16.03.2019

Минеральное питание растений. Удобрения


Усвоение веществ растениями* - идет различно, в зависимости от окраски растений. По характеру У. веществ все растения разбиваются на две группы: на зеленые растения и на растения, лишенные зеленой окраски. Зеленые растения усваивают минеральные вещества и приготовляют из них органические вещества. Растения же, лишенные зеленой окраски, усваивают уже готовые органические вещества и лишены способности питаться исключительно минеральными веществами. Ознакомимся сначала с У. веществ зелеными растениями. Зеленые растения характеризуются присутствием в их листьях, а также стеблях, особой зеленой краски, называемой хлорофиллом (см.). Самым важным признаком, отличающим зеленые растения как от животных, так и от незеленых растений, служит, как уже было сказано, их способность приготовлять органическое вещество из веществ неорганических. Это можно доказать простым опытом. Берется влажный кварцевый песок и в него сажается какое-либо семя. Песок поливается время от времени слабым раствором минеральных солей (азотно-кислый калий , азотно-кислый кальций , фосфорно-кислый калий, серно-кислый магний и фосфорно-кислое железо ; последнее - взмученное в виде порошка). Постепенно из посеянного семени развивается на солнечном свете зеленое растение , которое цветет и приносит плоды. Сравнение количества органического вещества, бывшего в семени, с количеством его во взрослом растении, показывает, что в последнем его во много раз более. Отсюда следует, что зеленые растения способны приготовлять органическое вещество из веществ минеральных. Животные, а также незеленые растения, подобною способностью не обладают и получают нужное для них органическое вещество в готовом виде от зеленых растений. Поэтому вопрос, как приготовляется органическое вещество зелеными растениями, является важным не только для ознакомления с жизнью растений, но и с более обширной точки зрения: весь животный мир, а следовательно, и человек, зависит от зеленых растений. Зеленые растения являются соединяющим звеном между минеральным миром и миром животных. Что такое органическое вещество? Хотя в настоящее время как органические, так и неорганические углеродистые вещества часто соединяют в одну группу углеродистых соединений, тем не менее, между органическими и неорганическими углеродистыми соединениями существует одно резкое отличие - все органические вещества способны гореть, т. е. выделять свободную теплоту, неорганические же углеродистые соединения гореть не могут. Итак, всякое органическое вещество характеризуется двумя признаками - содержанием углерода и способностью гореть. Способность гореть указывает на то, что образование их из веществ минеральных, не способных гореть, в зеленых растениях должно сопровождаться поглощением теплоты извне. Поэтому, приступая к вопросу об У. веществ зелеными растениями, нужно прежде всего выяснить откуда зеленые растения получают нужные для приготовления органического вещества углерод и теплоту. Трудами целого ряда ученых доказано, что растения своими зелеными частями поглощают на солнечном свете находящуюся в атмосфере углекислоту и выделяют кислород . Обмен происходит в равных объемах. Следовательно, на частицу поглощаемой углекислоты выделяется частица кислорода:

СО 2 = Ο 2 + С.

Углерод остается в растении. Результатом будет увеличение веса растения - питание его.

Образование углекислоты при горении угля сопровождается, как известно, выделением теплоты. Следовательно, на основании закона сохранения сил в природе, обратная реакция разложения углекислоты должна сопровождаться поглощением теплоты. Отсюда понятно, почему разложение углекислоты идет только на солнечном свете - теплота поглощенного растением света идет на разложение углекислоты. Зеленая краска - хлорофилл - служит экраном, поглощающим различные лучи солнечного спектра. Следовательно, теплота, выделяемая при горении какого-либо органического вещества, например, при горении дров, а также теплота тела животных, - все это теплота солнечного луча, поглощенного зеленым растением во время процесса разложения атмосферной углекислоты. Одновременно с У. атмосферной углекислоты идет также У. почвенной воды. Поэтому углерод накопляется в растениях в соединении с элементами воды. Одними из первых продуктов У. углерода являются крахмал или глюкоза по следующим уравнениям:

1) 6СО 2 + 5Н 2 О = C 6 H 10 O 5 + 6O 2

2) 6СО 2 + 6Н 2 О = C 6 H 12 O 6 + 6O 2

Из углерода, водорода и кислорода состоит главная масса сухого вещества растений. Сухое вещество однолетних растений в среднем содержит 45% углерода, 42% кислорода, 6,5% водорода, 1,5% азота и 5% золы. Следовательно, более 90% сухого вещества растений усваивается из углекислоты атмосферы и воды, получаемой из почвы. Следовательно, сельский хозяин, увозя жатву с поля, увозит, главным образом, атмосферный углерод и почвенную воду, а также консервированные солнечные лучи. Зеленые растения содержат в себе постоянно еще азот . Они его усваивают из находящихся в почве солей азотной кислоты. Хотя в растениях находится незначительное количество азота (в среднем 1,5% сух. вещества), тем не менее, вопрос о правильном его поступлении из почвы имеет очень важное значение, так как при недостатке азота сильно понижается усвояемость атмосферной углекислоты и почвенной воды и в результате получается ничтожная жатва, не окупающая сделанных на обработку поля расходов. Если почва бедна азотом, необходимо дать азотистые удобрения. Самые разнообразные азотистые соединения, введенные в почву, повышают урожай. Таковы сложные органические азотистые соединения, аммиачные соли и, наконец, азотно-кислые соли. Наиболее быстрые результаты получаются при удобрении азотно-кислыми солями, потому что они непосредственно поглощаются корнями растений. Сложные органические азотистые соединения предварительно разрушаются живущими в почве бактериями до аммиачных солей. Последние, в свою очередь, окисляются также бактериями до азотно-кислых солей, которые уже и усваиваются зелеными растениями. Из общего правила, что зеленые растения усваивают свой азот из почвы, есть исключение. Таковы бобовые растения. Все бобовые растения хорошо растут в почвах, не только бедных азотистыми соединениями, но даже совершенно лишенных их, и дают прекрасные урожаи. Они обладают способностью усваивать атмосферный свободный азот. Корни бобовых растений, выросших в естественных условиях, всегда несут на себе в значительном количестве небольшие клубеньки (фиг. 1).

Корень горохас клубеньками w .

Такие клубеньки образуются только в естественных нестерилизованных почвах, в стерилизованных же - только после заражения их нестерилизованным почвенным настоем. В незараженных стерилизованных почвах клубеньки никогда не образуются. Образование клубеньков есть результат симбиоза бобовых растений с низшими микроорганизмами. Только при помощи этих клубеньков бобовые растения усваивают атмосферный азот, потому что в стерилизованных почвах при отсутствии клубеньков бобовые не могут усваивать азот из атмосферы и получают его, как и прочие зеленые растения, только из почвы. Способность бобовых растений усваивать атмосферный азот имеет важное значение в сельском хозяйстве. Они являются собирателями так называемого связанного азота. Запашка посевов бобовых растений под зеленое удобрение обогащает связанным азотом почвы, бедные им. Кроме углерода, кислорода, водорода и азота в состав сухого вещества растений входит еще зола. В золе различных растений найдены следующие 31 элемент: сера , фосфор , хлор , бром , йод , фтор , бор, кремний , калий, натрий , литий , рубидий , магний, кальций, стронций , барий , цинк , алюминий , таллий , титан , олово , свинец , мышьяк , селен , марганец , железо, кобальт , никель , медь и серебро . Все эти элементы усваиваются растениями из почвы. Культуры растений в искусственно приготовленных почвах показывают, что для правильного развития растений необходимы только немногие из перечисленных элементов; остальные являются примесями, без которых растения могут обойтись. Безусловно необходимы для развития растений только следующие элементы золы: сера, фосфор, калий, кальций, магний и железо, иногда также и хлор. При отсутствии в почве хотя бы одного из перечисленных элементов ни одно растение развиваться не может. При водных культурах эти элементы вводятся в виде следующих солей: 1 часть KNO 3 ; 1 часть KH 2 PO 4 ; 1 часть MgSO 4 ; 4 части Ca(NO 3) 2 . К раствору этих соединений затем прибавляется немного фосфорно-кислого железа. Хотя азот не входит в состав золы, но его необходимо прибавлять для правильного развития растений, потому что, как мы видели выше, растения получают свой азот из почвы. Растворы должны быть очень слабы. Сначала для молодых еще растений употребляются 0,1% растворы. Затем с возрастом растений можно употреблять более крепкие растворы до 0,5%. Потребность в отдельных элементах золы для различных растений различна. Из одной и той же почвы одно растение усваивает преимущественно одни элементы, другое растение - другие. Сельские хозяева различают три группы культурных растений: кремнеземистые, известковые и поташные, смотря по тому, какие из названных элементов преобладают в них.

