместного применения недостаточно эффективных газовых
паротурбинных блоков в последнее время российские ТЭЦ сталкиваются с
еще одной, относительно новой угрозой снижения эффективности. Как ни
странно, связана она с растущей активностью потребителей тепла в области
энергосбережения.

Сегодня многие потребители тепла приступают к внедрению мероприятий по
экономии тепловой энергии. Эти действия в первую очередь наносят ущерб
работе ТЭЦ, так как приводят к снижению тепловой нагрузки на станцию.
Экономичный режим работы ТЭЦ - тепловой, с минимальной подачей пара в
конденсатор. При снижении потребления отборного пара ТЭЦ вынуждена для
выполнения задания по выработке электрической энергии увеличивать подачу
пара в конденсатор, что ведет за собой увеличение себестоимости
вырабатываемой электроэнергии. Такая неравномерная работа приводит к
увеличению удельных расходов топлива.

Кроме того, в случае полной загрузки по выработке электрической энергии
и низкого потребления отборного пара ТЭЦ вынуждена производить сброс
избытка пара в атмосферу, что также увеличивает себестоимость
электроэнергии и тепловой энергии. Использование представленных ниже
энергосберегающих технологий приведет к снижению расходов на собственные
нужды, что способствует увеличению рентабельности ТЭЦ и увеличению
контролирования расходов тепловой энергии на собственные нужды.

Пути повышения эффективности выработки энергии

Рассмотрим основные участки ТЭЦ: типичные ошибки их организации и
эксплуатации и возможности снижения энергозатрат на выработку тепловой
и электрической энергии.

Мазутное хозяйство ТЭЦ

Мазутное хозяйство включает: оборудование по приемке и разгрузке вагонов
с мазутом, склад запаса мазута, мазутнасосную с подогревателями мазута,
пароспутники, паровые и водяные калориферы.

Объем потребления пара и теплофикационной воды для поддержания работы
мазутного хозяйства значителен. На газомазутных ТЭС (при использовании
пара на разогрев мазута без возврата конденсата) производительность
обессоливающей установки увеличивается на 0,15 т на 1 т сжигаемого
мазута.

Потери пара и конденсата на мазутном хозяйстве можно разделить на две
категории: возвратные и невозвратные. К невозвратным можно отнести пар,
используемый для разгрузки вагонов при нагреве смешиванием потоков, пар
на продувку паропроводов и пропарку мазутопроводов. Весь объем пара
используемый в пароспутниках, подогревателях мазута, в подогревателях
насосов в мазутных баках должен возвращаться в цикл ТЭЦ в виде
конденсата.

Типичной ошибкой организации мазутного хозяйства ТЭЦ является отсутствие
конденсатотводчиков на пароспутниках. Различия пароспутников по длине и
режиму работы приводят к различному съему тепла и образованию на выходе
с пароспутников пароконденсатной смеси. Наличие же в паре конденсата
может привести к возникновению гидроударов и, как следствие, выходу из
строя трубопроводов и оборудования. Отсутствие управляемого отвода
конденсата от теплообменников, также приводит к пропуску пара в
конденсатную линию. При сливе конденсата в бак «замазученного»
конденсата происходят потери пара, находящегося в конденсатной линии, в
атмосферу. Такие потери могут составлять до 50% расхода пара на мазутное
хозяйство.

Обвязка пароспутников конденсатоотводчиками, установка на
теплообменниках системы регулирования температуры мазута на выходе
обеспечивает увеличение доли возвращаемого конденсата и снижение расхода
пара на мазутное хозяйство до 30%.

Из личной практики могу привести пример, когда приведение системы
регулирования нагрева мазута в мазутных подогревателях в работоспособное
состояние позволило снизить расход пара на мазутную насосную станцию на
20%.

