02.03.2019

Кожухотрубный теплообменник: основные плюсы и минусы. Достоинства кожухотрубных теплообменных аппаратов


При движении по межпластинному каналу нагреваемая среда обтекает волнистую поверхность пластин, обогреваемых с обратной стороны греющей средой. Нагреваемая среда затем попадает в продольный коллектор и выходит из аппарата через другой штуцер.

Греющая среда движется в аппарате навстречу нагреваемой и поступает в штуцер, проходит через нижний коллектор, распределяется по каналам и движется по ним. Через верхний коллектор и штуцер греющая среда выходит из теплообменника.

Основным узлом теплообменника является теплопередающая пластина. Общий вид пластины с прокладкой приведены на рисунке. Внешний вид («рисунок» пластины) - это визитная карточка любого теплообменника. «Рисунок» должен обеспечивать равномерное распределение потока по всей поверхности пластины, высокую турбулентность потока даже при малых его скоростях, и в то же время обеспечить необходимую жесткость пластины.

Пластины собираются в пакет таким образом, что каждая последующая пластина повернута на 180 о относительно смежных, что создает равномерную сетку пересечения и взаимных точек опор вершин гофр.

Между каждой парой пластин образуется щелевой канал сложной формы, по которым и протекает рабочая среда. Такие каналы получили наименование сетчато - поточных. Жидкость при движении в них совершает пространственное трехмерное извилистое движение, при котором происходит турбулизация потока.

Особенностью каналов является то, что суммарная площадь поперечного сечения межпластинного канала, перпендикулярного основному направлению движения потока жидкости, остается постоянной по всей длине пластины, за исключением участков входа и выхода. Расположение коллекторных отверстий для входа и выхода рабочей среды на углах пластины - одностороннее (левое или правое).

Вид гофрирования пластин и их количество, устанавливаемое в раму, зависят от эксплуатационных требований к пластинчатому теплообменнику. Пластины штампуются из коррозийно-стойкого листового металла, марок Aisi-316, Aisi-321, титан и другие. По контуру пластины расположен паз для резиновых уплотняющих прокладок. Угловые отверстия для прохода рабочей среды имеют форму, обеспечивающую снижение гидравлических сопротивлений на входе в канал и выходе из него, снижение отложений на этих участках и позволяющую более рационально использовать всю площадь пластины для теплообмена.

Преимущества применения и эксплуатации пластинчатых теплообменников

1. Экономичность и простота обслуживания. При засорении ПТО может быть разобран, промыт и собран двумя работниками невысокой квалификации в течении 4-6 часов. При обслуживании кожухогрубчатых теплообменников (КТТО) процесс очистки трубок часто ведет к их разрушению и закупорке.

2. Низкая загрязняемость поверхности теплообмена вследствие высокой турбулентности потока жидкости, образуемой рифлением, а также качественной полировки теплообменных пластин.

3. Срок эксплуатации первой выходящей из строя единицы уплотнительной прокладки достигает 10 лет. Срок работы теплообменных пластин 15-20 лет. Стоимость замены уплотнений от стоимости ПТО колеблется в пределах 15-25 %, что экономичнее аналогичного процесса замены латунной трубной группы в КТТО, составляющей 80-90% от стоимости аппарата.

4. Стоимость монтажа ПТО составляет 2-4 % от стоимости оборудования соответственно. Что ниже на порядок, чем у кожухотрубчатого теплообменника.

5. Даже теплоноситель с заниженной температурой в системах теплоснабжения позволяет нагревать воду в ПТО до требуемой температуры.

6. Индивидуальный расчет каждого ПТО по оригинальной программе завода-изготовителя позволяет подобрать его конфигурацию в соответствии с гидравлическим и температурным режимами по обоим контурам. Расчет производится в течении 1-2 часов.

7. Гибкость: в случае необходимости площадь поверхности теплообмена в пластинчатом теплообменнике может быть легко уменьшена или увеличена простым добавлением или убавлением пластин при необходимости.

8. Двухступенчатая система ГВС, реализованная в одном теплообменнике, позволяет значительно сэкономить на монтаже и уменьшить требуемые площади под индивидуальный тепловой пункт.

9. Конденсация водяного пара в ПТО снимает вопрос о специальном охладителе, т.к. температура конденсата может быть 50 °С и ниже.

10. Устойчивость к вибрациям: пластинчатые теплообменники высокоустойчивы к наведенной двухплоскостной вибрации, которая может вызвать повреждения трубчатого аппарата.

Вывод: применение нового технологичного оборудования позволяет наряду с экономией первоначальных затрат (20-30%) переходить на другие режимы работы. Достигается более эффективное использование источников энергии, повышение их КПД. Окупаемость перевооружения объектов в теплоэнергетике колеблется от 2 до 5 лет, а в некоторых случаях достигает нескольких месяцев.

C анализом российского рынка пластинчатых теплообменников Вы можете познакомиться в отчете Академии Конъюнктуры Промышленных Рынков «Рынок пластинчатых теплообменников в России ».

[email protected]
WWW: www.akpr.ru

Об авторе:
Академия Конъюнктуры Промышленных Рынков
оказывает три вида услуг, связанных с анализом рынков, технологий и проектов в промышленных отраслях - проведение маркетинговых исследований, разработка ТЭО и бизнес-планов инвестиционных проектов.
. Маркетинговые исследования
. Технико-экономическое обоснование
. Бизнес-планирование

Вертикальные и горизонтальные подогреватели

Теплообменники различаются по многим особенностям конструкции, используемых теплоносителях, направлению потоков, максимально допустимым давлениям, смешиванием или несмешиванием потоков. Но одними из параметров, наиболее влияющим на компоновку помещений для монтажа вспомогательного котельного оборудования является его тип, вертикальный или горизонтальный подогреватель, который необходимо определить заранее, для уточнения необходимой площади под агрегат. Давайте разберемся, чем отличаются эти два типа.