Соли калия и натрия Соли кальция и магния Кремнезем
Кремнеземистые растения
Овсяная солома 34,00% 4,00% 62,08%
Ржаная солома 18,65% 16,52% 63,89%
Известковые растения
Табак 24,34% 67,44% 8,30%
Клевер 39,20% 56,00% 4,90%
Поташные растения
Свекловица 88,80% 12,00% -
Земляная груша 84,30% 15,70% -

Минеральное питание растений

Питание растений заключается в поглощении ими из окружающей среды веществ, необходимых для процессов жизнедеятельности, а также распределение и использование их в обмене веществ. В процессе фотосинтеза растительные организмы синтезируют органические вещества, часть которых используют для построения самого организма, а часть используют как источник энергии. В состав органических веществ входят разные химические элементы, поступающие в растения из почвы. Большинство растений поглощают воду пассивно – силой, которая образовалась благодаря разнице между осмотическим и тургорным давлением. Растения, которые адаптировались к существованию на засоленных субстратах, используют активное транспортирование воды против градиента концентрации солей, расходую на это значительную часть продуктов ассимилляции. Из-за этого они всегда низкорослые. Минеральные вещества растения поглощают активным всасыванием. Однако растения способны не только поглощать минеральные вещества из почвенного раствора, а и растворять нерастворимые в воде соединения. Этому способствуют выделяемые растением органические кислоты – яблочная, лимонная и др.

Из-за разницы в концентрации полей почвенного раствора и цитоплазмы клеток эпиблемы возникает осмос – перемещение растворителя из почвы в волосистые клетки. Известно, что концентрации веществ в клетках корня возрастает от периферии к центру (градиент концентрации). Вследствие этого вода и растворенные в ней вещества передвигаются к сосудам центрального цилиндра корня, и возникает корневое давление, под действием которого раствор движется к стеблю. Кроме корневого давления (нижний водяной насос) движение раствора по сосудам поддерживает также процесс транспирации в листьях (верхний водяной насос). Под действием большой силы сцепления молекул воды между собой образуются своего рода столбики воды в проводящей системе растения. Начинаются такие столбики в корневых волосках, а заканчиваются – в устьицах листьев. Корневым давлением вода как бы закачивается в ксилему, а транспирация обеспечивает ее транспорт на нужную высоту.

Роль минеральных веществ в процессе жизнедеятельности растений в разные периоды вегетации определяют методом водных культур. Водная культура – это растение, выращенное без почвы в сосудах с водными растворами минеральных солей при поступлении в раствор воздуха (аэрация раствора). При этом используют разные варианты питательных сред, изменяя в них содержание компонентов и сравнивая характер вегетации растений на этих средах с вегетацией культур, для выращивания которых используют стандартный набор веществ.

Движение неорганических и органических веществ по корню. Движение воды и растворенных в ней веществ в растении происходит преимущественно двумя путями: диффузией и потоком. Диффузия воды и веществ происходит по градиенту концентраций, а движение потоком – по градиенту гидростатического давления. По сосудам вода движется, как по трубам, по общим законам гидродинамики, а в паренхимных клетках – осмотическим путем, причем передвижение воды в живых клетках значительно труднее.

В корне движение воды и растворенных в ней веществ начинается со всасывания ее корневыми волосками. Из волосков к ксилеме центрального цилиндра вода поступает через цитоплазму живых клеток коры корня, а также по клеточным стенкам. Таким путем вода передвигается медленно и на небольшое расстояние. Наконец, воды и растворенные в ней вещества поступаю в ксилему (ксилемный сок), а далее ксилемный сок по сосудам ксилемы движется благодаря корневому давлению. По ксилеме корня могут передвигаться и органические вещества, например запасные вещества корня весной.

Удобрения. С каждым урожаем из почвы выносится определенная часть минеральных веществ, и она постепенно истощается. Запас необходимых элементов пополняется минеральными (аммония сульфат, мочевина, калия хлорид, суперфосфат, фосфоритная мука; калиевая, кальциевая и натриевая селитры и др.) и органическими (перегной, торф, торфокомпосты, зеленые удобрения, птичий помет) удобрениями, которые в разной форме (порошок, раствор) используют в разные сроки в зависимости от типа почвы, ее плодородия и нужд растения. Например, азотсодержащие удобрения вносят перед посевом или в начале лета. В период формирования плодов растениями нужно больше фосфора и калия.

Количество удобрений, которые нужно внести в почву, определяют с помощью химического анализа почвы. Как избыток некоторых элементов в почве, так и их нехватка могут негативно влиять на урожайность культур. Сроки внесения удобрений определяют с учетом их способности растворятся в воде. Труднорастворимые (фосфатные) и нерастворимые (органические) удобрения вносят осенью, чтобы до весны они под действием почвенных организмов разложились до растворимых в воде минеральных соединений и с талыми водами поступили в почву. Удобрения можно вносить в отдельные фазы развития растений как подкормку. Она бывает сухой (рассыпают порошкообразные удобрения) и влажной (в почву вносят растворимые удобрения).

Испарение воды листьями (транспирация)

Вода, поступив из почвы через корневую систему в стебель и листья, передвигается по межклетникам и испаряется через устьица наружу.

Транспирация способствует поступлению нового количества воды в корень и поднятию ее по стеблю к листьям. Она является средством приспособления растений к условиям существования. Благодаря испарению в растительном организме поддерживается постоянный баланс воды в клетках. Кроме того, благодаря непосредственному движению и перемещению воды в организме растения происходят перемещения и обмен питательных веществ между отдельными органами. Наконец, этим процессом регулируется температурный режим в теле растения. Испарение воды растениями регулируется с помощью устьиц. При высоком содержании воды устьица открываются и транспирация усиливается, при недостатке воды, когда растения вянут, устьица замыкаются и транспирация затрудняется. Подача воды в листья из корней обеспечивается тремя силами: всасывающей силой клеток, силой сцепления молекул воды в проводящей системе и корневым давлением.

Интенсивность испарения зависит также от условий роста растения и его биологических свойств. Растения засушливых мест, а также в сухую погоду испаряют больше воды, чем в условиях повышенной влажности. Испарение воды, кроме устьиц, регулируется также защитными образованиями на кожице листа. Эти образования – кутикула, восковой налет, опушение разными волосками. У растений-суккулентов листок превратился на колючки (кактусы), а его функции выполняет стебель. Растения, которые растут во влажных местах, имеют большие листовые пластинки, не кожице которых нет защитных образований. Теневые растения испаряют меньше воды, чем те, которые растут без тени. Много воды испаряют растения во время суховеев и в жару, значительно меньше – в тихую пасмурную погоду.



Основную роль в испарении воды выполняют устьица, частично в этом процессе участвует и вся поверхность листа. Поэтому различают транспирацию устьичную и кутикулярную – через поверхность кутикулы, которая покрывает эпидерму листа. Кутикулярная транспирация значительно меньше устьичной.

Так как транспирация происходит преимущественно через устьица, куда проникает и углекислый газ для течения процесса фотосинтеза, существует взаимосвязь между выпариванием воды и накоплением сухого вещества в растении. Количество воды, которая испаряется растением для построения 1 г сухого вещества, называется транспирационным коэффициентом. Его величина зависит от условий роста, виды и сорта растения.

При затрудненном испарении у растений наблюдается гуттация – выделение через водяные устьица (гидатоды) капель воды. Это явление в природе наблюдается утром, когда воздух насыщен водяным паром, или перед дождем. Гидатоды – очень активная структура выделения. Однако их относят к выделительной системе только формально, так как продуктом выделения является вода, а не экскреторные вещества. Место сосредоточивания гидатод – край листа, преимущественно верхушки зубчиков, где заканчиваются проводящие элементы кислемы.

Биологическим приспособлением растений к защите от испарения является листопад – массовое опадение листьев в холодный или жаркий периоды года.