Для снижения расхода пара и величины потребления мазутным хозяйством
электроэнергии возможен перевод на рециркуляцию мазута обратно в
мазутный бак. По этой схеме можно производить перекачку мазута из бака в
бак и разогрев мазута в мазутных баках без включения дополнительного
оборудования, что приводит к экономии тепловой и электрической энергии.

Котельное оборудование

К котельному оборудованию относятся энергетические котлы, воздушные
калориферы, подогреватели воздуха, различные трубопроводы, расширители
дренажей, дренажные баки.

Заметные потери на ТЭЦ связаны с непрерывной продувкой барабанов котлов.
Для уменьшения этих потерь на линиях продувочной воды устанавливают
расширители продувки. Применение находят схемы с одной и двумя ступенями
расширения.

В схеме продувки котла с одним расширителем пар из последнего
направляется обычно в деаэратор основного конденсата турбины. Туда же
поступает пар из первого расширителя при двухступенчатой схеме. Пар из
второго расширителя направляется обычно в атмосферный или вакуумный
деаэратор подпиточной воды тепловой сети или в станционный коллектор
(0,12—0,25 МПа). Дренаж расширителя продувки подводится в охладитель
продувки, где охлаждается водой, направляемой в химический цех (для
подготовки добавочной и подпиточной воды), и затем сбрасывается. Таким
образом, расширители продувки уменьшают потери продувочной воды и
увеличивают тепловую экономичность установки за счет того, что большая
часть содержащейся в воде теплоты при этом полезно используется. При
установке регулятора непрерывной продувки по максимальному
солесодержанию увеличивается КПД котла, снижается объём потребляемой на
подпитку химочищенной воды, тем самым достигается дополнительный эффект
за счёт экономии реагентов и фильтрующих.

С повышением температуры уходящих газов на 12-15 ⁰С потери тепла
увеличиваются на 1%. Использование системы регулирования калориферов
воздуха котлоагрегатов по температуре воздуха приводит к исключению
гидроударов в конденсатопроводе, снижению температуры воздуха на входе в
регенеративный воздухоподогреватель, снижению температуры уходящих
газов.

Согласно уравнению теплового баланса:

Q p =Q 1 +Q 2 +Q 3 +Q 4 +Q 5

Q p - располагаемое тепло на 1 м3 газообразного топлива;
Q 1 - тепло используемое на генерацию пара;
Q 2 - потеря тепла с уходящими газами;
Q 3 - потери с химическим недожогом;
Q 4 - потери от механического недожога;
Q 5 - потери от наружного охлаждения;
Q 6 - потери с физическим теплом шлаков.

При снижении величины Q 2 и увеличении Q 1 КПД котлоагрегата повышается:
КПД= Q 1 /Q р

На ТЭЦ с параллельными связями, возникают ситуации, когда необходимо
отключения секций паропроводов с открытием дренажей в тупиковых
участках. Для визуализации отсутствия законденсачивания паропровода
приоткрывают ревизки, что ведет к потерям пара. В случае установки
конденсатотводчиков на тупиковых участках паропроводов, конденсат,
образующийся в паропроводах, организованно отводится в дренажные баки
или расширители дренажей, что приводит к возможности срабатывания
сэкономленного пара на турбинной установке с выработкой электрической
энергии.

Так при сбросе трансфера 140 ати через одну ревизку, и при условии, что
через дренаж поступает пароконденсатная смесь, величину пролета и
потери, связанные с этим, специалисты Spirax Sarco рассчитывают,
используя методику, основанную на уравнении Напьера, или истечении среды
через отверстие с острыми кромками.

При работе с открытой ревизкой неделю, потери пара будут составлять 938
кг/ч*24ч*7= 157,6 тонны, потери газа составят около 15 тыс. нм³, или
недовыработка электроэнергии в районе 30 МВт.

Турбинное оборудование

К турбинному оборудованию относятся паровые турбины, подогреватели
высокого давления, подогреватели низкого давления, подогреватели
сетевые, бойлерные, деаэраторы, насосное оборудование, расширители
дренажей, баки низких точек.