Вертикальные теплообменники

Главное их преимущество в небольшой занимаемой площади, используя подобный тип теплообменных аппаратов можно максимально плотно скомпоновать площади для вспомогательного оборудования котельной или теплоцентрали. Также подобные агрегаты более выгодны при низких скоростях потоков теплоносителей в них снижается возможность появления застойных явлений благодаря сохранению в некоторой степени, конвекционного движения сред. При выполнении теплообменника по схеме со смешиванием сред подобная компоновка является наиболее оптимальной за счет возможности в полной мере использовать перемешивание слоев силами гравитации. Еще один плюс подобного типа - простота в эксплуатации. Но есть и некоторые ограничения на использование аппаратов подобного типа, например:

  1. При достаточно большой мощности они имеют приличные габариты по высоте, что требует соответствующих отметок перекрытий, на площадке где они установлены;
  2. Для обслуживания мощных вертикальных теплообменников необходимо использование кранового оборудования, а не все производственные помещения оснащены им;
  3. Для осмотра и технического обслуживания необходимо устраивать площадки, лестницы и переходы - таким образом, в некоторой степени снижается выигрыш по уменьшению площади, и накладываются дополнительные требования по обеспечению безопасности персонала.

Горизонтальные теплообменники

Как правило, по данному типу выполняются достаточно мощные агрегаты с большими скоростями движения потоков. Главный плюс подобного типа - небольшой габарит по высоте а, следовательно, удобство в обслуживании, зачастую многие элементы можно демонтировать без использования кран балки. Но это, же выливается и в главный минус горизонтальных теплообменников - большая занимаемая площадь. Хотя всегда есть варианты, когда можно расположить подобный агрегат между опорами более габаритного теплового оборудования. К недостаткам подобного типа относится и возможность расслоения жидкостей при небольших скоростях потока, при неинтенсивном движении теплоносителей, как правило, всегда используют вертикальные теплообменники.

Кожухотрубный теплообменник: принцип работы, преимущества и недостатки.

Теплообменники - это такие агрегаты, которые служат для обмена температурами между теплоносителем (горячим веществом) и нагреваемым (холодным веществом). В роли теплоносителя могут выступать газы, жидкости или пары. На сегодняшний день особенно распространенным и востребованным видом является кожухотрубный теплообменник, принцип работы которого довольно понятен: горячее и холодное вещество находятся в теплообменнике раздельно, не смешиваясь, теплообмен происходит через стенки каналов, по которым они движутся. Кожухотрубный теплообменник получил свое название из-за соответствующего строения - определенное количество тонких трубок находятся внутри кожуха (корпуса). От количества трубок зависит скорость движения теплоносителя, а от нее зависит коэффициент теплоотдачи.

Невзирая на то, что у кожухотрубного теплообменника принцип работы прост, его устройство, напротив, достаточно сложное и существует несколько их разновидностей.

Кожухотрубные теплообменники относятся к виду рекуперативных и делятся на подвиды по направлению движения теплоносителя и могут быть:

  • прямоточными;
  • противоточными;
  • перекрестноточными.

Такие агрегаты производятся в основном из высокопрочной стали, так как теплообменники работают, как правило, в особо агрессивной среде, способствующей появлению коррозии. Чтобы удовлетворить потребность во всех сферах использования кожухотрубных теплообменников, их выпускают в нескольких исполнениях:

  • с U-образными трубками;
  • с неподвижными трубками;
  • с плавающей головкой;
  • с температурным кожуховым компенсатором.

Также делят теплообменники и по способу установки: горизонтальные, вертикальные и наклонные кожухотрубные теплообменники. Принцип работы таких агрегатов можно описать следующим образом. Через подводящий патрубок в межтрубное пространство подается теплоноситель (горячее вещество), по тонким латунным трубкам (трубная система) движется холодное вещество (нагреваемое). В процессе теплообмена горячее вещество отдает свое тепло и через выводящий патрубок выводится из кожуха. Для более равномерного и эффективного нагрева холодное вещество может совершать до 12-ти ходов по трубной системе.

Кожухотрубные теплообменники последнее время пользуются большим спросом в химической, машиностроительной, газовой, нефтеперерабатывающей и пищевой промышленностях, их используют в качестве конденсаторов, подогревателей, охладителей и испарителей различных видов. Такой выбор совсем неслучайный - кожухотрубные теплообменники имеют ряд весомых преимуществ. Основными достоинствами, наверное, являются высокая устойчивость к гидроударам и возможность работы в условиях сильно загрязненных сред. Многие подобные агрегаты такими характеристиками не обладают, большинство из них в агрессивных средах работают нестабильно. К примеру, пластинчатые теплообменники способны работать только в чистых средах. Еще одним немаловажным преимуществом является высокий уровень эффективности, сравнимый только с показателями пластинчатых теплообменников.

К выше перечисленным достоинствам таких агрегатов, можно добавить еще и следующие:

  • надежность;
  • большая теплообменная площадь;
  • не повреждает и не изменяет структуру продукта;
  • прост в обслуживании, для которого не требуется специальных навыков персонала;
  • низкие затраты электроэнергии;
  • безопасное использование для персонала.

Таким образом, можно утверждать, что кожухотрубные теплообменники являются одним из самых надежных, долговечных и эффективных видов агрегатов в теплотехнике.

Но не стоит забывать, что наряду с явными преимуществами у рассматриваемого устройства имеются и некоторые недостатки. Первый - это достаточно большие размеры. Иногда крупные габариты служат причиной отказа от использования агрегата. Из этого следует и второй недостаток - большая металлоемкость, которая выливается в высокую стоимость теплообменника. К тому же они довольно «капризные» устройства, рано или поздно потребуется ремонт. Наиболее слабой частью является трубная система, именно в тонких трубках чаще всего выявляется причина поломок.

Специалисты утверждают, что изготовить в домашних условиях кожухотрубный теплообменник, принцип работы которого некоторые «умельцы» пытаются воссоздать для своих потребностей, практически невозможно, так как это сложное устройство, требующее соблюдения всех норм, требований и этапов технологического процесса.