Значение микроэлементов в жизнедеятельности растений

Микроэлементами называют химические элементы, необходимые для нормальной жизнедеятельности растений и животных, и используемые растениями и животными в микро количествах по сравнению с основными компонентами питания. Однако биологическая роль микроэлементов велика. Всем без исключения растениям для построения ферментных систем - биокатализаторов - необходимы микроэлементы, среди которых наибольшее значение имеют железо, марганец, цинк, бор, молибден, кобальт и др. Ряд ученых называют их "элементами жизни", как бы подчеркивая, что при отсутствии указанных элементов жизнь растений и животных становится невозможной. Недостаток микроэлементов в почве не приводит к гибели растений, но является причиной снижения скорости и согласованности протекания процессов, ответственных за развитие организма. В конечном итоге растения не реализуют своих возможностей и дают низкий и не всегда качественный урожай
Микроэлементы не могут быть заменены другими веществами и их недостаток обязательно должен быть восполнен с учетом формы, в которой они будут находиться в почве. Растения могут использовать микроэлементы только в водорастворимой форме (подвижной форме микроэлемента), а неподвижная форма может быть использована растением после протекания сложных биохимических процессов с участием гуминовых кислот почвы. В большинстве случаев эти процессы протекают очень медленно и при обильном поливе грунта значительная часть образующихся подвижных форм микроэлементов вымывается. Все микроэлементы жизни, корме бора, входят в состав тех или иных ферментов. Бор не входит в состав ферментов, а локализуется в субстрате и участвует в перемещении сахаров через мембраны, благодаря образованию углеводно-боратного комплекса.

Главная роль микроэлементов в повышении качества и количества урожая заключается в следующем:

1. При наличии необходимого количества микроэлементов растения имеют возможность синтезировать полный спектр ферментов, которые позволят более интенсивно использовать энергию, воду и питание (N, P, K), а соответственно получить более высокий урожай.

2. Микроэлементы и ферменты на их основе усиливают восстановительную активность тканей и препятствуют заболеванию растений.

1. Оптимальным является одновременное поступление макро и микроэлементов, особенно это касается фосфора и цинка, нитратного азота и молибдена.

2. В течение всего вегетационного периода растения испытывают потребность в основных микроэлементах, некоторые микроэлементы не реутилизируются, т. е. не используются повторно в растениях. Они не передвигаются из старых органов в боле молодые.

3. Микроэлементы в биологически активной форме в настоящее время не имеют себе равных при внекорневых подкормках, которые особенно эффективны при опрыскивании макро и микроэлементами. Только при корневом питании растений наблюдается апронетальный градиент концентрации, особенно бора и цинка. Концентрация этих веществ в растении убывает снизу вверх.

Железо играет ведущую роль среди всех содержащихся в растениях тяжелых металлов. Об этом свидетельствует уже тот факт, что оно содержится в тканях растений в количествах более значительных, чем другие металлы. Так содержание железа в листьях достигает сотых долей процента, за ним следует марганец, концентрация цинка выражается уже в тысячных долях, а содержание меди не превышает десятитысячных процента.
Органические соединения, в состав которых входит железо, необходимы в биохимических процессах, происходящих при дыхании и фотосинтезе. Это объясняется очень высокой степенью их каталитических свойств. Неорганические соединения железа также способны катализировать многие биохимические реакции, а в соединении с органическими веществами каталитические свойства железа возрастают во много раз.
Каталитическое действие железа связано с его способностью менять степень окисления. Атом железа окисляется и восстанавливается сравнительно легко, поэтому соединения железа являются переносчиками электронов в биохимических процессах. В основе реакций, происходящих при дыхании растений лежит процесс переноса электронов. Процесс этот осуществляется ферментами - дегидрогенезами и цитохромами, содержащими железо.
Железу принадлежит особая функция - непременное участие в биосинтезе хлорофилла. Поэтому любая причина, ограничивающая доступность железа для растений, приводит к тяжелым заболеваниям, в частности к хлорозу.
При нарушении и ослаблении фотосинтеза и дыхания вследствие недостаточного образования органических веществ, из которых строится организм растения, и дефицита органических резервов, происходит общее расстройство обмена веществ. Поэтому при остром недостатке железа неизбежно наступает гибель растений. У деревьев и кустарников зеленая окраска верхушечных листьев исчезает полностью, они становятся почти белыми, постепенно усыхают.

Марганец

Роль марганца в обмене веществ у растений сходна с функциями магния и железа. Марганец активирует многочисленные ферменты, особенно при фосфоролировании. Поскольку марганец активизирует ферменты в растении, его недостаток сказывается на многих процессах обмена веществ, в частности на синтезе углеводов и протеинов.
Признаки дефицита марганца у растений чаще всего наблюдаются на карбонатных, сильноизвесткованных, а также на некоторых торфянистых и других почвах при рН выше 6,5.
Недостаток марганца становится заметным сначала на молодых листьях по более светлой зеленой окраске или по обесцвечиванию (хлорозу). В отличие от железистого хлороза у однодольных в нижней части пластинки листьев появляются серые, серо-зеленые или бурые, постепенно сливающиеся пятна, часто с более темным окаймлением. Признаки марганцевого голодания у двудольных такие же, как при недостатке железа, только зеленые жилки обычно не так резко выделяются на пожелтевших тканях. Кроме того, очень быстро появляются бурые некротические пятна. Листья отмирают даже быстрее, чем при недостатке железа.
Марганцевая недостаточность у растений обостряется при низкой температуре и высокой влажности. Видимо, в связи с этим озимые хлеба наиболее чувствительны к его недостатку ранней весной.
Марганец участвует не только в фотосинтезе, но и в синтезе витамина С. При недостатке марганца понижается синтез органических веществ, уменьшается содержание хлорофилла в растениях, и они заболевают хлорозом.
Симптомы марганцевой недостаточности у растений проявляются чаще всего на карбонатных, торфянистых и других почвах с высоким содержанием органического вещества. Недостаток марганца у растений проявляется в появлении на листьях мелких хлоротичных пятен, располагающихся между жилками, которые остаются зелеными. У злаков хлоротичные пятна имеют вид удлиненных полосок, а у свеклы они располагаются мелкими пятнами по листовой пластинке. При марганцевом голодании отмечается также слабое развитие корневой системы растений. Наиболее чувствительными культурами к недостатку марганца являются свекла сахарная, кормовая и столовая, овес, картофель, яблоня, черешня и малина. У плодовых культур наряду с хлорозным заболеванием листьев отмечается слабая облиственность деревьев, более раннее, чем обычно опадание листьев, а при сильном марганцевом голодании - засыхание и отмирание верхушек веток.
Физиологическая роль марганца в растениях связана, прежде всего, с его участием в окислительно-восстановительных процессах, проходящих в живой клетке, он входит в ряд ферментных систем и принимает участие в фотосинтезе, дыхании, углеводном и белковом обмене и т.п.
Изучение эффективности марганцевых удобрений на различных почвах Украины показали, что урожай сахарной свеклы и содержание в ней сахара на их фоне был выше, более высоким был при этом и урожай зерновых.

Все культурные растения по отношению к цинку делятся на 3 группы:
- очень чувствительные (кукуруза, лен, хмель, виноград, плодовые);

Средне чувствительные (соя, фасоль, кормовые бобовые, горох, сахарная свекла, подсолнечник, клевер, лук, картофель, капуста, огурцы, ягодники);

Слабо чувствительные (овес, пшеница, ячмень, рожь, морковь, рис, люцерна).