приведет к снижению количества нарушений графиков работы теплосети, и
сбою в работе системы приготовления химочищенной (химобессоленой) воды.
Нарушение графика работы теплосети приводит при перегреве к потерям
тепла и при недогреве к упущению выгоды (продажа меньшего объема тепла,
чем возможно). Отклонение температуры сырой воды на хим.цех, приводит:
при снижении температуры - ухудшении работы осветлителей, при увеличении
температуры - к увеличению потерь фильтрующих. Для снижения расхода
пара на подогреватели сырой воды используют воду со сброса с
конденсатора, благодаря чему тепло теряемое с циркуляционной водой в
атмосферу используется в воде поставляемой в хим.цех.

Система расширителей дренажей может быть одно- и двухступенчатая.
При одноступенчатой системе пар с расширителя дренажей поступает в
коллектор пара собственных нужд, и используется в деаэраторах и
различных подогревателях конденсат обычно сбрасывается в дренажный бак
или бак низких точек. При наличии на ТЭЦ пара собственных нужд двух
разных давлений, используют двухступенчатую систему расширителей
дренажей. При отсутствии регуляторов уровня в расширителях дренажей
происходит проскок пара с конденсатом из расширителей дренажей высокого
давления в расширитель низкого давления и далее через дренажный бак в
атмосферу. Установка расширителей дренажей с регулированием уровня может
привести к экономии пара и снижению потерь конденсата до 40% от объема
пароконденсатной смеси дренажей паропроводов.

При пусковых операциях на турбинах необходимо открытие дренажей и
отборов турбины. В процессе работы турбины дренажи закрываются. Однако
полное закрытие всех дренажей нецелесообразно, поскольку в связи с
наличием в турбине ступеней, где пар находится при температуре кипения, а
следовательно, может конденсироваться. При постоянно открытых дренажах
пар через расширитель сбрасывается в конденсатор, что влияет на давление
в нем. А при изменении давления в конденсаторе на ±0,01 ат при
постоянном расходе пара изменение мощности турбины составляет ±2%.
Ручное регулирование дренажной системы также повышает вероятность
ошибок.

Приведу случай из личной практики, подтверждающий необходимость обвязки
дренажной системы турбины конденсатоотводчиками: после устранения
дефекта, приведшего к остановке турбины, на ТЭЦ приступили к ее
запуску. Зная, что турбина горячая, оперативный персонал, забыл открыть
дренажи, и при включении отбора произошел гидроудар с разрушением части
паропровода отбора турбины. В результате потребовался аварийный ремонт
турбины. В случае обвязки дренажной системы конденсатоотводчиками,
подобной проблемы можно было бы избежать.

При работе ТЭЦ иногда возникают проблемы с нарушением
воднохимического режима работы котлов из-за повышения содержания
кислорода в питательной воде. Одной из причин нарушения воднохимического
режима является снижение давления в деаэраторах из-за отсутствия
автоматической системы поддержания давления. Нарушение воднохимического
режима приводит к износу трубопроводов, увеличению коррозии поверхностей
нагрева, и как следствие дополнительные затраты на ремонт оборудования.

Также на многих станциях на основном оборудовании установлены узлы
учета на основе диафрагм. Диафрагмы имеют нормальный динамический
диапазон измерения 1:4, с чем связана проблема по определению нагрузок
при пусковых операциях и минимальных нагрузках. Неправильная работа
расходомеров приводит к отсутствию контроля над правильностью и
экономичностью работы оборудования. На сегодняшний день ООО «Спиракс
Сарко Инжиниринг» готова представить несколько видов расходомеров с
диапазоном измерения до 100:1.