Лекция 4

2 вариант

ПРОМЫШЛЕННЫЕ СПОСОБЫ ПЕРЕДАЧИ ТЕПЛА

Теплообмен широко используется в химической технологии для организации процессов разделения веществ, интенсификации массообменных и химических процессов, а также утилизации тепла. Прямыми источниками тепла могут служить топочные (дымовые) газы , получающиеся в результате сгорания топлива, а также электрическая энергия . Среды, служащие для передачи тепла от этих источников к охлаждающим агентам, носят название промежуточных теплоносителей .

Топочные газы получают, сжигая в топках печей твердое, жидкое или газообразное топливо. При этом тепло промежуточным теплоносителям передается, как правило, через стенки встроенных в печь труб за счет излучения, теплопроводности и конвекции (сложный теплообмен). Существенная доля тепла, передаваемого излучением, объясняется высокой температурой, достигаемой при горении (~1000 0 С). Температуру нагревания топочными газами можно регулировать за счет их частичной рециркуляции, возвращая в печь отработанные газы либо подводя дополнительное количество воздуха.

Подвод тепла электрическим током обеспечивает легкую регулировку температурного режима. Различают следующие способы подвода тепла электрическим током: за счет электрического сопротивления (прямого или косвенного), индукционный, высокочастот-ный и дуговой.



В случае электрического сопротивления прямого действия тепло выделяется при прохождении электрического тока через среду, помещенную в аппарат. При этом одним из электродов служит корпус аппарата, а другой находится в самой среде. Подвод теплоты за счет электрического сопротивления косвенногодействия осущест-вляется при прохождении электрического тока через специальные нагревательные элементы, от которых тепло передается среде путем излучения, теплопроводности и конвекции.

При индукционном подводе тепла аппарат является сердечником соленоида, по которому пропускают переменный электрический ток. Переменное магнитное поле индуцирует в стенках аппарата индукционные токи, вызывающие нагрев аппарата.

Высокочастотный способ подвода тепла применим к диэлектрикам. Они помещаются в переменное электрическое поле высокой частоты, под действием которого молекулы поляризуются и поворачиваются с высокой частотой. В результате трения между молекулами выделяется теплота. Основным преимуществом данного способа является равномерный прогрев материала, так как выделение теплоты происходит во всем его объеме.

Электродуговой способ подвода тепла осуществляется за счет пламени дуги, возникающей между электродами. Причем одним из электродов может служить сам теплоноситель. Этот способ позволяет достичь высокой температуры (1500-3000 0 С), но сложен в регулировании.

Основные виды теплоносителей

Целесообразность выбора теплоносителя определяется многими факторами: температурными, экономическими, экологическими и т.д. Промышленный теплоноситель должен удовлетворять ряду основных требований: обеспечивать высокий коэффициент теплоотдачи, следовательно, как это вытекает из (6.47), (6.81), (6.93), (6.113), (6.116), (6.132), (6.147), (6.151), обладать высокими значениями коэффициента теплопроводности, плотности и удельной теплоемкости, а также низким значением коэффициента кинематической вязкости; предоставлять возможность обходиться малым расходом теплоносителя, то есть, как это следует из уравнений теплового баланса (1) – (6), обладать высокими значениями плотности, удельной теплоемкости и удельной теплоты парообразования (конденсации). Кроме того, желательно, чтобы теплоноситель был нетоксичным, взрывобезопасным, негорючим, дешевым и доступным, не взаимодействовал с материалом теплообменника. Исходя из вышесказанного рассмотрим достоинства и недостатки основных промышленных теплоносителей.

Нагревающие агенты

Насыщенный водяной пар является наиболее распространен-ным нагревающим агентом вследствие того, что удовлетворяет практически всем вышеперечисленным требованиям. При конденсации водяного пара обеспечивается высокий коэффициент теплоотдачи, значительная удельная теплота конденсации позволяет передать большое количество теплоты малыми расходами пара. Поскольку температура насыщенного пара жестко связана с его давлением это позволяет легко регулировать температуру данного теплоносителя. Кроме того, учитывая, что при конденсации насыщенного пара при постоянном давлении его температура не меняется, можно отметить еще одно преимущество – неизменность температуры теплоносителя вдоль всей поверхности теплообмена. Очевидны и такие достоинства, как нетоксичность, взрыво- и пожаробезопасность, дешевизна и доступность. Тепло может подводиться как с помощью «глухого» (через стенку), так и «острого» (при непосредственном контакте с охлаждающим агентом) водяного пара. Последний способ применяется реже, лишь в тех случаях, когда допустимо смешение конденсата с охлаждающим агентом. При использовании «глухого» пара требуется дополнительное устройство – конденсатоотводчик . Он предназначен для обеспечения отвода только конденсата, предотвращая выход несконденсировавшегося пара. Принцип действия большинства конденсатоотводчиков заключается в открывании клапана, соединенного с поплавком, лишь при заполнении корпуса до определенного уровня конденсатом. При этом слой конденсата препятствует выходу пара.

Существенным недостатком водяного пара является резкий рост давления при увеличении температуры, что ограничивает область его применения 180-190 0 С (10-12 атм), так как более высокие значения температуры и, следовательно, давления приводят к утяжелению и удорожанию оборудования и коммуникаций.

Поэтому для нагрева до более высоких температур используются так называемые высокотемпературные теплоносители . К ним относятся: перегретая вода, высокотемпературные органические теплоносители (ВОТ), расплавы солей и жидкие металлы.

Перегретая вода может использоваться вплоть до критических значений параметров состояния Т кр =374 0 С, Р кр =225 атм. Однако недостатком данного теплоносителя является высокое давление, что существенно усложняет и удорожает аппаратуру.