Недостаток цинка для растений чаще всего наблюдается на песчаных и карбонатных почвах. Мало доступного цинка на торфяниках, а также на некоторых малоплодородных почвах. Недостаток цинка сильнее всего сказывается на образовании семян, чем на развитии вегетативных органов. Симптомы цинковой недостаточности широко встречаются у различных плодовых культур (яблоня, черешня, японская слива, орех, пекан, абрикос, авокадо, лимон, виноград). Особенно страдают от недостатка цинка цитрусовые культуры.
Физиологическая роль цинка в растениях очень разнообразна. Он оказывает большое влияние на окислительно-восстановительные процессы, скорость которых при его недостатке заметно снижается. Дефицит цинка ведет к нарушению процессов превращения углеводородов. Установлено, что при недостатке цинка в листьях и корнях томата, цитрусовых и других культур, накапливаются фенольные соединения, фитостеролы или лецитины, уменьшается содержание крахмала.
Цинк входит в состав различных ферментов: карбоангидразы, триозофосфатдегидрогеназы, пероксидазы, оксидазы, полифенолоксидазы и др.
Обнаружено, что большие дозы фосфора и азота усиливают признаки недостаточности цинка у растений и что цинковые удобрения особенно необходимы при внесении высоких доз фосфора.
Значение цинка для роста растений тесно связано с его участием в азотном обмене. Дефицит цинка приводит к значительному накоплению растворимых азотных соединений - аминов и аминокислот, что нарушает синтез белка. Многие исследования подтвердили, что содержание белка в растениях при недостатке цинка уменьшается.
Под влиянием цинка повышается синтез сахарозы, крахмала, общее содержание углеводов и белковых веществ. Применение цинковых удобрений увеличивает содержание аскорбиновой кислоты, сухого вещества и хлорофилла. Цинковые удобрения повышают засухо-, жаро- и холодоустойчивость растений.
Агрохимическими исследованиями установлена необходимость цинка для большого количества видов высших растений. Его физиологическая роль в растениях многосторонняя. Цинк играет важную роль в окислительно-восстановительных процессах, протекающих в растительном организме, он является составляющей частью ферментов, непосредственно участвует в синтезе хлорофилла, влияет на углеводный обмен в растениях и способствует синтезу витаминов.
При цинковой недостаточности у растений появляются хлоротичные пятна на листьях, которые становятся бледно-зелеными, а у некоторых растений почти белыми. У яблони, груши и ореха при недостатке цинка развивается так называемая розеточная болезнь, выражающаяся в образовании на концах ветвей мелких листьев, которые располагаются в форме розетки. При цинковом голодании плодовых почек закладывается мало. Урожайность семечковых резко падает. Черешня еще более чувствительна к недостатку цинка, чем яблоня и груша. Признаки цинкового голодания у черешни проявляются в появлении мелких, узких и деформированных листьев. Хлороз вначале появляется на краях листьев и постепенно распространяется к средней жилке листа. При сильном развитии заболевания весь лист становится желтым или белым.
Из полевых культур цинковая недостаточность чаще всего проявляется на кукурузе в виде образования белого ростка или побеления верхушки. Показателем цинкового голодания у бобовых (фасоль, соя) является наличие хлороза на листьях, иногда асимметрическое развитие листовой пластинки. Недостаток цинка для растений чаще всего наблюдается на песчаных и супесчаных почвах с низким его содержанием, а также на карбонатных и старопахотных почвах.
Применение цинковых удобрений повышает урожай всех полевых, овощных и плодовых культур. При этом отмечается снижение пораженности растений грибковыми заболеваниями, повышается сахаристость плодовых и ягодных культур.

Бор необходим для развития меристемы. Характерными признаками недостатка бора являются отмирание точек роста, побегов и корней, нарушения в образовании и развитии репродуктивных органов, разрушение сосудистой ткани и т.д. Недостаток бора очень часто вызывает разрушение молодых растущих тканей.
Под влиянием бора улучшаются синтез и перемещение углеводов, особенно сахарозы, из листьев к органам плодоношения и корням. Известно, что однодольные растения менее требовательны к бору, чем двудольные.
В литературе имеются данные о том, что бор улучшает передвижение ростовых веществ и аскорбиновой кислоты из листьев к органам плодоношения. Установлено, что цветки наиболее богаты бором по сравнению с другими частями растений. Он играет существенную роль в процессах оплодотворения. При исключении его из питательной среды пыльца растений плохо или даже совсем не прорастает. В этих случаях внесение бора способствует лучшему прорастанию пыльцы, устраняет опадание завязей и усиливает развитие репродуктивных органов.
Бор играет важную роль в делении клеток и синтезе белков и является необходимым компонентом клеточной оболочки. Исключительно важную функцию выполняет бор в углеводном обмене. Недостаток его в питательной среде вызывает накопление сахаров в листьях растений. Это явление наблюдается у наиболее отзывчивых к борным удобрениям культур. Бор способствует и лучшему использованию кальция в процессах обмена веществ в растениях. Поэтому при недостатке бора растения не могут нормально использовать кальций, хотя последний находится в почве в достаточном количестве. Установлено, что размеры поглощения и накопления бора растениями возрастают при повышении калия в почве.
При недостатке бора в питательной среде наблюдается нарушение анатомического строения растений, например, слабое развитие ксилемы, раздробленность флозмы основной паренхимы и дегенерация камбия. Корневая система развивается слабо, так как бор играет значительную роль в ее развитии.
Недостаток бора ведет не только к понижению урожая сельскохозяйственных культур, но и к ухудшению его качества. Следует отметить, что бор необходим растениям в течение всего вегетационного периода. Исключение бора из питательной среды в любой фазе роста растения приводит к его заболеванию.
Внешние признаки борного голодания изменяются в зависимости от вида растений, однако, можно привести ряд общих признаков, которые характерны для большинства высших растений. При этом наблюдается остановка роста корня и стебля, затем появляется хлороз верхушечной точки роста, а позже при сильном борном голодании следует полное его отмирание. Из пазух листьев развиваются боковые побеги, растение усиленно кустится, однако вновь образовавшиеся побеги, вскоре тоже останавливаются в росте и повторяются все симптомы заболевания главного стебля. Особенно сильно страдают от недостатка бора репродуктивные органы растений, при этом больное растение может совершенно не образовывать цветков или их образуется очень мало, отмечается пустоцвет опадание завязей.
В этой связи применение борсодержащих удобрений и улучшение обеспечения растений этим элементом способствует не только увеличению урожайности, но и значительному повышению качества продукции. Улучшение борного питания ведет к повышению сахаристости сахарной свеклы, повышению содержания витамина С и сахаров в плодово-ягодных культурах, томатах и т. д.

Наиболее отзывчивы на борные удобрения сахарная и кормовая свекла, люцерна и клевер (семенные посевы), овощные культуры, лен, подсолнечник, конопля, эфиромасличные и зерновые культуры.

Различные сельскохозяйственные культуры обладают неодинаковой чувствительностью к недостатку меди. Растения можно расположить в следующем порядке по убывающей отзывчивости на медь: пшеница, ячмень, овес, лен, кукуруза, морковь, свекла, лук, шпинат, люцерна и белокочанная капуста. Средней отзывчивостью отличаются картофель, томат, клевер красный, фасоль, соя. Сортовые особенности растений в пределах одного и тоже вида имеют большое значение и существенно влияют на степень проявления симптомов медной недостаточности.
Недостаток меди часто совпадает с недостатком цинка, а на песчаных почвах также с недостатком магния. Внесение высоких доз азотных удобрений усиливает потребность растений в меди и способствует обострению симптомов медной недостаточности.
Несмотря на то, что ряд других макро- и микроэлементов оказывает большое влияние на скорость окислительно-восстановительных процессов, действие меди в этих реакциях является специфическим, и она не может быть заменена каким-либо другим элементом. Под влиянием меди повышается как активность пероксисилазы, так и снижение активности синтетических центров и ведет к накоплению растворимых углеводов, аминокислот и других продуктов распада сложных органических веществ. Медь является составной частью ряда важнейших окислительных ферментов - полифенолксидазы, аскорбинатоксидазы, лактазы, дегидрогеназы и др. Все указанные ферменты осуществляют реакции окисления переносом электронов с субстрата к молекулярному кислороду, который является акцептором электронов. В связи с этой функцией валентность меди в окислительно-восстановительных реакциях изменяется от двухвалентного до одновалентного состояния и обратно.
Медь играет большую роль в процессах фотосинтеза. Под влиянием меди повышается как активность пароксидазы, так и синтез белков, углеводов и жиров. При ее недостатке разрушение хлорофилла происходит значительно быстрее, чем при нормальном уровне питания растений медью, наблюдается понижение активности синтетических процессов, что ведет к накоплению растворимых углеводов, аминокислот и других продуктов распада сложных органических веществ.
При питании аммиачным азотом недостаток меди задерживает включение азота в белок, пептоны и пептиды уже в первые часы после внесения азотной подкормки. Это указывает на особо важную роль меди при применении аммиачного азота.
Характерной особенностью действия меди является то, что этот микроэлемент повышает устойчивость растений против грибковых и бактериальных заболеваний. Медь снижает заболевание зерновых культур различными видами головни, повышает устойчивость растений к бурой пятнистости и т.д.
Признаки медной недостаточности проявляются чаще всего на торфянистых и на кислых песчаных почвах. Симптомы заболевания растений при недостатке в почве меди проявляются для зерновых в побелении и засыхании кончиков листовой пластинки. При сильном недостатке меди растения начинают усиленно куститься, но в дальнейшем колошения не происходит и весь стебель постепенно засыхает.
Плодовые культуры при недостатке меди заболевают так называемой суховершинностью или экзантемой. При этом на листовых пластинках слив и абрикосов между жилками развивается отчетливый хлороз.
У томатов при недостатке меди отмечается замедление роста побегов, слабое развитие корней, появление темной синевато-зеленой окраски листьев и их закручивание, отсутствие образования цветков.
Все указанные выше заболевания сельскохозяйственных культур при применении медных удобрений полностью устраняются, и продуктивность растений резко возрастает.