В заключение, подведем итог вышесказанному и еще раз перечислим основные мероприятия для снижения энергозатрат ТЭЦ:

  • Обвязка пароспутников конденсатоотводчиками
  • Установка на теплообменниках системы регулирования температуры мазута на выходе
  • Перевод рециркуляции мазута обратно в мазутный бак
  • Обвязка системой регулирования подогревателей сетевой и сырой воды
  • Установка расширителей дренажей с регулированием уровня
  • Обвязка дренажной системы турбины конденсатоотводчиками
  • Установка узлов учета

Больше интересной информации Вы всегда сможете найти на нашем сайте в разделе

Потери рабочего тела: пара, основного конденсата и питательной воды на ТЭС можно разделить на внутренние и внешние . К внутренним – относят потери рабочего тела через не плотности фланцевых соединений и арматуры; потери пара через предохранительные клапаны; утечку дренажа паропроводов; расход пара на обдувку поверхностей нагрева, на разогрев мазута и на форсунки. Эти потери сопровождаются потерей теплоты, их принято обозначать величиной или выражать (для конденсационных турбоустановок) в долях расхода пара на турбину . Внутренние потери пара и конденсата не должны превышать при номинальной нагрузке 1,0 % на КЭС и 1,2÷ 1,6 на ТЭЦ. На Тепловых электрических станциях (ТЭС) с прямоточными энергетическими котлами эти потери с учетом периодических водно-химических отмывок могут быть больше на 0,3 ÷ 0,5 %. При сжигании мазута в качестве основного топлива, потери конденсата увеличиваются на 6 % в летнее время и на 16 % в зимнее время.

Для уменьшения внутренних потерь по возможности фланцевые соединения заменяют сварными, организуют сбор и использование дренажа, следят за плотностью арматуры и предохранительных клапанов, заменяют, где возможно предохранительные клапаны на диафрагмы.

На ТЭС до критического давления, с барабанными котлами основную часть внутренних потерь составляют потери с продувочной водой .

Внешние потери имеют место при отпуске технологического пара внешнему потребителю из турбин и энергетических парогенераторов (ПГ), когда часть конденсата этого пара не возвращается на ТЭЦ .

На ряде предприятий химической и нефтехимической промышленности потери конденсата технологического пара могут составить до 70 %.

Внутренние потери имеют место на конденсационных электростанциях (КЭС) и на теплоэлектроцентралях (ТЭЦ). Внешние потери имеют место только на ТЭЦ с отпуском технологического пара на промышленные предприятия.

Конец работы -

Эта тема принадлежит разделу:

По курсу ТЦПЭЭ и Т 7 семестр, 36 часов лекция 18 лекции

По курсу тцпээ и т семестр часов.. лекция потери пара и конденсата и их восполнение потери пара и конденсата..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Баланс пара и воды
Воду, вводимую в питательную систему энергетических котлов для восполнения потерь рабочего тела (теплоносителя), называют добавочной водой

Назначение и принцип действия расширителей продувки
Добавочная вода, несмотря на то, что она предварительно очищается, вносит в цикл ТЭС соли и другие химические соединения. Значительная доля солей поступает также через не плотности

Химические методы подготовки добавочной и подпиточной воды
На промышленные ТЭС вода обычно поступает из общей системы водоснабжения предприятия, из которой предварительно удаляются механические примеси путем отстаивания, коагуляции и фильтр

Термическая подготовка добавочной воды парогенераторов в испарителях
В связи с проблемой охраны окружающей среды от вредных выбросов производств, применение химических методов водоподготовки все более затрудняется ввиду запрета сброса отмывочных вод в водоемы. В это

Расчет испарительной установки
Схема к расчету испарительной установки показана на рис. 8.4.3. Расчетиспарительной установки заключается в определении расхода первичного пара из отбора турбины

Отпуск пара внешним потребителям
От теплоэлектроцентрали (ТЭЦ) к потребителю тепло подается в виде пара или горячей воды, называемых теплоносителями. Промышленные предприятия потребляют для технологических нужд пар

Одно-, двух- и трехтрубная системы пароснабжения от ТЭЦ
На большинстве предприятий необходим пар 0,6 – 1,8 МПа, а иногда 3,5 и 9 МПа, который подается к потребителям от ТЭЦ паропроводами. Прокладка индивидуальных паропроводов к каждому потребителю вызыв