Высокотемпературные органические теплоносители (ВОТ) позволяют производить нагрев до 250-400 0 С при давлениях, не превышающих десяти атмосфер. В качестве ВОТ используются как индивидуальные вещества (глицерин, этиленгликоль, нафталин, дифенил и др.), так и смеси. Наибольшее промышленное применение получила дифенильная смесь (26,5% дифенила и 73,5% дифенилового эфира), которая обладает большей термической стойкостью и меньшей температурой плавления (12,3 0 С), чем составляющие ее компоненты. Температура кипения дифенильной смеси составляет при атмосферном давлении 258 0 С. Она может использоваться как в жидком, так и в паровом состоянии. Недостатком дифенильной смеси, как и большинства других ВОТ, являются меньшие по сравнению с водой значения удельной теплоты конденсации и удельной теплоемкости.

Расплавы солей используются для нагрева до более высоких температур (550 0 С). Теплоносители этой группы применяют, как правило, в жидком виде. Наиболее широко в промышленности используется нитрит-нитратная смесь (40% NaNO 2 , 7% NaNO 3 , 53% KNO 3). Недостатками данного теплоносителя являются меньшие коэффициенты теплоотдачи, чем у перегретой воды, а также высокая температура плавления (142,3 0 С), что требует парового обогрева трубопроводов во избежание затвердевания теплоносителя.

Жидкие металлы применяют для нагрева до 400-800 0 С. В промышленности используют ртуть, литий, натрий, калий, свинец и другие легкоплавкие металлы и их сплавы. Их преимуществами являются высокие коэффициенты теплопроводности и теплоотдачи, а недостатками – токсичность и химическая агрессивность металлов щелочной группы.

Для нагрева до более высоких температур могут использоваться прямые источники тепла и, в частности, топочные газы (1000 -
1100 0 С). Их недостатки заключаются в низких коэффициентах теплопроводности и теплоотдачи, невысоких удельных теплоемкостях, что приводит к необходимости больших расходов газа, а также к его значительному охлаждению.

Охлаждающие агенты

Вода получила наиболее широкое распространение при охлаждении до 15-30 0 С. Ее преимущества заключаются в высоких значениях удельных теплоемкости и теплоты парообразования, коэффициентов теплопроводности и теплоотдачи, взрыво- и пожаробезопасности, нетоксичности, дешевизне и доступности. Охлаждающая вода может находиться в жидком состоянии, а также и испаряться. Вода может использоваться как из естественных открытых водоемов, так и артезианская. Достоинством последней является малое изменение температуры (8 - 15 0 С) в течение года. В случае дефицита воды применяют оборотную воду, охлаждая ее в градирнях.

Воздух также широко используется в промышленности в качестве охлаждающего агента для достижения тех же температур, что и при охлаждении водой. Его преимуществом является большая доступность, а недостатками – меньшие значения удельной теплоемкости, а также коэффициентов теплопроводности и теплоотдачи. Воздух широко используется для охлаждения оборотной воды в градирнях, которые представляют собой полые башни, заполненные насадкой. Сверху распыляется нагретая вода, а снизу противотоком движется воздух. Насадка служит для увеличения поверхности контакта фаз между этими теплоносителями.

Низкотемпературные холодильные агенты применяют для достижения более низких температур, в том числе и менее 0 0 С. В их число входят холодильные рассолы (водные растворы солей), жидкие аммиак и диоксид углерода. Они циркулируют в холодильных машинах, где тепло отнимается при их испарении с последующей конденсацией при сжатии.

Классификация и конструкции теплообменных аппаратов

Теплообменные процессы – нагревание, охлаждение, конденсация паров, испарение жидкостей – проводятся в теплообменных аппаратах (теплообменниках). Теплообменники – аппараты предназначенные для передачи тепла от одних теплоносителей к другим.

По способу контакта теплоносителей теплообменники могут быть поверхностными и смешения . В поверхностных теплообменниках перенос тепла от одного теплоносителя к другому происходит через стенку, а в теплообменниках смешения – при непосредственном контакте теплоносителей. Поверхностные теплообменники подразделя-ются на рекуперативные (перенос тепла между теплоносителями происходит через разделяющую их глухую стенку) и регенеративные (попеременный контакт теплоносителей с одной и той же стенкой, телом).

Теплообменники смешения, как правило, конструктивно проще поверхностных теплообменников, однако смешение теплоносителей в химической технологии редко допустимо. Наиболее распространены поверхностные рекуперативные теплообменники.

По способу организации процесса теплообменники подразделяются на периодические и непрерывные , по своему назначению – на нагреватели , холодильники , испарители и конденсаторы.

По расположению в пространстве теплообменники могут быть вертикальными или горизонтальными . По конструкции поверхности теплообмена их можно подразделить на теплообменники из труб и из листового материала .

К теплообменникам, основу конструкции которых составляют трубы, относятся: кожухотрубчатые , типа «труба в трубе» , оросительные , змеевиковые , оребренные .

Из листового материала изготавливаются теплообменники: с рубашкой , пластинчатые , спиральные .

Кожухотрубчатые теплообменные аппараты. Кожухотруб-чатые теплообменники относятся к числу наиболее широко применяемых поверхностных теплообменников. Теплообменники могут быть вертикальными или горизонтальными. Вертикальные теплооб-менники более просты в эксплуатации и занимают меньшую производственную площадь. На рис. 1 показаны кожухотрубчатые теплообменники, которые состоят из корпуса, или кожуха 1, к которому приварены трубные решетки 2. В трубных решетках, представляющих собой диск с отверстиями (рис. 3), закреплен герметично пучок труб. К трубным решеткам крепятся с помощью фланцевых соединений (на прокладках и болтах) крышки 3. К корпусу приварены лапы 6, на которые устанавливают теплообменник.

В кожухотрубчатом теплообменнике одна из обменивающихся теплом сред движется внутри труб (в трубном пространстве), а другая – в межтрубном пространстве между трубами и кожухом.

