02.03.2019

Генетический груз и его биологическая сущность. Генетический полиморфизм и адаптивный потенциал популяции


Генетическая гибкость (или пластичность) популяций достигается за счет мутационного процесса и комбинативной изменчивости. И хотя эволюция зависит от постоянного наличия генетической измен­чивости, одно из ее последствий - это появление в популяциях слабо адаптированных особей, в результате чего приспособленность попу­ляций всегда оказывается ниже той, которая характерна для оптимально приспособленных организмов. Это снижение средней приспособленности популяции за счет особей, приспособленность которых ниже оптимальной, называют генетическим грузом . Как писал из­вестный английский генетик Дж. Холдейн, характеризуя генетиче­ский груз: "Это та цена, которую вынуждена платить популяция за право эволюционировать". Он был первым, кто привлек внимание исследователей к существованию генетического груза, а сам термин "генетический груз" ввел в 40-х годах XX века Г. Миллер.

Генетический груз в его широком смысле - это всякое снижение (действительное или потенциальное) приспособленности популяции в силу генетической изменчивости. Дать количественную оценку гене­тического груза, определить его подлинное влияние на популяционную приспособленность - сложная задача. По предложению Ф. Г. Добжанского (1965) носителями генетического груза считаются индивидуумы, приспособленность которых более чем на два стан­дартных отклонения (-2а) ниже средней приспособленности гетерозигот.

Принято выделять три вида генетического груза: мутационный, субстиционный (переходный) и сбалансированный. Общий генетиче­ский груз слагается из этих трех видов груза. Мутационный груз - это та доля общего генетического груза, которая возникает за счет му­таций. Однако, поскольку большинство мутаций носят вредный ха­рактер, то естественный отбор направлен против таких аллелей и час­тота их невелика. Они поддерживаются в популяциях в основном благодаря вновь возникающим мутациям и гетерозиготным носителям.

Генетический груз, возникающий при динамическом изменении частот генов в популяции в процессе замены одного аллеля другим, называется субстиционный (или переходным) грузом . Такое заме­щение аллелей обычно происходит в ответ на какое-либо изменение в условиях среды, когда ранее неблагоприятные аллели становятся бла­гоприятными, и, наоборот, (примером может быть явление индустри­ального механизма бабочек в экологически неблагополучных рай­онах). При этом частота одного аллеля уменьшается по мере увеличе­ния частоты другого.

Сбалансированный (устойчивый) полиморфизм возникает, ко­гда многие признаки поддерживаются на относительно постоянном уровне за счет уравновешивающего отбора. При этом благодаря сбалансированному (уравновешивающему) отбору, действующему в про­тивоположных направлениях в популяциях сохраняются два или больше аллея ей какого-либо локуса, а соответственно и разные гено­тип и фенотипы. Примером может служить серповидноклеточность. Здесь отбор направлен против мутантного аллеля, находящегося в гомозиготном состоянии, но в то же время действует в пользу гетерозигот, сохраняя его. Состояние сбалансированного груза может быть достигнуто в сле­дующих ситуациях: 1) отбор благоприятствует данному аллелю на одной стадии онтогенеза и направлен против него на другой; 2) отбор благоприятствует сохранению аллеля у особей одного пола и действу­ет против - у особей другого пола; 3) в пределах одного аллеля разные генотипы дают возможность организмам использовать разные экологические ниши, что снижает конкуренцию и, как следствие, ослабля­ется элиминация; 4) в субпопуляциях, занимающих разные места обитания, отбор благоприятствует разным аллелям; 5) отбор благо­приятствует сохранению аллеля пока он редко встречается и направ­лен против него, когда он встречается часто.


Предпринималось много попыток оценить реальный генетический груз в популяциях человека, однако, оказалось, что это очень сложная задача. Косвенно о нем можно судить по уровню пренатальной смертности и рождению детей с теми или иными формами аномалий развития, особенно от родителей, состоящих в инбредных браках, а еще более – инцестных.

Литература:

1.Абрикосов Г.Г., Беккер З.Г. и др. Курс зоологии в двух томах. Том I.- Зоология беспозвоночных. Издание 7-е. Изд.: «Высшая школа», М.,1966.-552с.

2.Бакл, Джон. Гормоны животных (пер. с англ. М.С. Морозовой). Изд.:Мир, 1986.-85(1)с.

3.Беклемишев В.Н. Основы сравнительной анатомии беспозвоночных. Изд.:Сов. Наука, М., 1944.-489с.

