22.03.2019

Волоконные датчики. Применение специальных датчиков в медицине



Фотоэлектрические датчики

Оптический датчик глаза современного автоматизированного производства. В основной массе фотодатчики работают в инфракрасной области спектра. Фотоэлектрические датчики делятся на три основных типа:

T - тип или THRU-BEAM (разнесенная оптика) или датчики на прерывание оптического луча. Состоят из приемника и излучателя, устанавливаемых друг напротив друга. Объект, проходя между приемником и излучателем, прерывает оптический луч, что приводит к изменению состояния выходного ключа приемника.

R - тип или RETRO (с отражением от световозвращателя/рефлектора). Излучатель и приемник находятся в одном корпусе. Оптический импульс, посланный излучателем, отражается от рефлектора и попадает на приемник. Прерывание луча объектом, расположенным между рефлектором и датчиком приводит к изменению состояния выходного ключа датчика.

D -тип или DIFFUSE (с отражением от объекта). Отражение оптического луча происходит непосредственно от объекта обнаружения. При отсутствии объекта оптическая линия разомкнута, при приближении к датчику объекта, часть энергии (зависит от цвета объекта и его шероховатости) оптического импульса отражается от объекта и попадает на приемник датчика расположенный в одном корпусе с излучателем, что приводит к изменению состояния выходного ключа.

На малых расстояниях, в пределах «мертвой зоны» датчики R - типа воспринимают объект как отражатель, в результате чего обнаружение объекта не происходит. Для исключения таких случаев следует применять датчики с поляризационным фильтром.

Книга представляет собой вводный курс в быстро развивающуюся и охватывающую новые сферы приложений область волоконно-оптических датчиков. В каждом из трех разделов - "Основные компоненты", "Технология" и "Приложения" - приводятся отдельные примеры основных достижений в этой области. Вместе они предоставляют инженерам, научным работникам, студентам старших курсов и аспирантам возможность составить полное впечатление о волоконно-оптических датчиках.
Книга может использоваться в качестве пособия при чтении учебных курсов, а также на промышленных семинарах по волоконно-оптическим датчикам.

Типы оптических волокон.

Использовать свет в качестве средства связи люди, по-видимому, начали с тех пор, как научились пользоваться огнем. В течение тысячелетий применялись сигнальные костры и дымовые сигналы. С изобретением зеркал для передачи сигналов на значительные расстояния в качестве источника света стало использоваться солнце. Люди, получавшие сообщения, надлежащим образом их истолковывали. Подобные методы совершенствовались и развивались столетиями. Хорошо известен видеотелефон Александра Грейама Белла, использовавшийся для передачи сообщений с помощью светового луча на расстояние окаю 200 м. Развитие подобных методов сдерживалось из-за отсутствия хороших источников света и надежных каналов передачи с низкими потерями. Ситуация полностью изменилась в 1962 году благодаря изобретению лазера. В свободном пространстве когерентный свет, испускаемый таким источником, может быть получен удаленным приемником, находящимся на расстоянии сотен тысяч километров. Отсутствие подходящей передающей среды тем не менее продолжало препятствовать развитию оптической связи, пока Капрон и др. не продемонстрировали, что затухание света в волокне из плавленого кварца настолько мало, что позволяет создавать протяженные линии связи. Используя длинные волокна толщиной с волос, можно прокладывать многокилометровые волоконные линии для передачи сигналов
с помощью модулированного лазерного излучения.

На рис. 2.2 показано, как свет передается по волокну. Рассмотрим пловца на дне водоема. Если он посмотрит на поверхность воды под достаточно малым углом, дно водоема полностью отразится на поверхности раздела вода-воздух. Примерно то же происходит внутри волокна; свет передается благодаря множеству внутренних отражений. Внутри волокна свет отражается от материала оптической оболочки, имеющей меньший коэффициент преломления, снова в сторону сердцевины. Таким образом, непрерывные внутренние отражения позволяют свету распространяться по ходу движения. Одновременное начало производства компаниями Corning Inc. и Bell Labs волокна с низкими потерями открыло дверь оптической связи и дешевым волоконно-оптическим датчикам, способным обеспечить высокую производительность.