Если теплоноситель по трубному пространству проходит только в одном направлении – такой теплообменник называется одноходовым (рис. 1а). При двух и более последовательных проходах теплоносите-ля через трубное пространство теплообменники называются многоходовыми по трубному пространству (рис. 1б). Разбивку на

Рис. 1. Кожухотрубчатые теплообменники: а – однохо-довый; б – двуходовый по трубному пространству: 1 – кожух, 2 – трубные решетки, 3 – крышки, 4 – перегородка в крышке, 5 – поперечные перегородки в межтрубном пространстве,
6 – лапы;
I и II – входы и выходы теплоносителей


ходы в трубном пространстве производят установкой перегородок 4 в крышках теплообменника. Перегородки размещают таким образом, чтобы на каждый ход приходилось примерно одинаковое число труб.

Одноходовые кожухотрубчатые теплообменники обычно используются при больших расходах теплоносителя в трубах или при теплопередаче, определяемой теплоотдачей в межтрубном пространстве. Одноходовые кожухотрубчатые теплообменники могут использоваться в качестве испарителей.

Многоходовые по трубному пространству кожухотрубчатые теплообменники применяются в качестве подогревателей жидкостей и конденсаторов. Многоходовые теплообменники целесообразно использовать для проведения процессов теплообмена при высоких тепловых нагрузках.

При одинаковом диаметре кожуха и числе труб площадь поперечного сечения трубного пространства для прохода теплоносителя у многоходового теплообменника меньше по сравнению с одноходовым. Меньшая площадь сечения вызывает большую скорость течения теплоносителя, а следовательно, и больший коэффициент теплоотдачи. Однако увеличение скорости течения теплоносителя и длины пути его движения сопровождается увеличением гидравлического сопротив-ления. Поэтому с экономической точки зрения более шести ходов по трубному пространству в теплообменниках не делают. Аналогичными соображениями руководствуются, устанавливая перегородки в продольном направлении (вдоль труб) в межтрубном пространстве
(рис. 4б). Такое разбиение перегородками межтрубного пространства приводит к последовательному движению теплоносителя сначала в одном направлении вдоль труб, затем в противоположном и т.д. Число таких проходов теплоносителя вдоль труб называется числом ходов теплообменника по межтрубному пространству. Недостаток много-ходовых теплообменников заключается также в невозможности использования противотока, обеспечивающего наибольшую движущую силу; в них наблюдается смешанный ток.

Для увеличения скорости и удлинения пути движения теплоносителя в межтрубном пространстве могут устанавливаться поперечные сегментные перегородки 5. Это приводит к перекрестному току теплоносителей и не является признаком многоходового теплообменника.

При выборе пути движения теплоносителей через теплообменник руководствуются следующими соображениями. По трубам (по сравнению с межтрубным пространством) обычно пропускают жидкость либо более агрессивную и более загрязненную, либо находящуюся под большим давлением. По межтрубному пространству обычно направляется пар. В многоходовом теплообменнике в трубное пространство нельзя направлять жидкость или пар, если они меняют свое агрегатное состояние.

Обычно среды направляют противотоком друг к другу. Ввод теплоносителя в теплообменник проводят таким образом, чтобы направление движения теплоносителя совпадало с направлением движения за счет естественной конвекции, вызванной изменением плотности теплоносителя при нагреве или охлаждении.

Трубы закрепляются в трубных решетках (рис. 2) развальцовкой (а, б), сваркой (в) или пайкой (г). Изредка используется соединение с помощью сальников (д).

Рис. 2. Крепление труб в трубных решетках:
а – развальцовкой; б – развальцовкой с канавкой; в – сваркой; г – пайкой; д – сальниковыми устройствами

Размещают трубы (рис. 3) по вершинам правильных шести-угольников (а), по концентрическим окружностям (б) или по вершинам правильных прямоугольников (в). Если трубы жестко закреплены (сварка, пайка, развальцовка) в трубных решетках, а решетки жестко связаны с кожухом аппарата, то такая конструкция аппарата называется конструкцией с неподвижным или жестким креплением трубных решеток (рис. 1).

Рис. 3. Способы размещения труб в трубных решетках:
а – по периметрам правильных шестиугольников; б – по концентрическим окружностям; в – по периметрам прямоугольников (коридорное расположение)

При значительной разности температур кожуха и труб (равной приблизительно или более 50 0 С) или большой длине труб применяются аппараты, допускающие перемещение друг относительно друга труб и кожуха (рис. 4). Это необходимо для избежания возникновения напряжений при неодинаковом линейном температурном расширении (удлинении) труб и кожуха, что может привести к разрушению аппаратов с двумя неподвижными трубными решетками.

В качестве компенсирующего устройства могут применяться линзовыекомпенсаторы 1 (рис. 4а), соединяющие две части кожуха теплообменника и упруго деформирующиеся при возникновении напряжений. В теплообменниках с U-образными трубами (рис. 4б) имеется одна трубная решетка, в которую жестко закреплены оба конца U-образных труб 2. Такая конструкция также обеспечивает некоторое перемещение труб относительно кожуха, не приводя к возникновению напряжений. Однако линзовое компенсационное устройство недостаточно надежно в эксплуатации и может применяться при невысоких давлениях в межтрубном пространстве теплообменника (обычно до 1,6 МПа). Теплообменники с U-образными трубами сложны в изготовлении. Кроме того, в них довольно трудно проводить очистку внутренней поверхности труб. Таких недостатков лишена конструкция теплообменного аппарата с плавающей головкой с компенсацией в виде подвижной трубной решетки (рис. 4в). В таком аппарате подвижная трубная решетка 3 соединена с дополнительной внутренней крышкой трубной системы. Это позволяет свободно перемещаться

Рис. 4. Кожухотрубчатые теплообменники, применяемые при большой разности температур между кожухом и трубами:
а – с линзовым компенсатором; б – с U-образными трубами; в – с плавающей головкой. 1 – линзовый компенсатор; 2 – U-образ-ные трубы; 3 – подвижная трубная решетка; 4 – продольная перегородка в межтрубном пространстве

трубному пучку независимо от кожуха аппарата даже при значительных температурных линейных разностях расширения труб и корпуса. Напряжения, вызванные разностями температур, могут возникнуть в аппаратах такой конструкции лишь при существенном различии температур самих труб. Теплообменники с плавающей головкой из-за усложнения конструкции по сравнению с аппаратами других типов являются более дорогими, но эти затраты оправдываются надежностью при эксплуатации.