4.Волкова О.В., Пекарский М.И. Эмбриогенез и возрастная гистология внутренних органов человека. Изд.: «Медицина», М,1976. 45с.

5.Гуртовой Н.Н., Матвеев Б.С., Дзержинский Ф.Я. Практическая зоотомия позвоночных. Земноводные и пресмыкающиеся./Под ред. Б.С. Матвеева и Н.Н. Гуртового. Изд.: «Высшая школа», М., 1978.- 406 с.

6.Гайворонский И.В. Нормальная анатомия человека: учебн. в 2-х т. /И.В.Гайворокский – 3-е изд., исправл. – Спб.:Спецлит, 2003, т.1 – 2003. – 560с, т.2 – 2003. – 424с.

7.Гистология (введение в патологию). Учебник для студентов высших мед. учебных заведений./Под ред. Э.Г.Улумбекова, Ю.А. Челышева. Изд.:«ГЭОТАР», М.,1997.- 947с.

8.Зуссман, М. Биология развития./ Под ред. С.Г. Васецкого. Пер. с анг. Изд.: «Мир». М. 1977-301с.

9.Левина С.Е. Очерки развития пола в раннем онтогенезе высших позвоночных. Изд.: «Наука». М., 1974.-239с.

10.Лейбсон Л.Г. Основные черты структурной и функциональной эволюции эндокринной системы позвоночных. Журн. эвол. биохимии и физиологии, 1967, т.3., №6, с. 532 – 544.

11.Лукин Е.И. Зоология: учебник для студентов зооинженерных и зооветеринарных вузов и факультетов. – 2-е изд., перераб. и дополн. – Изд.:«Высшая школа», 1981, М.- 340 с.

12.Наумов С.П. Зоология позвоночных. Изд.:«Просвещение», М., 1982.-464 с.

13.Талызин Ф.Ф., Улисова Т.Н. Материалы к сравнительной анатомии систем органов позвоночных. Учебное пособие для студентов. М., 1974.-71 с.

14. Физиология человека и животных (общая и эволюционно-экологическая), В 2-х частях. Под ред. Когана А.Б. Изд.: «Высшая школа». М. 1984, I-я часть - 360 с., II часть – 288 с.

15.Шмальгаузен И.И. Основы сравнительной анатомии. Гос. издательство биол. и медицинской литературы. М., 1935.-924 с.

В ходе длительной эволюции животных наряду с полезными мутациями, подхватываемыми отбором, в популяциях или поро­дах накопился определенный спектр генных и хромосомных му­таций. Каждое поколение популяции наследует этот груз мута­ций, и в каждом из них возникают новые мутации, часть кото­рых передается последующим поколениям.

Очевидно, что "большая часть вредных мутаций отметается естественным отбором или элиминируется в процессе селекции. Это прежде всего доминантные генные мутации, фенотипически проявляющиеся в гетерозиготном состоянии, и количественные изменения наборов хромосом. Рецессивно действующие генные мутации в гетерозиготном состоянии и структурные перестройки хромосом, заметно не влияющие на жизнеспособность их носи­телей, могут проходить сквозь сито селекции. Они формируют генетический груз популяции. Таким образом, под генетическим

грузом популяции понимают совокупность вредных генных и хромосомных мутаций. Различают мутационный и сегрегационный генетический груз. Первый формируется вследствие новых мута­ций, второй - в результате расщепления и перекомбинирования аллелей при скрещивании гетерозиготных носителей «старых» мутаций.

Частота летальных, полулетальных и субвитальных мутантных генов, передающихся из поколения в поколение в форме мута­ционного генетического груза, из-за трудности идентификации носителей не поддается точному учету. Мортон и Кроу предло­жили форму расчета уровня генетического груза в количестве летальных эквивалентов. Один летальный эквивалент соответст­вует одному летальному гену, обусловливающему смертность с 10%-ной вероятностью, двум летальным генам при 50%-ной ве­роятности смерти и т. д. Величина генетического груза по фор­муле Мортона

log eS=A + BF,

где S- часть потомства, оставшаяся в живых; Л - смертность, измеряемая ле­тальным эквивалентом в популяции при условии случайных спариваний (F= 0), плюс смертность, обусловленная внешними факторами; В- ожидаемое увеличе­ние смертности, когда популяция становится полностью гомозиготной (F- 1); F - коэффициент инбридинга.

Уровень генетического груза можно определять на основании фенотипического проявления мутаций (уродства, врожденные аномалии обмена и т. д.), анализа типа их наследования, частоты в популяции.