Оглавление
Предисловие
Глава 1
Возникновение технологии волоконно-оптических датчиков
Глава 2
Оптоволокно
2.1. Введение
2.2. Типы оптических волокон
2.2.1. Закон преломления Снеллиуса (Снелля) и полное внутреннее отражение
2.2.2. Многомодовое оптоволокно со ступенчатым профилем (со ступенчато изменяющимся показателем преломления)
2.2.3. Одномодовое оптоволокно со ступенчатым профилем показателя преломления
2.2.4. Уширение импульса
2.2.5. Оптоволокно с градиентным профилем показателя преломления
2.2.6. Одномодовое волокно, сохраняющее поляризацию излучения
2.3. Технологии изготовления оптических волокон
2.3.1. Модифицированный метод химического осаждения из газовой фазы
2.3.2. Метод внешнего химического осаждения
2.3.3. Метод осевого осаждения (VAD)
2.3.4. Стеклянные стержни
2.3.5. Затухание в оптоволоконных волноводах
2.4. Использование свойств оптических волокон для создания датчиков
2.4.1. Изгиб
2.4.2. Связь на основе затухающих колебаний и построенный на этом принципе датчик
2.4.3. Направленные разветвители и их использование для построения датчиков
2.5. Резюме
Литература
Глава 3
Источники света
3.1. Введение
3.2. Фундаментальные свойства источников света
3.2.1. Спонтанное излучение
3.2.2. Вынужденное излучение
3.2.3. Сверхизлучение
3.3. Длина когерентности
3.4. Полупроводниковые источники света
3.4.1. Светоизлучающие диоды
3.4.2. Лазерные диоды
3.4.3. Сверхизлучающие диоды
3.4.4. Волоконно-оптические лазеры и усилители
3.5. Резюме
Литература
Глава 4
Приемники оптического излучения
4.1. Введение
4.2. Теоретические основы
4.2.1. Статистика регистрации оптического излучения
4.2.2. Основные принципы функционирования полупроводников
4.3. Полупроводниковые фотодиоды
4.4. Лавинные фотодиоды
4.5. Шум
4.5.1. Математические основы
4.5.2. Шум, обусловленный протеканием постоянных токов в детекторной цепи
4.5.3. Шум, обусловленный тепловыми эффектами
4.5.4. Отношение сигнал/шум
4.6. Регистрация спектра
4.7. Резюме
Литература
Глава 5
Оптические модуляторы для волоконно-оптических датчиков
5.1. Введение
5.2. Электрооптический эффект
5.3. Объемные модуляторы
5.3.1. Электрооптическая фазовая модуляция
5.3.2. Электрооптическая модуляция интенсивности
5.3.3. Объемный акустооптический сдвиг частоты
5.4. Интегрально-оптические модуляторы
5.4.1. Фазовая модуляция
5.4.2. Интерферометрическая модуляция интенсивности
5.4.3. Интегрально-оптические преобразователи частоты
5.5. Чистоволоконные оптические модуляторы
5.5.1. Фазовая модуляция
5.5.2. Смещение частоты
Литература
Глава 6
Датчики на основе измерения интенсивности и интерферометра Фабри-Перо
6.1. Датчики интенсивности
6.2. Датчики температуры с полупроводниковым чувствительным элементом
6.3. Энкодеры положения
6.4. Многомодовые датчики Фабри - Перо
6.4.1. История развития многомодовых датчиков Фабри - Перо
6.4.2. Принципы работы
6.4.3. Конструкция датчика
6.4.4. Методы считывания
6.5. Одномодовые датчики Фабри - Перо
6.5.1. Варианты считывающих устройств для одномодовых датчиков
Литература
Глава 7
Многомодовые дифракционные датчики
7.1. Введение
7.2. Теоретические основы
7.2.1. Оптические методы кодирования
7.3. Датчики, основанные на относительном движении находящихся одна напротив другой решеток
7.4. Датчики, основанные на модуляции периода решетки
7.5. Состояние разработки датчиков
7.6. Резюме
Литература
Глава 8
Многомодовые датчики поляризации
8.1. Введение
8.2. Теоретические основы
8.2.1. Феноменологическое описание поляризации и запаздывания
8.2.2. Сфера Пуанкаре
8.2.3. Формализмы Мюллера и Джонса
8.2.4. Запаздывание и специальные свойства полуволновой пластинки
8.2.5. Эффект фотоупругости