Теплообменники типа «труба в трубе». Теплообменники типа «труба в трубе» состоят из последовательно соединенных секций. Каждая секция представляет собой конструкцию из двух концентрически расположенных труб. Один из теплоносителей движется по внутренней трубе, а другой – по кольцевому пространству между трубами (рис. 5). Внутренняя труба, называемая теплообменной 1, с диаметром d н соединяется с другой секцией калачом 2. Внешняя труба с диаметром D н называется кожуховой 3. Кольцевое пространство секции соединяется с другим кольцевым пространством следующей секции с помощью патрубков.

Рис. 5. Теплообменник типа "труба в трубе" 1 – теплообменная труба; 2 – калач; 3 – кожуховая труба; I , II –входы и выходы теплоносителей

При подборе размеров теплообменной и кожуховой труб даже при небольших расходах в теплообменниках типа «труба в трубе» можно обеспечить большие скорости движения теплоносителей. Это позволяет достигать высоких коэффициентов теплоотдачи теплоносителей при их низких расходах. Недостатком таких аппаратов является громоздкость и большая металлоемкость на единицу поверхности теплообмена. Теплообменники этого типа целесообразно применять, когда требуется небольшая поверхность теплообмена (не более 20-30 м 2).

Оросительные теплообменники. Оросительные теплообмен-ники представляют собой конструкцию, изображенную на рис. 6. Трубы 1, по которым протекает теплоноситель, располагаются горизонтально параллельными рядами: одна под другой. Каждый ряд труб посредством калачей 2 соединяется со следующим рядом труб. Над рядами труб располагается желоб 3 с зубчатыми краями, в который подается вода. Вода из желоба стекает вниз и орошает последовательно ряды труб. Орошение из желоба стараются проводить равномерно по длине труб. Под рядами труб для сбора отработанной воды располагается поддон 4.

Оросительные теплообменники в основном применяются в качестве холодильников и конденсаторов. По сравнению с кожухотрубчатыми в оросительных теплообменниках расход охлаждающей воды меньше. Меньший расход объясняется отводом тепла от труб за счет испарения воды. Такая простая конструкция теплообменника обеспечивает доступность наружной поверхности труб для очистки.

Рис. 6. Оросительный тепло-обменник: 1 – секция прямых труб; 2 – калачи; 3 – распреде-лительный желоб; 4 – поддон

Оросительные теплообменники обладают следующими недостатками: громоздкость. неравномерность смачивания труб, как по их длине, так и по высоте; большая коррозия труб окружающим воздухом; загрязнение окружающей среды каплями и парами охлаждающей воды; невосполнимая потеря воды за счет испарения; небольшие значения коэффициентов теплоотдачи.

Змеевиковые теплообменники. Теплообменники такого типа (рис. 7) обычно изготавливают из труб диаметром 15 - 89 мм, сгибая их в виде цилиндрической или плоской спирали 1. Змеевики устанавливают непосредственно внутри аппарата 2, погружением в теплоноситель. Один теплоноситель движется внутри трубы змеевика, а другой снаружи змеевика в аппарате. Внутри аппарата может располагаться один или несколько змеевиков. Для интенсификации теплоотдачи от наружной стенки змеевика за счет увеличения скорости движения теплоносителя в аппарате устанавливают внутренний стакан 3, уменьшающий проходное сечение для теплоносителя II, или перемешивающее устройство. Погружные змеевиковые теплообменники

Рис. 7 Змеевиковый теп-лообменник: 1 – спиральный змеевик; 2 – корпус аппарата; 3 – внутренний стакан; 4 – конструкция для крепления змеевика

просты по конструкции. Коэффициенты теплопередачи в них относительно невелики.

Змеевиковые теплообменники имеют доступную для ремонта и очистки поверхность, могут использоваться при высоком давлении и химически агрессивных теплоносителях. Стоимость теплообменников такой конструкции невысока. Они применяются при требуемых поверхностях теплообмена не более 10-15 м 2 .

Оребренные теплообменники. Оребренные теплообменники (рис. 8) представляют собой конструкцию, состоящую из труб 1, на которых располагаются в продольном либо в поперечном направлении ребра 2. Ребристая поверхность гораздо больше поверхности труб. Это позволяет использовать оребренные теплообменники в тех случаях, когда коэффициенты теплоотдачи теплоносителей сильно различаются. Оребрение располагают со стороны теплоносителя, имеющего наименьший коэффициент теплоотдачи (газы, вязкие жидкости). Оребрением увеличивают тепловую нагрузку аппарата за счет увеличения поверхности теплоотдачи, а также коэффициента теплоотдачи путем турбулизации потока теплоносителя, в последнем случае ребра либо надрезаются и отгибаются в стороны, либо выполняются в виде спирали. Ребра должны иметь высокие коэффициенты теплопроводности и хороший контакт с трубами (литье, сварка, пайка), то есть обладать малым термическим сопротивлением.

Рис. 8 Элементы оребренных теплообменников:
1- труба; 2- ребра

Пластинчатые теплообменники . В пластинчатом теплооб-меннике (рис. 9) поверхность теплообмена образуется гофрирован-ными штампованными пластинами. Пластины соединяются между собой с использованием специальных прокладок из термостойких материалов. Пластинчатые теплообменники могут быть разборной, полуразборной и неразборной сварной конструкции. В результате образуется система узких каналов шириной 3-6 мм, по которым движутся теплоносители, не смешиваясь друг с другом. Каждая пластина отделяет один теплоноситель от другого, являясь поверхностью теплопередачи. Из-за малого сечения каналов в пластинчатых теплообменниках скорости течения теплоносителей высоки, что обеспечивает высокие коэффициенты теплоотдачи при относительно невысоких гидравлических сопротивлениях.