Редукционно-охладительная установка
Для снижения давления и температуры пара применяются редукционно-охладительные установки (РОУ). Установки используются на ТЭС для резервирования отборов и противодавления тур

Отпуск тепла на отопление, вентиляцию и бытовые нужды
Для отопления, вентиляции и бытовых нужд в качестве теплоносителя применяется горячая вода. Систему трубопроводов, по которым горячая вода подается к потребителям, а охлажденная возвращает

Отпуск тепла на отопление
Сетевая установка ГРЭС обычно состоит из двух подогревателей – основного и пикового рис. 9.2.1.

Конструкции сетевых подогревателей и водогрейных котлов
Качество сетевой воды, прокачиваемой через поверхности нагрева сетевых подогревателей, значительно ниже качества конденсата турбин. В ней могут присутствовать продукты коррозии, соли жесткости и др

ЛЕКЦИЯ 24
(продолжение лекции 23) Водогрейные котлы, как и пиковые сетевые подогреватели, используются на ТЭЦ в качестве пиковых источников теплоты при тепловых нагрузках, превышающих обеспеч

Деаэраторы, питательные и конденсатные насосы
Деаэрационно-питательную установку можно условно разделить на две – деаэрационную и питательную. Начнем рассмотрение с деаэрационной установки. Назначен

ЛЕКЦИЯ 26
(продолжение лекции 25) Каково назначение питательной установки? Зачем устанавливается бустерный насос? Каковы возможные схемы включения питательных насосов?

Общие положения расчета принципиальных тепловых схем
1. РАСЧЁТ ТЕПЛОВОЙ СХЕМЫ Т-110/120-130 (на номинальном режиме работы) Параметры турбоустановки: N0 = 11

Расчет расхода воды теплосети
Энтальпия сетевой воды на входе в ПСГ-1 определяется при tос = 35 0С и давление на выходе из сетевого насоса, равном 0,78 МПа, получаем hос = 148 кД

Расчет подогрева воды в питательном насосе
Давление питательной воды на выходе из питательного насоса оценивается величиной, на 30 - 40% больше давления свежего пара р0 ; Принимаем 35 %:

Термодинамические параметры пара и конденсата (номинальный режим работы)
Таб. 1.1 Точка Пар в отборах турбины Пар у регенеративных подогревателей Обогреваемая

ЛЕКЦИЯ 29
(продолжение лекции 28) 1.4.3 Расчет ПНД Произвотится совместный расчет группы ПНД-4,5,6.

Конденсационные установки
Каковы назначение и состав конденсационной установки? Как выбираются конденсатные насосы? Конденсационная установка (рис. 26) обеспечивает создание и поддерж

Системы технического водоснабжения
Каковы назначение и структура системы технического водоснабжения? Для каких целей используется техническая вода на ТЭС и АЭС? Системой технического водоснабжения

Топливное хозяйство ЭС и котельных
Подготовка угля к сжиганию включает в себя следующие стадии: - взвешивание на вагонных весах и разгрузка с помощью вагоноопрокидывателей; если уголь при транспортировке смерз

Технические решения по предотвращению загрязнения окружающей среды
ОЧИСТКА ДЫ’ОВЫХ ГАЗОВ Содержащиеся в дымовых газах летучая зола, частицы несгоревшего топлива, окислы азота, сернистые газы загрязняют атмосферу и оказывают вредное влияни

Вопросы эксплуатации электростанций
Основные требования к работе ТЭС и АЭС – это обеспечение надежности, безопасности и экономичности их эксплуатации. Надежность означает обеспечение бесперебойного (непр

Выбор места строительства ТЭС и АЭС
Каковы основные требования к месту строительства электростанции? Каковы особенности выбора места строительства АЭС? Что такое роза ветров в районе размещения станции? Снач

Генеральный план электростанции
Что такое генеральный план электростанции? Что показывается на генеральном плане? Генеральный план (ГП) представляет собой вид сверху на площадку электростан

Компоновка главного здания ТЭС и АЭС
Какова структура главного здания ТЭС и АЭС? Каковы основные принципы компоновки главного здания электростанции, какие количественные показатели характеризуют совершенство компоновки? Какие

Потери пара и конденсата подразделяют на внутристанционные и внешние.