8.2.6. Оптическое подавление синфазного сигнала
8.2.7. Методы оптического кодирования
8.2.8. Разрешение и шум
8.3. Датчики на основе эффекта фотоупругости
8.4. Датчики на основе фазовых пластин
8.5. Состояние разработки датчиков
Литература
Глава 9
Волоконно-оптические датчики на основе интерферометра Саньяка и пассивного кольцевого резонатора
9.1. Введение
9.2. Краткий обзор оптических датчиков вращения и эффекта Саньяка
9.3. Кольцевой лазерный гироскоп
9.3.1. Решение проблемы блокировки
9.4. Гироскоп с пассивным кольцевым резонатором
9.5. Волоконно-оптический гироскоп
9.6. Компромисс между кольцевым лазером, пассивным кольцевым резонатором и волоконно-оптическим интерферометром при использовании их в качестве датчиков вращения
9.6.1. Возможности компоновки и производства
9.6.2. Вопросы надежности и приложения
9.7. Датчики параметров внешней среды, использующие интерферометр Саньяка
9.7.1. Быстро изменяющиеся явления внешней среды: обнаружения акустических колебаний
9.7.2. Акустический датчик на основе интерферометра Саньяка, использующий источник света в качестве усилителя
9.7.3. Конфигурации волоконно-оптической катушки
9.7.4. Модуляция фазы и поляризации
9.7.5. Механическое напряжение
9.7.6. Измерение длины волны
9.7.7. Выводы
Литература
Глава 10
Волоконно-оптические датчики на основе интерферометров Маха - Цендера и Майкельсона
10.1. Введение
10.2. Принцип работы
10.2.1. Двухлучевая интерферометрия
10.2.2. Демодуляция
10.2.3. Шум
10.2.4. Поляризация
10.3. Схемы волоконных интерферометров
10.4. Приложения
10.4.1. Динамические приложения
10.4.2. Статические приложения
10.5. Резюме
Литература
Глава 11
Распределенные и мультиплексированные волоконно-оптические датчики
11.1. Введение
11.2. Распределенные измерения
11.2.1. Оптическая дальнометрия в волоконных системах
11.2.2. Методы измерения обратного рэлеевского рассеяния
11.2.3. Измерение температуры на основе рамановского обратного рассеяния
11.2.4. Распределенные измерения на основе взаимодействия мод
11.2.5. Квазираспределенные датчики
11.3. Основные принципы мультиплексирования датчиков
11.3.1. Основные принципы телеметрии: сети
11.3.2. Сети датчиков интенсивности
11.4. Мультиплексирование интерферометрических датчиков
11.4.1. Методы интерферометрической демодуляции для объединенных с использованием мультиплексирования датчиков
11.4.2. Топология мультиплексирования интерферометрических датчиков
Литература
Глава 12
Волоконно-оптические датчики магнитного поля
12.1. Введение
12.2. Датчики на основе эффекта Фарадея
12.2.1. Эффект Фарадея в оптических волокнах
12.2.2. Шум
12.2.3. Структуры датчиков
12.3. Магнитострикционные датчики
12.3.1. Магнитострикция
12.3.2. Магнитострикционные преобразователи
12.3.3. Шум в магнитострикционных датчиках
12.3.4. Структуры датчиков
12.4. Датчики на основе силы Лоренца
Литература
Глава 13
Индустриальные приложения оптоволоконных датчиков
13.1. Введение
13.2. Основы
13.3. Измерение температуры
13.4. Измерение давления
13.5. Измерение уровня жидкости
13.6. Измерение скорости потока
13.7. Измерение положения
13.8. Измерение вибрации
13.9. Химический анализ
13.10. Измерение тока и напряжения
13.11. Важные замечания для индустриальных приложений
13.12. Резюме
Литература
Глава 14
Волоконно-оптические интеллектуальные структуры
14.1. Введение
14.2. Системы оптоволоконных датчиков
14.3. Приложения волоконно-оптических интеллектуальных структур и оболочек
14.4. Пример использования волоконно-оптического датчика в интеллектуальных структурах
14.5. Заключение
Литература
Дополнение А
Глава А.1
Сдвиг нуля
Глава А.2
Оптические элементы
Приложение
Литература
Дополнение Б
Литература.