б в

Рис. 9 Пластинчатый теплообменник: а – монтажная схема однопоточного аппарата: 1 – четные пластины; 2 – нечетные пластины; 3,4 – штуцера для входа и выхода теплоносителя I;
5,6 – штуцера для входа и выхода теплоносителя II; 7 – неподвижная головная плита; 8 – подвижная головная плита; 9 – стяжное винтовое устройство; б – устройство пластин: 1,4 – прокладки; 2,3 – отверстия для теплоносителя I; 5,6 – отверстия для теплоносителя II; 7 – четные пластины; 8 – нечетные пластины; в – схема движения теплоносителей в однопоточном (одноходовом) теплообменнике

Другим достоинством таких теплообменников является простота их очистки при разборной конструкции. Однако эти теплообменники не могут работать при высоких давлениях теплоносителей. Кроме того, возникают сложности с подбором материалов для прокладок между пластинами, которые должны быть эластичны и химически стойки к воздействию теплоносителей.

Спиральные теплообменники . В спиральных теплообменниках (рис. 10) поверхность теплообмена образована двумя металличес-кими листами 1 и 2, свернутыми по спирали. С торцов спирали на прокладках устанавливаются крышки. В центре спирали и по ее краям устанавливаются штуцеры для подвода и отвода теплоносителей. Теплоносители движутся по двум узким спиральным изолированным друг от друга каналам прямоугольного сечения шириной 2-8 мм, обычно противотоком.

Рис. 10. Спиральный теплообменник: 1, 2 – листы, свернутые в спирали; 3 – перегородка; 4, 5 – крышки

Основными преимуществами спиральных теплообменных аппаратов являются их компактность и высокая интенсивность теплообмена. Спиральные теплообменные аппараты используют для нагрева и охлаждения жидкостей, газов и парогазовых смесей.

Спиральные теплообменники компактны, работают при высоких скоростях теплоносителей и обладают относительно малым гидравлическим сопротивлением. Однако теплообменники такого типа имеют и недостатки. Они могут использоваться при невысоком давлении теплоносителей (до 1,0 МПа) и сложны в изготовлении.

Теплообменные аппараты с рубашками . Для подвода и отвода тепла в аппаратах могут использоваться теплообменные рубашки
(рис. 11).

В теплообменниках с рубашками в качестве поверхности теплообмена используют поверхность самого аппарата. Рубашки с помощью прокладок и болтов или сваркой крепятся к корпусу аппарата. Один теплоноситель движется внутри аппарата, а другой – по пространству между рубашкой и стенкой аппарата. Поверхность теплообмена при такой конструкции ограничена площадью поверхности аппарата и обычно не превышает 10 м2. Теплообменные рубашки используются при давлении теплоносителя не более 0,6-1,0 МПа. Теплообменные рубашки могут выполняться не только из листового металла, но и из приваренных к стенкам аппарата полутруб, труб и угловой стали. Недостатком данных теплообменников является малое значение коэффициента теплоотдачи от стенок к теплоносителю, находящемуся в аппарате, вследствие малой скорости его движения.

Рис. Теплообменные аппараты с рубашками:
а – с гладкостенной приварной рубашкой; б – с теплообменной рубашкой из полутруб

Для интенсификации теплообмена в аппарате могут быть установлены перемешивающие устройства. Достоинствами теплооб-менников с рубашками являются простота конструкции и удобство очистки внутренней поверхности аппарата.

Смесительные теплообменники. Теплообмен при непосредственном контакте теплоносителей друг с другом обладает наибольшей интенсивностью и эффективностью. Однако смешение теплоносителей не всегда технологически возможно. Смешение возможно в тех случаях, когда теплоносителями является одно и то же вещество, либо когда смесь теплоносителей легко разделяется на исходные теплоносители, либо когда изменение состава теплоносителя в результате смешения с другим теплоносителем технологически оправдано или теплоносители в теплообменниках смешения могут находиться в различных фазовых состояниях. Причем фазовое состояние теплоносителей может изменяться в процессе теплообмена. Смешение потоков теплоносителей может быть прямоточным или противоточным. Фазовое состояние теплоносителей определяет конструкцию аппарата, позволяющую оптимальным образом проводить процесс теплообмена.

Конструкция смесительного теплообменного аппарата должна обеспечить высокий коэффициент теплопередачи и высокую поверхность соприкосновения теплоносителей. Для этого в аппаратах устанавливаются устройства, турбулизирующие течение и разделяющие потоки жидких теплоносителей на капли, струи, пленки, а газообразных теплоносителей – на мелкие пузырьки.

Для смешения газовых потоков теплоносителей используется емкостное оборудование, снабженное инжекторами. Смешение жидкостей также проводится в емкостном оборудовании с помощью инжекторов или различных конструкций перемешивающих устройств (механические мешалки, насосы). Смешение газовых (паровых) и жидкостных потоков может быть осуществлено в аппаратах множества конструкций: в емкостях с помощью барботеров или в колоннах, снабженных для увеличения контакта между фазами полками, насадкой, тарелками, различными разбрызгивающими устройствами. При смешении газовых или жидкостных потоков с целью теплообмена с твердой гранулированной фазой обычно используются аппараты со взвешенным (псевдоожиженным) слоем твердой фазы.

Из-за большого разнообразия конструкций, рассмотрим лишь некоторые из них. Наиболее часто теплообменники смешения используются для конденсации паров. При этом конденсаторы смешения подразделяются на сухие и мокрые. В сухих конденсаторах смешения конденсат отводится вместе с охлаждающей жидкостью, обычно, самотеком, а неконденсирующиеся газы отсасываются отдельно вакуум-насосом. В мокрых конденсаторах смешения газы, конденсат и охлаждающая жидкость откачиваются из аппарата насосом совместно.