Молибден

В настоящее время молибден по своему практическому значению выдвинут на одно из первых мест среди других микроэлементов, так как этот элемент оказался весьма важным фактором в решении двух кардинальных проблем современного сельского хозяйства - обеспечения растений азотом, а сельскохозяйственных животных белком.
В настоящее время установлена необходимость молибдена для роста растений вообще. При недостатке молибдена в тканях растений накапливается большое количество нитратов и нарушается нормальный азотный обмен.
Молибден участвует в углеводородном обмене, в обмене фосфорных удобрений, в синтезе витаминов и хлорофилла, влияет на интенсивность окислительно-восстановительных реакций. После обработки семян молибденом в листьях повышается содержание хлорофилла, каротина, фосфора и азота.
Установлено, что молибден входит в состав фермента нитратрадуктазы, осуществляющей восстановление нитратов в растениях. Активность этого фермента зависит от уровня обеспеченности растений молибденом, а так же от форм азота, применяемых для их питания. При недостатке молибдена в питательной среде резко снижается активность нитратрадуктазы.
Внесение молибдена отдельно и совместно с бором в различные фазы роста гороха улучшало активность аскорбинатоксидазы, полифенолоксидазы и пароксидазы. Наибольшее влияние на на активность аскорбинатоксидазы и полифенолоксидазы оказывает молибден, а активность пароксидазы - бор на фоне молибдена.
Нитратредуктаза при участии молибдена катализирует восстановление нитратов и нитритов, а нитритредуктаза также при участии молибдена восстанавливает нитраты до аммиака. Этим объясняется положительное действие молибдена на повышение содержания белков в растениях.
Под влиянием молибдена в растениях увеличивается также содержание углеводов, каротина и аскорбиновой кислоты, повышается содержание белковых веществ. Воздействием молибдена в растениях увеличивается содержание хлорофилла и повышается интенсивность фотосинтеза.
Недостаток молибдена приводит к глубокому нарушению обмена веществ у растений. Симптомам молибденовой недостаточности предшествует в первую очередь изменение в азотном обмене у растений. При недостатке молибдена тормозится процесс биологической редукции нитратов, замедляется синтез амидов, аминокислот и белков. Все это приводит не только к снижению урожая, но и к резкому ухудшению его качества.
Значение молибдена в жизни растений довольно разнообразно. Он активизирует процессы связывания атмосферного азота клубеньковыми бактериями, способствует синтезу и обмену белковых веществ в растениях. Наиболее чувствительны к недостатку молибдена такие культуры как соя, зерновые бобовые культуры, клевер, многолетние травы. Потребность растений в молибденовых удобрениях обычно возрастает на кислых почвах, имеющих рН ниже 5,2.
Физиологическая роль молибдена связана с фиксацией атмосферного азота, редукцией нитратного азота в растениях, участием в окислительно-восстановительных процессах, углеводном обмене, в синтезе хлорофилла и витаминов.
Недостаток молибдена в растениях проявляется в светло-зеленой окраске листьев, при этом сами листья становятся узкими, края их закручиваются внутрь и постепенно отмирают, появляется крапчатость, жилки листа остаются светло-зелеными. Недостаток молибдена выражается, прежде всего, в появлении желто-зеленой окраски листьев, что является следствием ослабления фиксации азота атмосферы, стебли и черешки растений становятся красновато-бурыми.
Результаты опытов по изучению молибденовых удобрений показали, что при их применении повышается урожай сельскохозяйственных культур и его качество, но особенно важна его роль в интенсификации симбиотической азотофиксации бобовыми культурами и улучшении азотного питания последующих культур.

Кобальт необходим для усиления азотофиксирующей деятельности клубеньковых бактерий Он входит в состав витамина В12, который имеется в клубеньках, оказывает заметное положительное действие на активность фермента гидрогеназы, а также увеличивает активность нитратредуктазы в клубеньках бобовых культур.
Этот микроэлемент влияет на накопление сахаров и жиров в растениях. Кобальт благоприятно действует на процесс синтеза хлорофилла в листьях растений, уменьшает его распад в темноте, увеличивает интенсивность дыхания, содержание аскорбиновой кислоты в растениях. В результате внекорневых подкормок кобальтом в листьях растений повышается общее содержание нуклеиновых кислот. Кобальт оказывает заметное положительное действие на активность фермента гидрогеназы, а также увеличивает активность нитратредуктазы в клубеньках бобовых культур. Доказано положительное действие кобальта на томаты, горох, гречиху, ячмень, овес и другие культуры.
Кобальт принимает активное участие в реакциях окисления и восстановления, стимулирует цикл Кребса и оказывает положительное влияние на дыхание и энергетический обмен, а также биосинтез белка нуклеиновых кислот. Благодаря своему положительному влиянию на обмен веществ, синтез белков, усвоение углеводов и т.п. он является могучим стимулятором роста.
Положительное действие кобальта на сельскохозяйственные культуры проявляется в усилении азотофиксации бобовыми, повышении содержания хлорофилла в листьях и витамина В12 в клубеньках.
Применение кобальта в виде удобрений под полевые культуры повышало урожай сахарной свеклы, зерновых культур и льна. При удобрении кобальтом винограда повышался урожай его ягод, их сахаристость и снижалась кислотность.

Приведенный обзор физиологической роли микроэлементов для высших растений свидетельствует о том, что недостаток почти каждого из них ведет к проявлению в той или иной степени хлороза у растений.
На засоленных почвах применение микроэлементов усиливает поглощение растениями питательных веществ из почвы и снижается поглощение хлора, повышается накопление сахаров и аскорбиновой кислоты, наблюдается некоторое увеличение содержания хлорофилла и повышается продуктивность фотосинтеза. Кроме этого необходимо отметить и фунгицидные свойства микроэлементов, подавление грибковых заболеваний при обработке семян и при внесении их по вегетирующим растениям.


1. Изучение влияния на интенсивность физиологических процессов при их исключении из питательной среды.

2. Изучение специфической роли отдельных микроэлементов, главным образом участия их в определенных ферментных реакциях.

Второй биохимический подход оказался более результативным.

Железо было первым микроэлементом, необходимость которого была открыта Грисом в 1843 - 1844гг.

Необходимость других микроэлементов - бора, марганца, меди, цинка и молибдена, для высших растений была установлена только в 20-ых и 30-ых годах 20 столетия. Установлению их необходимости способствовало вскрытие причин многих заболеваний растений, не вызываемых грибной и бактериальной инфекцией - гниль сердечка сахарной свеклы, серая пятнистость листьев, бронзовая болезнь и др. Все эти болезни оказались результатом физиологического расстройства, вызванного недостатком того или иного микроэлемента, и болезнь ликвидировалась, как только удовлетворялась потребность растения в отсутствовавшем элементе.

Этим элементам принадлежит исключительная роль в обмене веществ. Они, соединяясь с органическими веществами, особенно белками, во много раз повышают свою каталитическую активность. Так, например, железо в составе сложного геминового комплекса в сочетании со специфическим белком повышает каталитическую активность против активности иона железа в 1010 раз.

Бор, алюминий, кобальт, марганец, цинк и медь повышают засухоустойчивость растений. И в данном случае действие микроэлементов обусловлено влиянием на коллоидно-биохимические свойства протоплазмы (повышение гидрофильности и водоудерживающей способности коллоидов). Микроэлементы усиливают также передвижение пластических веществ из листьев в генеративные органы.

Существенные сдвиги вызывают некоторые микроэлементы в скорости прохождения стадий развития. Установлено, что намачивание семян пшеницы в растворах солей Cu, Zn, Mo, B значительно ускоряет прохождение растениями стадии яровизации, тогда как растворы Fe и Mn не оказывали положительного действия или задерживали развитие.

Влияние каждого из элементов зависит от концентрации: оно сказывается на последующем росте надземных органов и корней неодинаково. Так, Cu и Mo стимулируют рост стебля и корней, тогда как Mn и Ni - только стебля, а B и Sr - только корневой.