Перевод Ростислава Ливенцова

Волоконно-оптические датчики (так же часто именующиеся оптические волоконные датчики) это оптоволоконные устройства для детектирования некоторых величин, обычно температуры или механического напряжения, но иногда так же смещения, вибраций, давления, ускорения, вращения (измеряется с помощью оптических гироскопов на основе эффекте Саньяка), и концентрации химических веществ. Общий принцип таких устройств в том, что свет от лазера (чаще всего одномодового волоконного лазера) или суперлюминесцентного оптического источника передается через оптическое волокно, испытывая слабое изменение своих параметров в волокне или в одной или нескольких брэгговских решетках, и затем достигает схемы детектирования, которая оценивает эти изменения.

В сравнении с другими типами датчиков, волокно-оптические датчики обладают следующими преимуществами:

· Они состоят из электрически непроводящих материалов (не требуют электрических кабелей), что позволяет использовать их, например, в местах с высоким напряжением.

· Их можно безопасно использовать во взрывоопасной среде, потому, что нет риска возникновения электрической искры, даже в случае поломки.

· Они не подвержены электромагнитным помехам (EMI), даже вблизи разряда молнии, и сами по себе не электризуют другие устройства.

· Их материалы могут быть химически инертны, то есть не загрязняют окружающую среду, и не подвержены коррозии.

· Они имеют очень широкий диапазон рабочих температур (гораздо больше, чем у электронных устройств).

· Они имеют возможность мультиплексирования; несколько датчиков в одиночной волоконной линии может быть интегрировано с одним оптическим источником (см. ниже).

Сенсоры на основе брэгговских решеток

Волоконно-оптические датчики зачастую основаны на волоконных брэгговских решетках. Основной принцип многих волоконно-оптических датчиков в том, что брэгговская длина волны (т.е. длина волны максимального отражения) в решетке зависит не только от периода брэгговской решетки, но также от температуры и механических напряжений. Для кварцевых волокон изменение брэгговской длины волны на единицу деформации примерно на 20% меньше, чем растяжение, так как есть влияние деформации на уменьшение показателя преломления. Температурные эффекты близки к ожидаемым только при тепловом расширении. Температурные и деформационные эффекты могут различаться при использовании различных технических средств (например, при использовании эталонной решетки, которая не подвержена деформации, или применении различных типов волоконных решеток) так, что оба значения регистрируются одновременно. Для регистрирования только деформации, разрешающая способность достигает нескольких µε (т.е. относительное изменение длин порядка) при этом точность имеет тот же порядок малости. Для динамических измерений (например, акустический явлений), достигается чувствительность большая чем 1 με в 1 Hz полосы пропускания.

Распределенное зондирование

Другие оптоволоконные датчики не используют волоконные брэгговские решетки как сенсоры, используя в качестве сенсоров само волокно. Принцип зондирования в них основан на эффекте Рэлеевского рассеяния, Рамановского рассеяния или рассеяния Бриллюэна. Например, метод оптической рефлектометрии временной области , где положение области со слабым отражением может быть определено с использованием импульсного зондирующего сигнала. Этот метод используется также для определения других величин, например температуры или напряжения в зависимости от сдвига частоты Бриллюэна.

В некоторых случаях, измеряемая величина является средним значением по всей длине волокна. Этот метод характерен для некоторых температурных датчиков, а также для интерферометров, основанных на эффекте Саньяка, применяемых в качестве гироскопов. В других случаях измеряются позиционно-зависимые величины (например, температура или напряжение). Это называется распределенным зондированием.