Внутристанционные потери складываются из:

Расходы пара на вспомогательные устройства станции без возврата конденсата - паровая обдувка парогенераторов, на форсунки с паровым распыливанием мазута, на устройства для разогрева мазута;

Потери пара и воды при пусках и остановах парогенераторов;

Потери пара и воды через неплотности трубопроводов, арматуры и оборудования;

Потери с продувочной водой;

Объём потерь зависит от характеристик оборудования, качества изготовления и монтажа, уровня обслуживания и эксплуатации.

Внутренние потери составляют (в долях от расхода питательной воды):

на КЭС – 0,8-1%, на ТЭЦ – 1,5-1,8%.

Основная часть потерь – с продувочной водой. Это - необходимая технологическая операция для поддержания концентрации солей, щелочей и кремниевой кислоты в воде парогенераторов, в пределах, обеспечивающих надежную работу последних и необходимую чистоту пара. Для возврата части воды и теплоты при непрерывной продувке в цикл используют устройства, состоящие из расширителей и охладителей продувочной воды. Количество пара, выделяющегося в расширителе, составляет до 30% от расхода продувочной воды. Остальное отводится в канализацию.

Внешние потери происходят при отпуске пара непосредственно из турбин и парогенераторов, если часть конденсата этого пара не возвращается на станцию.

Пар, используемый в технологических процессах, загрязняется различными химическими соединениями. Величина его потерь может достигать 70%. В среднем для промышленных ТЭЦ отношение внешних потерь к паропроизводительности парогенераторов составляет 20 – 30%.

Потери пара и воды в цикле электростанции должны восполняться добавочной питательной водой для парогенераторов.

Расход добавочной воды: Dд.в = Dвн + Dпр + Dв.п., где

Dвн – внутристанционные потери пара и воды на электростанции (без потерь с продувкой);

Dпр – потери воды в дренаж из расширителей продувки;

Dв.п. – потери конденсата у внешних потребителей.

Dпр = βDп.пг, где

Dп.пг – расход продувочной воды парогенераторов;

β – доля продувочной воды, отводимой в дренаж.

Энтальпия сухого насыщенного пара в расширителе;

Энтальпии кипящей воды при давлении в парогенераторе и расширителе.

Дополнительный расход теплоты топлива на электростанции, вызываемый потерями пара и конденсата:

, (9.2)

где , , , - энтальпии пара после парогенератора, продувочной воды, конденсата пара, возвращаемого на ТЭЦ от внешних потребителей, добавочной воды, - к.п.д. парогенератора нетто.

Потери пара и воды на ТЭС увеличивают расход электрической энергии на питательные насосы. Вызываемый этим дополнительный расход теплоты топлива определяется по формуле:


, Вт (9.3)

где - количество добавочной воды, кг/с; - давление питательной воды за насосом, Па; ρ - плотность воды, кг/м³; - к.п.д. питательного насоса ~ 0,7 – 0,8; - к.п.д. электростанции нетто.

Снижение к.п.д. станции, вызываемое потерями пара и конденсата и значительными затратами на подготовку добавочной питательной воды, вызывают необходимость следующих мероприятий:

Применение более совершенных способов подготовки добавочной пит. воды;

Применение в барабанных котлах ступенчатого испарения, что снижает количество продувочной воды;

Организация сбора чистого конденсата от всех станционных потребителей;

Максимально возможное применение сварных соединений в трубопроводах и оборудовании;

Сбор и возврат чистого конденсата от внешних потребителей.