Сильное положительное влияние оказывала обработка семян Сu на засухоустойчивость растений хлопчатника. Этот эффект обусловлен повышением водоудерживающей способности и сосущей силы клеток листовой паренхимы, изменением анатомического строения листьев в сторону ксерофитности и т.д. Аналогичный эффект наблюдали на озимой пшенице при обработке семян солями B,Cu, Mo, Co, P и К. прохождение световой стадии ускорялось под влиянием B, Co, Mo, Mn, Zn, Cu и Al. Интересно, что это наблюдалось только на длиннодневных растениях (озимая пшеница, овес) и не проявлялось на короткодневных (перилла).

В решение вопросов, связанных с питанием растений микроэлементами большой вклад внесли Я. В. Пейве, М. Я. Школьник, М. В. Каталымов, Б. А. Ягодин и др.

Бор

Бор - один из наиболее важных для растений микроэлементов. Его среднее содержание составляет 0,0001%, или 0,1 мг на 1 кг сухой массы. В боре наиболее нуждаются двудольные растения. Обнаружено значительное содержание бора в цветках, особенно в рыльце и столбиках. В клетке большая часть этого микроэлемента сконцентрирована в клеточных стенках. Бор усиливает рост пыльцевых трубок, прорастание пыльцы, увеличивает количество цветков и плодов. Без него нарушается созревание семян. Бор снижает активность некоторых дыхательных ферментов, оказывает влияние на углеводный, белковый и нуклеиновый обмен.

Поглощение бора сильно зависит от pH, а его распределение по растению происходит преимущественно с транспирационным током. Необходимость бора для растений установлена очень давно, но до сих пор неясно, каким образом реализуются его функции: в какие конкретно реакции он включен и каков механизм его участия в отдельных процессах.

Роль бора выяснена далеко не достаточно. Это связано с тем, что бор, в отличие от большинства других микроэлементов, не входит в состав ни одного фермента и не является активатором ферментов. Большое значение для осуществления функции бора имеет его способность давать комплексные соединения. Комплексы с борной кислотой образуют простые сахара, полисахариды, спирты, фенольные соединения и др. В этой связи можно предположить, что бор влияет на скорость ферментативных реакций через субстраты, на которые действуют ферменты.

Недостаток бора вызывает ряд заболеваний: гниль сердечка сахарной свеклы, внутренняя черная пятнистость столовой свеклы и брюквы, болезнь побурения головок цветной капусты, отмирание колосков у пшеницы и даже всего зачаточного колоса у ячменя, пожелтение люцерны и др. Установлено, что под влиянием бора изменяется ряд физиологических процессов: увеличивается оводненность плазмы, усиливается поглощение катионов и особенно кальция и ослабляется поглощение анионов.

Также при недостатке бора нарушаются синтез, превращения и транспорт углеводов, формирование репродуктивных органов, оплодотворение и плодоношение. Бор необходим растениям в течение всего периода их развития. Он не может реутилизироваться и поэтому при борном голодании прежде всего

отмирают конусы нарастания - наиболее типичный симптом борной недостаточности. Анатомические исследования указывают на прекращение деления клеток в меристеме. Одновременно обнаруживаются значительные нарушения нормального расположения элементов флоэмы и ксилемы, вплоть до полной потери этими тканями проводимости. В этом состоят причины обнаруживаемых при борном голодании нарушений передвижения пластических веществ и, прежде всего, сахаров из листьев в осевые и запасные органы растений.

Культуры, наиболее чувствительные к недостаче бора: сахарная и кормовая свекла, рапс, бобовые, люцерна, овощные, яблоня, виноград.

Магний

У высших растений среднее содержание магния составляет 0,02 %. Особенно много магния в растениях короткого дня - кукурузе, просе, сорго, конопле, а также в картофеле, свекле, табаке и бобовых. Много его накапливается в молодых клетках и растущих тканях, а также в генеративных органах и запасающих тканях. В зерновках магний накапливается в зародыше, где его уровень в несколько раз превышает содержание в эндосперме и кожуре. Накоплению магния в молодых тканях способствует его сравнительно высокая подвижность в растениях, что обусловливает его вторичное использование (реутилизацию) из стареющих тканей. Перемещение магния осуществляется как по ксилеме, так и по флоэме.

В хлоропласте сосредоточено 15% Mg 2+ листа, до 6% его может находиться в составе хлорофилла. При дефиците магния (голодании) доля Mg 2+ в пигменте может достигать даже 50% от общего содержания в листе. Эта функция магния уникальна: ни один другой элемент не может заменить его в хлорофилле. Магний необходим для синтеза протопорфирина 9 - непосредственного предшественника хлорофилла.

Магний поддерживает структуру рибосом, связывая РНК и белок. Большая и малая субъединицы рибосом ассоциируют вместе лишь в присутствии магния. Отсюда синтез белка не идет при недостатке магния, а тем более в его отсутствии. Магний является активатором многих ферментов. Важной особенностью магния является то, что он связывает фермент с субстратом по типу хелатной связи.

Магний входит в состав фитина (органофосфата), запасного органического вещества. Отвечает за транспорт энергии, активирует фермент, который является катализатором участия СО 2 в процессе фотосинтеза.

Магний необходим для многих ферментов цикла Кребса и гликолиза. Он требуется и для работы ферментов молочнокислого и спиртового брожения.

Магний усиливает синтез эфирных масел, каучука, витаминов А и С.

При повышении степени обеспеченности магнием в растениях возрастает содержание органических и неорганических форм фосфорных соединений. Этот эффект, вероятно, связан с ролью магния в активации ферментов, участвующих в метаболизме фосфора.

Процесс поступления магния в растения может зависеть от степени обеспеченности растений другими катионами. Так, при высоком содержании калия или аммония в почве или питательном растворе уровень магния, особенно в вегетативных частях растений, снижается. В плодах же количество магния при этом не меняется или может даже возрастать. Наоборот, при низком уровне калия или аммония в питательной среде содержание магния в растении повышается. Кальций и марганец также действуют как конкуренты в процессе поглощения магния растениями.

Недостаток в магнии растения испытывают в основном не песчаных почвах. Бедны магнием и кальцием, богаты - сероземы; черноземы занимают промежуточное положение. При снижении pH почвенного раствора магний поступает в растения в меньших количествах.

Недостаток магния приводит к уменьшению содержания фосфора в растениях, даже если фосфаты в достаточных количествах имеются в питательном субстрате, тем более, что транспортируется фосфор по растению в основном в органической форме. Поэтому дефицит магния будет тормозить образование фосфорорганических соединений и соответственно распределение фосфора в растительном организме.

При недостатке магния нарушается формирование пластид: матрикс хлоропластов просветляется, граны слипаются. Между зелеными жилками появляются пятна и полосы светло-зеленого, а затем желтого цвета. Края листовых пластинок приобретают желтый, оранжевый, красный или темно-красный цвет, и такая "мраморная" окраска листьев наряду с хлорозом служит характерным признаком нехватки магния. На более поздних стадиях магниевого голодания светло-желтые и беловатые полоски отмечаются и на молодых листьях, свидетельствуя о разрушении в них хлоропластов, а затем и каротиноидов, причем зоны листа, прилежащие к сосудам, дольше остаются зелеными. Впоследствии развиваются хлороз и некроз, затрагивая в первую очередь верхушки листьев.

Признаки магниевой недостаточности вначале проявляются на старых листьях, а затем распространяются на молодые листья и органы растения. Высокая и продолжительная освещенность усиливает признаки нехватки магния.

Культуры, чувствительные к недостатку магния: сахарная свекла, картофель, хмель, виноград, орехи, парниковые культуры.

Железо

В составе соединений, содержащих гем (все цитохромы, каталаза, пероксидаза), и в негемовой форме (железосерные центры) железо принимает участие в функционировании основных редокс-систем фотосинтеза и дыхания. Вместе с молибденом железо участвует в восстановлении нитратов и в фиксации молекулярного азота клубеньковыми бактериями, входя в состав нитратредуктазы и нитрогеназы. Железо катализирует также начальные этапы синтеза хлорофилла. Поэтому недостаточное поступление железа в растения в условиях переувлажнения и на карбонатных почвах приводит к снижению интенсивности дыхания и фотосинтеза и выражается в пожелтении листьев (хлороз) и быстром их опадении. Если для вегетирующих растений железо становится недоступным, то хлороз проявляется только на вновь развивающихся органах. Следовательно, железо прочно связывается в клетках и не способно передвигаться из старых тканей к молодым. Железо необходимо также и для бесцветных растений - грибов и бактерий, поэтому его роль не ограничивается только участием в образовании хлорофилла.