Квази-распределенное зондирование

Определенные волокна могут содержать серию решеток сенсоров (см. выше) для мониторинга температуры и распределения деформации по всему волокну. Это называется квази-распределенным зондированием. Существуют различные технические решения для адресации только к одной решетке (и таким образом точного определения положения вдоль волокна)

В одном способе, называющимся мультиплексирование с разделением по всей длине волны (WDM), или оптической рефлектометрии в частотной области спектра (OFDR), решетки имеют немного различающуюся брэгговскую длину волны. Длина волны перестраиваемого лазера в блоке интегрирования может быть настроена на длину волны, принадлежащую к определенному типу решетки, а длина волны максимального отражения указывает на влияние деформации или, например температуры. Кроме того широкополосные источники света источники света (например суперлюминесцентные источники) могут быть использованы совместно со сканирующим длину волны фотодетектором (например на основе волоконного резонатора Фабри-Перо) или на основе CCD спектрометра. В любом случае, максимальное количество решеток, как правило, не превышает 10-50, что ограничено диапазоном настройки пропускной способности источника света и необходимой разностью длин волн в решётках волокна.

Другой метод, называемый временным разделением каналов (TDM), использует идентичные слабоотражающие решетки, в которые посылаются короткие световые импульсы. Отражение от различных решеток регистрируют посредством времени их поступления. Временное разделение каналов (TDM) часто используют вместе с разделением по всей длине волны (WDM) для того, чтобы умножить число различных каналов в сотни или даже тысячи раз.

Другие подходы

Помимо выше описанных подходов, есть много альтернативных методов. Вот некоторые из них:

· Волоконные брегговские решетки могут быть использованы в интерференционных оптических волокнах, где они используются только в качестве отражателей, и измеряют фазовый сдвиг, зависящий от расстояния между ними.

· Существуют лазерные брэгговские сенсоры, где датчик решетки располагается в последнем зеркале волоконно - оптического резонатора лазера, на основе волокна допированного эрбием, которое воспринимает свет накачки на длине волны 980 нм через волокно. Брэгговская длина волны, которая зависит, например, от температуры или механического напряжения, определяет длину волны генерации. Этот подход, который имеет много вариантов дальнейшего развития, обещает принести высокие результаты из-за узкой полосы спектральной области, которая характерная для волоконного лазера, и высокой чувствительности.

· В некоторых случаях, пары брэгговских решеток используются в качестве волокна для интерферометров Фабри-Перо, которые могут реагировать особо чувствительно на внешние воздействия. Интерферометр Фабри-Перо можно изготовить так же другим способом, например, используя переменный воздушный зазор в волокне.

· Длиннопериодные решетки особенно интересны для зондирования нескольких параметров одновременно (например, температуры и напряжения) или иначе, для альтернативного определения деформации при очень низкой чувствительности к температурным изменениям.

Области применения

Даже по прошествии нескольких лет развития, волоконно-оптические датчики до сих пор не пользуются большим коммерческим успехом, так как трудно заменить применяемые сейчас технологии, даже если они имеют определенные ограничения. Хотя в некоторых областях применения, волоконно-оптические датчики получают все большее признание, как технология с большим потенциалом интересных возможностей. Это, например, работа в жестких условиях, таких как зондирование в устройствах с высоким напряжением, или в СВЧ печах. Сенсоры на основе брэгговских решеток могут также быть использованы, например, для мониторинга условий, внутри крыльев самолетов, в ветровых турбинах, мостах, больших плотинах, нефтяных скважинах, и трубопроводах. Здания с встроенными волоконно-оптическими датчиками иногда называют «умными конструкциями», датчики в них осуществляют контроль деформации внутри различных частей конструкции, и получают данные об этих изменениях, например износе, вибрации и.т.д. Умные конструкции являются основной движущей силой для развития волоконно-оптических датчиков.