Конденсатор смешения рассмотрим на примере сухого полочного аппарата (рис. 12). Конструкции полок весьма разнообразны: они могут быть сегментными, кольцевыми, коническими и т.д. Сверху подается в аппарат охлаждающая жидкость, а снизу пар. Охлаждающая жидкость, стекая сверху по перфорированным полкам, разделяется на множество струй, контактирующих с паровым потоком. В результате пары конденсируются, смешиваясь с потоком охлаждающей жидкости, и стекают по барометрической трубе высотой около 10 м в приемный колодец.При этом за счет гидростатического давления столба жидкости в барометрической трубе создается разность давлений на поверхности колодца (обычно атмосферное) и в корпусе конденсатора, приводящая к вакуумированию последнего. Барометрическая труба, помещенная в слой жидкости в колодце, образует гидрозатвор, препятствующий подсосу в аппарат атмосферного воздуха. Некоторое количество неконденсирующихся газов, попадающее в аппарат с жидкостью и паром, отводится из верхней части конденсатора с помощью вакуум - насоса. Такие аппараты, как будет показано ниже, используются в многокорпусных выпарных установках для конденсации паров и создания вакуума.

Рис. 12. Сухой противоточный полочный барометрический конденсатор: 1 – корпус;
2 – распределительные полки; 3 – штуцер для подвода пара; 4 –штуцер для подвода охлаждающей жидкости; 5 – штуцер для отвода охлаждающей жидкости и конденсата; 6 – барометрическая труба; 7 – колодец; 8 – штуцер для отвода неконденси-руемых газов

Насадочные теплообменники смешения могут использоваться как для конденсации паров, так и для охлаждения газа жидкостью или жидкости газом.

В насадочных колоннах (рис. 13) жидкость подается через распределительное устройство сверху аппарата 1. Равномерно распределенная по сечению аппарата жидкость попадает на насадку 2 и, стекая в виде тонкой пленки вниз, контактирует с газовой фазой, поднимающейся вверх. Насадка служит для увеличения поверхности контакта между жидкой и газообразной фазами. Насадка насыпается внавал или укладывается в определенном порядке на опорную колосниковую решетку 3. В качестве насадки используют кольца, седла, стальные спирали, сетки, куски кокса, кварца и т.д. Снизу аппарата противотоком к жидкой фазе подается газ.


Насадочные аппараты могут применяться и в качестве поверхностных регенеративных теплообменников. В этом случае теплоносители проходят через слой насадки попеременно. Для непрерывного проведения процесса устанавливаются параллельно два аппарата. В одном из них нагревающий агент отдает тепло насадке, а в другом в это время охлаждающий агент его отбирает. Потоки теплоносителей попеременно переключают от одного аппарата к другому.

В емкостном оборудовании для эффективного смешения газового потока с жидким используются барботёры (рис. 14).

Рис. 14. Смесительный аппарат с барботером:
1 – барботер,
I – газ; II – жидкость

Барботером 1 является устройство в виде трубы, изогнутой по окружности, спирали или иным образом, и уложенное на дне аппарата. В стенах труб имеется множество мелких отверстий для разбиения потока на струи или пузыри.

Выбор типа теплообменного аппарата. Для проведения процесса теплообмена необходимо подобрать такую конструкцию теплообменного аппарата, которая обеспечила бы выполнение поставленной задачи с минимальными затратами. Выбор конструкции теплообменного аппарата зависит от температур и давлений, при которых будет проходить процесс теплообмена, агрегатного состояния, физико-химических свойств, химической агрессивности и расходов теплоносителей, тепловой нагрузки аппарата и необходимости очистки теплообменной поверхности от возможных загрязнений.

В качестве критерия оптимальности выбора конструкции и конструктивных параметров аппарата обычно используются экономические затраты. Кроме того, оптимальная конструкция аппарата может подбираться при наложении ограничений на несколько параметров по принципу: параметры не должны выходить за заданные пределы (габаритный размер, масса и т.д.)

На сегодняшний день в той или иной сфере человеческой деятельности используются такое оборудование, как теплообменники. В настоящее время можно выделить немалое количество разновидностей таких устройств, основная задача которых заключается в передаче тепла от теплоносителя к холодной среде.

Такая модель, как теплообменник кожухотрубный , как правило, используется в газовой, нефтяной, химической промышленности. Кроме того, нередко их можно обнаружить и в большой теплоэнергетике, поскольку там эксплуатируются теплоносители с высокими параметрами. Необходимо также сказать о том, что такие модели теплообменных аппаратов достаточно часто применяются на пищевом, молочном и пивном производстве. Разносторонняя сфера использования данных агрегатов говорит о наличии такого замечательного достоинства, как высокий уровень мощности. К примеру, немалая часть аналогичных устройств используется только в бытовом применении и способно обеспечивать теплом только одну часть здания.

Следующее, на что необходимо обратить внимание, - это такая характеристика, как стойкость к гидравлическим ударам. Те или иные аппараты очень часто размещаются в сложной и тяжёлой эксплуатационной среде. При непредвиденных обстоятельствах некоторые приборы просто выходят из строя, в то время как кожухотрубные теплообменники способны исправно работать даже при гидроударах.

Немаловажным достоинством кожухотрубных теплообменных аппаратов является и способность прекрасно функционировать даже в загрязнённой рабочей среде. Многие модели теплообменников могут работать только с чистой средой. Описываемые устройства не предъявляют жёстких требований к чистоте среды, и это оказывается очень важным.

Несколько слов необходимо сказать о стоимости. К примеру, на пластинчатый теплообменник цена установлена очень высокая. Многих от покупки данного прибора останавливает именно этот фактор. Кожухотрубные устройства стоят намного дешевле. При этом их КПД будет ничуть не хуже тех аппаратов, в чьих конструкциях установлены пластины.

Однако и минусов у кожухотрубных теплообменников обнаруживается немало. Прежде всего, нужно сказать о том, что они достаточно сложно поддаются чистке. Во-первых, этот процесс отнимет много физических сил. Во-вторых, на чистку уйдёт много времени. При этом не исключается вероятность, что после этой процедуры трубки перестанут должным образом функционировать.

Ещё один существенный недостаток заключается в том, что такой агрегат занимает немало места, в отличие, например, от пластинчатых приборов.

Однако, несмотря на имеющиеся недостатки, кожухотрубные теплообменники всё равно очень активно используются в настоящее время.