В злаковых культурах хлороз проявляется в виде чередования желтых и зеленых полос вдоль листа. В отдельных случаях дефицит железа может вызвать отмирание молодых побегов.

Дефицит железа вызывает также изменения морфологии корней, индуцируя рост корневых волосков, которые обильно покрывают поверхность корня. Это способствует лучшему контакту с почвой и почвенным раствором, увеличивая поглощение железа.

Наряду с железом каталитически активных соединений ткани растений могут включать этот элемент в вещества запасного характера. Одно из них - белок ферритин, который содержит железо в негемовой форме. На долю железа может приходиться около 23% сухой массы ферритина. В больших количествах ферритин присутствует в пластидах.

Культуры, чувствительные к недостатку железа: кукуруза, бобовые, картофель, капуста, томаты, виноград, плодовые и цитрусовые, декоративные культуры.

Марганец

Впервые на необходимость для растений марганца обратил внимание Бертран (1897). Среднее его содержание составляет 0,001% или 1 мг на 1 кг сухой массы тканей. В клетки он поступает в форме ионов Mn 2+ . Марганец накапливается в листьях. Установлено участие ионов этого металла в выделении кислорода (фоторазложение воды) и восстановлении CO 2 при фотосинтезе. Марганец способствует увеличению содержания сахаров и их оттоку из листьев. Ионы марганца активируют ферменты, катализирующие реакции цикла Кребса (дегидрогеназы яблочной кислоты, лимонной кислоты, декарбоксилазу щавелевоуксусной кислоты и др.). в связи с этим понятно большое значение марганца для процесса дыхания, особенно его аэробной фазы.

Велико значение марганца для нормального протекания обмена азотистых соединений. Марганец принимает участие в процессе восстановления нитратов до аммиака. Этот процесс проходит через этапы, катализируемые рядом ферментов, из которых два (гидроксиламинредуктаза и нитритредуктаза) зависимы от марганца, в связи с чем растения, испытывающие недостаток марганца, не могут использовать нитраты в качестве источника азотного питания.

Марганец активирует ферменты, участвующие в окислении важнейшего фитогормона - ауксина.

Этот элемент играет специфическую роль в поддержании структуры хлоропластов. В отсутствии марганца хлорофилл быстро разрушается на свету.

Несмотря на значительное содержание марганца в почве, большая его часть труднодоступна для растений, особенно на почвах, имеющих нейтральное значение pH.

Марганец отвечает за окисление железа в организме растений к нетоксичным соединениям. Является необходимым компонентом синтеза витамина С. Интенсифицирует накопление сахара в корнеплодах сахарной свеклы и белка у зерновых культур. Отвечает за процесс усвоения азота. Является активатором фотосинтеза после подмерзания растений.

Симптом заболевания, вызванного недостатком марганца, служит прежде всего появление хлоротичных пятен между жилками листа. У злаков появляются удлиненные полоски хлоротичной ткани серого цвета, затем появляется узкая зона ослабленного тургора, в результате чего пластинка листа свешивается вниз. При резкой недостаточности марганца эти симптомы распространяются и на стебель. Заболевшие листья при развитии заболевания буреют и отмирают.

Болезнь серая пятнистость широко распространена на богатых гумусом почвах, имеющих щелочную реакцию. Этому заболеванию подвержены злаки, особенно овес, пшеница, рожь, кукуруза.

У растений с сетчатым жилкованием листьев при недостатке марганца появляются разбросанные по листу хлоротичные пятна, в большей степени на нижних листьях, чем на верхних.

У свеклы недостаточность марганца вызывает заболевание, известное под названием пятнистой желтухи. На листьях появляются желтые хлоротичные участки, затем края листьев закручиваются вверх.

У гороха при недостатке марганца развивается пятнистость семян. Это заболевание выражается в появлении на семенах гороха коричневых и черных пятен или даже полостей на внутренних поверхностях семядолей.

Хлороз развивается и при очень высоком содержании марганца, в этом случае марганец окисляет железо в нерастворимую окисную форму и хлороз развивается уже от недостатка железа. Избыток же железа вызывает симптомы недостаточности марганца. Наиболее благоприятные соотношения железа и марганца для лучшего роста растений и общего здорового состояния 2:1.

Культуры, чувствительные к недостатку марганца: зерновые колосовые (пшеница, ячмень, овес), кукуруза, горох, соя, картофель, сахарная свекла, вишня, цитрусовые.

Цинк

Содержание цинка в надземных частях бобовых и злаковых растений составляет 15 - 60 мг на 1 кг сухой массы. Повышенная концентрация отмечается в листьях, репродуктивных органах и конусах нарастания, наибольшая - в семенах. Цинк поступает в растение в форме катиона Zn 2+ , оказывая многостороннее действие на обмен веществ. Он необходим для функционирования ряда ферментов гликолиза. Роль цинка важна также в образовании аминокислоты триптофана. Именно с этим связано влияние цинка на синтез белков, а также фитогормона индолилуксусной кислоты (ауксина), предшественником которой является триптофан. Подкормка цинком способствует увеличению содержания ауксинов в тканях и активирует их рост. Цинк играет важную роль в метаболизме ДНК и РНК, в синтезе белка и клеточном делении. Является активатором ферментов, предотвращает преждевременное старение клеток. Способствует повышению жаро-, засухо - и морозостойкости растений. Цинк долгое время рассматривался как стимулятор и только к 30 гг. прошлого столетия была установлена безусловная необходимость этого элемента для всех высших растений. Болезнь недостаточности цинка широко распространена среди плодовых деревьев. При недостаточности цинка вместо нормально удлиненных побегов с хорошо развитыми листьями больные растения образуют весной розетку мелких скученных жестких листочков. У разных плодовых болезнь обозначается по-разному: мелколистность, розеточная болезнь, пятнистый хлороз, желтуха. Цинк участвует в окислительно-восстановительных процессах, он связан с превращением соединений, содержащих сульфгидрильную группу. Недостаток цинка вызывает подавление процессов углеводного обмена, так как недостаток цинка сильнее всего сказывается на растениях, богатых углеводами. Также при дефиците цинка у растений нарушается фосфорный обмен: фосфор накапливается в корневой системе, задерживается его транспорт в надземные органы, замедляется превращение фосфора в органические формы - в несколько раз возрастает содержание неорганических фосфатов, снижается содержание фосфора в составе нуклеотидов, липидов и нуклеиновых кислот. Кроме того, в 2-3 раза подавляется скорость деления клеток, что приводит к морфологическим изменениям листьев, нарушению растяжения клеток и дифференциации тканей.

Культуры, особенно чувствительные к недостатку цинка: кукуруза, соя, фасоль, хмель, картофель, лен, овощи зеленые, виноград, яблоня и груша, цитрусовые.

Молибден

Наибольшее содержание молибдена характерно для бобовых (0,5 - 20 мг на 1 кг сухой массы), злаки содержат от 0,2 до 2,0 мг молибдена на 1 кг сухой массы. Он поступает в растения как анион MoO 4 2- , концентрируется в молодых, растущих органах. Его больше в листьях, чем в корнях и стеблях, а в листе сосредоточен в основном в хлоропластах.

Молибден принимает участие в восстановлении нитратов, входя в состав нитратредуктазы, а также является компонентом активного центра нитрогеназы бактероидов, фиксирующих атмосферный азот в клубеньках бобовых.

Способствует увеличению содержания хлорофилла, углеводов, каротина, аскорбиновой кислоты и белковых веществ.

Молибден входит в состав более 20 ферментов, выполняя при этом не только каталитическую, но и структурную функцию.

При недостатке Mo в тканях накапливается большое количество нитратов, не развиваются клубеньки на корнях бобовых, тормозится рост растений, наблюдается деформация листовых пластинок. Молибден, как и железо, необходим для биосинтеза легоглобина (леггемоглобина) - белка-переносчика кислорода в клубеньках бобовых. При дефиците клубеньки приобретают желтый или серый цвет, нормальная же их окраска - красная.

При недостатке молибдена резко падает содержание аскорбиновой кислоты, наблюдаются нарушения в фосфорном обмене растений.

У растений, испытывающих дефицит молибдена, на листьях появляются светлые пятна, возможно отмирание почек, плоды и клубни растрескиваются.