Cтраница 1


Волоконно-оптические датчики в настоящее время являются одной из наиболее динамично развивающихся областей оптоэлектроники. За последние 30 лет произошел стремительный переход от простейших конструкций волоконно-оптических датчиков температуры и давления к созданию широкой номенклатуры датчиков физических величин, которые ученые и инженеры используют в разнообразных областях науки и техники уже сегодня. Интенсивное развитие и совершенствование волоконно-оптических датчиков в значительной мере стимулируется все более расширяющимся процессом внедрения волоконно-оптических телекоммуникационных сетей в повседневную жизнь. Помимо непрерывного улучшения характеристик элементной базы волоконной оптики, находящей непосредственное использование в технологии производства волоконно-оптических датчиков, это открывает широкие перспективы для создания разветвленных измерительных систем, органично сочетающих в своем составе свойства систем связи и систем мониторинга, конфигурация которых может непрерывно совершенствоваться без привлечения дополнительных магистралей связи. Важным достоинством волоконно-оптических датчиков также является привнесение в измерительные системы новых качеств, таких, как: малые размеры, устойчивость к неконтролируемым и агрессивным воздействиям окружающей среды и к электромагнитным помехам, высокая чувствительность, дистанционность измерений и возможность мультиплексирования отдельных датчиков в сложные измерительные системы, технологичность производства и потенциальная низкая стоимость.  


Волоконно-оптические датчики на основе СВИФП и ВВИФП как правило имеют малые размеры и наиболее приспособлены для проведения локальных измерений параметров физических полей.  

Амплитудные волоконно-оптические датчики, в которых, в результате внешнего физического воздействия, наблюдается непосредственная модуляция интенсивности распространяющихся по световодам оптических сигналов, являются наиболее простыми и удобными в эксплуатации конструкциями ВОД. К настоящему моменту разработаны разнообразные конструкции амплитудных ВОД физических величин, которые условно можно разделить на два основных класса. К первому классу датчиков относятся амплитудные ВОД, в которых волоконные световоды выполняют пассивную функцию, связанную только с подводом и отводом излучения от чувствительного элемента. Такого рода конструкции имеют высокую чувствительность и достаточно просты, однако обладают рядом недостатков, которые не позволяют использовать их в распределенных измерительных системах. Эти недостатки кроются в необходимости разрыва непрерывной волоконной линии для обеспечения ввода излучения в чувствительный элемент датчика, что приводит к значительным потерям световой мощности на элементах межсоединений, кроме того, использование разнородных оптических компонентов обусловливает низкую механическую стабильность характеристик измерительных устройств.  

В волоконно-оптических датчиках ВОБР работают в режиме отражения излучения.  


Другие компоненты волоконно-оптических датчиков, например волоконные разветвители, могут эксплуатироваться без изменения свойств до температур 200 - 300 С, а источники излучения, фотоприемники и модуляторы до температуры 100 - 150 С. По этой причине источники излучения, мультиплексирования датчиков и обработки сигналов в аэрокосмических волоконно-оптических системах телеметрии необходимо заключать в специальные охлаждаемые блоки.  

Значительное место среди волоконно-оптических датчиков способны занять поляризационные датчики и датчики на основе одноволоконных многомодовых интерферометров, которые, как и волоконные интерферометры Фабри-Перо, нуждаются только в одном измерительном волоконном тракте и не требуют дополнительного опорного плеча, что значительно упрощает конструкцию измерительных систем.  

Волоконные световоды для волоконно-оптических датчиков В настоящее время главный приоритет промышленности, выпускающей волоконные световоды, состоит в создании волоконных световодов применительно к системам телекоммуникаций. Эти волокна имеют низкое затухание 0 5 дБ / км и оптимизированы для использования в спектральном диапазоне вблизи 1 3 и 1 55 мкм. Эти две длины волны излучения представляют интерес с точки зрения наличия нулевой материальной дисперсии (1 3 мкм) и минимума потерь (1 55 мкм) для одномодовых кварцевых волокон. В то же время создание волоконно-оптических датчиков требует использования излучения других областей спектра, а также многомодовых световодов. Для волоконных датчиков также большое значение имеет оптимизация подбора диаметра сердцевины, ее материала и разности показателей преломления сердцевины и оболочки.  

Источниками излучения в волоконно-оптических датчиках являются лазеры (газовые, твердотельные и полупроводниковые лазеры), светоиз-лучающие диоды, суперлюминесцентные и лазерные волоконно-оптические излучатели. Светоизлучающие диоды и суперлюминесцентные волоконные излучатели основаны на спонтанном излучении света, вследствие чего они обладают более широким спектром излучения и значительно меньшей длиной когерентности испускаемого ими света. Кроме того, статистика спонтанного излучения этих источников света близка к статистике тепловых источников излучения, что делает определяющими для них флуктуации интенсивности света. Лазерные источники излучения, имея относительно низкий уровень шума интенсивности и узкую спектральную полосу испускаемого света, являются высоко когерентными источниками света, что делает их источниками шумов интенсивности и источниками фазового шума.  