Тормозится рост растений и из-за нарушения синтеза хлорофилла растения выглядят бледно-зелеными. Эти признаки похожи на признаки недостатка азота.

Культуры, чувствительные к недостатку молибдена: зерновые колосовые, бобовые, сахарная свекла, томаты, капуста, люцерна.

Другие микроэлементы

В составе разных видов растений найдено более 60 элементов, из них, кроме отмеченных выше, натрий, силиций, хлор, кобальт, медь, и алюминий рассматриваются некоторыми авторами также как необходимые.

Находящийся в растении кремний пропитывает клеточные стенки и делает их твердыми и устойчивыми против повреждения насекомыми и предохраняет клетки против проникновения грибной инфекции. Также кремний необходим для роста диатомовых водорослей.

Хлор считается стимулятором активности ферментов. Важное значение хлор имеет для зеленых фотосинтезирующих растений. Имеются сведения о влиянии хлора на азотный обмен. Концентрируясь в растении в вакуолях, хлориды могут выполнять осморегулирующую функцию. Недостаток хлора проявляется редко и наблюдается только на очень щелочных почвах.

Действие алюминия рассматривается как катализатора. Кроме того, при некотором избыточном накоплении в растении алюминия меняется окраска цветов. Так, например, под влиянием накопления алюминия в растении Hydrangea нормально красные или белые цветы изменяются в синие или фиолетовые.

Натрий накапливается в растениях в значительных количествах, но в жизни их существенной роли не играет, так как может быть полностью исключен из питательного раствора. Однако для галофитов, растений засоленных мест, присутствие натрия благоприятствует росту.

Содержание кобальта в среднем составляет 0,00002%. Особенно кобальт необходим бобовым растениям, поскольку участвует в фиксации атмосферного азота. Кобальт входит в состав кобаламина (витамин В12 и его производные), который синтезируется бактериями в клубеньках бобовых растений, а также в состав ферментов у азотфиксирующих организмов, участвующих в синтезе метионина, ДНК и делении клеток бактерий. При дефиците кобальта подавляется синтез леггемоглобина, снижается синтез белка, и уменьшаются размеры бактероидов. Это говорит в пользу необходимости кобальта. Установлена потребность в кобальте для высших растений, не способных к азотфиксации. Показано влияние кобальта на функционирование фотосинтетического аппарата, синтез белка, его связь с ауксиновым обменом. Трудность решения вопроса о необходимости кобальта для всех растений заключается в том, что потребность в нем чрезвычайно мала.

Медь активизирует образование белков и витаминов группы В. Как и цинк, активирует фермент, предотвращает преждевременное старение клеток растения. Принимает участие в метаболизме белков и углеводов в растении. Существенно повышает иммунитет растения грибковым и бактериальным заболеваниям. Этого элемента очень мало в песчаных и торфянистых почвах. Недостаток меди проявляется в устойчивом увядании верхних листьев, даже при хорошем обеспечении влагой, вплоть до их опадания. Наблюдается отмирание краев молодых листьев с последующим их хлорозом и скручиванием; замедляется высвобождение пыльцовых зерен, вследствие чего снижается опыление растений. Наблюдается существенное снижение урожайности культуры (если отсутствуют визуальные признаки дефицита микроэлемента); у злаковых культур может наблюдаться полегание; у плодовых культур может наблюдаться поникание ветвей и кроны.



1. Какие функции выполняет корень?

Корни закрепляют растение в почве и прочно удерживают его в течение всей жизни. Через них растение получает из почвы воду и растворённые в ней минеральные вещества. В корнях некоторых растений могут откладываться и накапливаться запасные вещества.

2. Что такое корневой волосок? Какую функцию он выполняет?

Корневой волосок - относительно длинный вырост наружной клетки корня в зоне всасывания. Под клеточной оболочкой в нём находятся цитоплазма, ядро, бесцветные пластиды и вакуоль с клеточным соком.

Корневые волоски осуществляют всасывание питательных веществ и воды.

3. Какие минеральные вещества вам известны?

Азот, калий, фосфор, магний, сера.

Вопросы

1. Какие вещества необходимы для минерального питания растения?

Азот, калий, фосфор, магний, сера, бор, медь, цинк, кобальт и др.

2. Как растения поглощают питательные вещества?

Водоросли, а также некоторые водные растения усваивают питательные вещества всей поверхностью тела. Высшие растения поглощают их из почвы через корни. Вода и минеральные соли поступают в растение через корневые волоски.

3. Что такое корневое давление?

Корневое давление - давление в проводящих сосудах корней, обеспечивающее передвижение воды и растворённых в ней минеральных веществ к надземным органам растения.

Поглощение воды корнем зависит от её температуры. Холодная вода плохо поглощается корнями.

5. Какие виды удобрений вы знаете?

В почву вносят органические и минеральные удобрения.

Органические удобрения (от слова «организм») - это отходы жизнедеятельности животных (навоз, птичий помёт) или отмершие части организмов животных и растений (перегной, торф).

В зависимости от содержания минеральных веществ различают азотные, фосфорные и калийные минеральные удобрения.

Кроме того, широко используют микроудобрения, в которых содержатся такие элементы, как бор, медь, цинк, кобальт и др.

6. Какое влияние на рост и развитие растений оказывают азот, калий, фосфор?

7. Что такое подкормка?

Подкормка растений – восполнение содержания минеральных веществ в почве в ходе внесения органических и минеральных удобрений.

Подумайте

1. Правильно ли поступают люди, убирая осенью опавшую листву с газонов в скверах и парках населённых пунктов?

Убирая осенью опавшую листву с газонов в скверах и парках населённых пунктов, люди поступают неправильно, т.к. опавшая листва, погибшие растения и животные перегнивают и обогащают почву минеральными веществами.

2. С чем связаны особенности строения клетки корневого волоска?

Корневой волосок - относительно длинный вырост наружной клетки корня, что значительно увеличивает всасывающую поверхность корня.

Корневые волоски покрыты слизью и тесно соприкасаются с частицами почвы. Благодаря этому облегчается всасывание воды с растворёнными минеральными веществами.

Задания

1. Возьмите два одинаковых растения колеуса средних размеров. Поставьте их в светлое тёплое место и три дня не поливайте. Затем регулярно поливайте: первое растение - ежедневно утром и вечером, расходуя на каждый полив по 50 мл воды, второе растение - три раза в неделю (понедельник, среда, пятница), расходуя на каждый полив по 200 мл воды. Опыт проводите в течение месяца. Результаты наблюдений записывайте в тетрадь. Сравните результаты наблюдений и сделайте вывод.

Результат опыта будет зависеть от времени года: летом колеус поливают обильно(т.е. в таком случае подойдет первый вариант), осенью и зимой полив сокращают(лучше будет развиваться растение с поливом 3 раза в неделю).

2. Для подготовки к изучению прорастания семян в стакан из тонкого прозрачного стекла поместите промокательную бумагу так, чтобы она плотно прилегла к стенкам стакана. На дно стакана налейте немного воды. Между стеклом и промокательной бумагой поместите зерновки пшеницы, ржи, ячменя или овса и наблюдайте за их прорастанием. В другой стакан положите семена фасоли или гороха также для наблюдения за прорастанием. В третий стакан поместите семена фасоли или гороха, отделив у них одну семядолю. Следите, чтобы семена не высохли. Установите, когда они набухнут. Проследите, когда у проростков появятся корни, сколько их разовьётся через некоторое время, как происходят рост и дальнейшее развитие проростков. Свои наблюдения запишите.

Для разных семян сроки набухания сильно отличаются:

Злаки (пшеница, рожь, овёс, ячмень): 6-8 часов.

Бобовые (горох, фасоль): 8-12 часов.

Время для прорастания своё для каждых семян:

Злаки (пшеница, рожь, овёс, ячмень): 6-10 часов

Бобовые: 10-16 часов.

Через 8-10 дней будет видно, что проросток семени с двумя семядолями оказался более крупным, сильным, чем проросток с одной семядолей. Это объясняется тем, что кроме воды и воздуха важнейшим условием прорастания семян являются содержащиеся в них запасные питательные вещества. Они обеспечивают первоначальное питание зародыша, его способность к увеличению размеров и числа клеток и формирование проростка. Если запасных питательных веществ в семени мало, то развитие зародыша происходит медленно.

После появления зародышевого корешка у гороха наблюдается формирование боковых корней – начинает формироваться стержневая корневая система, у пшеницы – мочковатая.