Пространственное разрешение распределенных ВРМБ волоконно-оптических датчиков определяется длительностью зондирующего лазерного импульса, тогда как точность измерения температуры и деформации световода зависит от отношения сигнал / шум в системе измерений и точности измерения бриллю-эновского сдвига частоты в спектре излучения.  

Такими независимыми датчиками могут быть волоконно-оптические датчики температуры, основанные на эффекте Рама-новского или ВРМБ-рассеяния.  

Ряд работ связан с созданием волоконно-оптических датчиков температуры, действие которых основано на сдвиге края оптического поглощения полупроводников.  

Как показывает маркетинг перспектив внедрения разработок волоконно-оптических датчиков в технику и промышленное производство, их рынок только в Северной Америке к 2010 году будет доведен до 5 млрд долларов. Наибольшие перспективы использования волоконно-оптических датчиков видятся в таких отраслях, как: химическая и нефтеперерабатывающая промышленность, авиа - и космическая техника, транспорт, строительство, биомедицинская промышленность, военные применения и др. Широкое развитие получили волоконные гироскопы, которые в сочетании с цифровыми картами и глобальной спутниковой системой связи позволили создать качественно новые навигационные системы для самолетов и автомобилей, по своим характеристикам значительно превосходящие свои электронные аналоги. Сегодня волоконные гироскопы уже начинают внедрятся и в системы позиционирования робототехнических устройств.  

Применение волоконно-оптических датчиков экономически целесообразно на крупных объектах, где требуется большое количество контроллеров для постоянного мониторинга основных приборов. Для эксплуатации в жестких условиях выпускаются специальные модели, устойчивые к воздействию высоких температур, агрессивных сред и способные выполнять свои функции в вакууме. В зависимости от принципа работы устройства, различают датчики точечные и распределенные.

Точечные

Основным элементом здесь являются бреэгговские решетки - селектирующие зеркала. Излучение, попадающее к волоконно-оптическому датчику от широкополосного источника, отражается в виде узенькой спектральной полосы. Остальной свет движется по волокну. Такая технология дает возможность разместить множество контроллеров по всей длине линии, получая абсолютные показания без дополнительной калибровки. Это самый надежный на сегодняшний день вариант мониторинга.

С помощью точечных датчиков можно измерять:

  • температуру;
  • вибрации;
  • давление;
  • деформации;
  • углы и др.

Распределенные

Конструкция распределенного волоконно-оптического датчика, предназначенного для контроля температуры, включает пару основных элементов. Это оптоволокно и опросное устройство. Подобная система используется в случаях, когда мониторинг требуется линиям большой протяженности. Принцип действия: опросное устройство генерирует лазерный импульс, который подвергается обратному рассеиванию в оптоволокне. Анализ этого спектра помогает узнать температуру в каждой ключевой точке оптоволокна.

Для охраны крупных объектов и измерения деформаций можно купить акустические датчики. Они работают по схожему принципу. Разница в том, что анализатор измеряет не спектр, а колебания обратного рассеянного излучения. Благодаря этим данным можно определить источник звуковой волны и своевременно принять меры, если происходит несанкционированное вмешательство.

Мы предлагаем

Наличие волоконно-оптических датчиков позволяет полностью контролировать состояние важных характеристик. Эти приборы устойчивы к электрическим и магнитным помехам. Они неприхотливы в обслуживании, надежны, долговечны, экономно потребляют электроэнергию, могут эксплуатироваться в мороз и сильную жару.

В нашем магазине вы можете купить продукцию компании Омрон и других известных производителей подобного оборудования. Наши менеджеры проконсультируют вас по всем техническим вопросам. Есть варианты на случай, если датчики планируется использовать в экстремальных условиях. Мы предлагаем своим клиентам только сертифицированную продукцию по доступным ценам. При необходимости можно заказать услуги монтажников.