Н. П. Дубинин предлагает определять генетический груз по­пуляции путем сравнения частот мертворожденных в родствен­ных и неродственных подборах родительских пар. При этом следует иметь в виду, что при высокой частоте гетерозигот по рецессивным летальным и полулетальным мутантным генам рождение животных с аномалиями необязательно должно быть связано с инбридингом близких и умеренных степеней. Общий предок (источник мутации) может находиться и в отдаленных рядах родословной. К примеру, бык Трувор 2918 - гетерозигот­ный носитель мутантного рецессивного гена, находился в V, VI, VII рядах предков в совхозе «Красная Балтика», но при исполь­зовании его праправнука Автомата 1597 на родственных ему коровах наблюдались массовые случаи рождения бесшерстных телят (рис. 41).


Другой прапраправнук Трувора бык Док 4471 также оказался гетерозиготным носителем гена бесшерстности. В совхозе «Новое время» при умеренно родственных спариваниях и отда­ленном инбридинге в потомстве Дока 4471 зарегистрировано примерно 5 % телят с этой генетической аномалией.

Эти данные в определенной мере характеризуют уровни гене-тического груза по отдельным мутантным генам в конкретных популяциях крупного рогатого скота.

Хромосомные мутации являются составной частью генетичес­кого груза. Учет их ведется прямым цитологическим методом. По результатам многочисленных исследований основной компо­нентой груза аберраций хромосом у крупного рогатого скота являются робертсоновские транслокации, а у свиней - реци-прокные. Наиболее распространенной мутацией у крупного рога­того скота оказалась транслокация 1/29 хромосомы. Размах из­менчивости частоты этой аберрации, по нашим данным, в попу­ляциях палево-пестрого скота составлял от 5 до 26 %.

Таким образом, концепция генетического груза в свете совре­менных достижений цитогенетики должна быть расширена. Сей­час, когда известен широкий спектр аберраций хромосом и уста-

новлено строгое наследование отдельных из них (транслокации и инверсии), представляется целесообразным учитывать их наряду с вредными мутациями генов как составляющую часть генети­ческого груза.

  • 11.Рнк - полимеразы. Строение, виды, функции.
  • 12.Инициация транскрипции. Промотор, стартовая точка.
  • 13. Элонгация и терминация транскрипции.
  • 14. Гетерогенная ядерная днк. Процессинг, сплайсинг.
  • 15. Арс-азы. Особенности строения, функции.
  • 16.Транспортная рнк. Строение, функции. Строение рибосом.
  • 17.Синтез полипептидной молекулы. Инициация и элонгация.
  • 18.Регуляция активности генов на примере лактозного оперона.
  • 19. Регуляция активности генов на примере триптофанового оперона.
  • 20.Негативный и позитивный контроль генетической активности.
  • 21.Строение хромосом. Кариотип. Идиограмма. Модели строения хромосом.
  • 22. Гистоны. Структура нуклеосом.
  • 23. Уровни упаковки хромосом эукариот. Конденсация хроматина.
  • 24.Приготовление хромосомных препаратов. Использование колхицина. Гипотония, фиксация и окрашивание.
  • 25. Хар-ка хромосомного набора человека. Денверская номенклатура.
  • 27. . Классификация мутаций по изменению силы и направленности действия мутантного аллеля.
  • 28. Геномные мутации.
  • 29. Структурные перестройки хромосом: виды, механизмы образования. Делеции, дупликации, инверсии, инсерции, транслокации.
  • 30. Генные мутации: транзиции, трансверсии, сдвиг рамки считывания, нонсенс -, миссенс - и сейсменс - мутации.
  • 31.Физические, химические и биологические мутагены
  • 32. Механизмы репарации днк. Фотореактивация. Болезни, связанные с нарушением процессов репарации.
  • 34. Хромосомные болезни, общая характеристика. Моносомии, трисомии, нулисомии, полные и мозаичные формы, механизм нарушения распределения хромосом в первом и втором мейозе.
  • 35. Хромосомные болезни, вызванные структурными перестройками хромосом.
  • 2.2. Наследование признаков, сцепленных с полом.
  • 37. Хромосомное определение пола и его нарушения.
  • 38. Дифференцировка пола на уровне гонад и фенотипа, ее нарушения.
  • 39. Хромосомные болезни, обусловленные аномалиями половых хромосом: синдром Шерешевского - Тернера, синдром Кляйнфельтера, полисомии по х и у- хромосомам.
  • 40. Хромосомные болезни, обусловленные аномалиями аутосом: синдромы Дауна, Эдвардса, Патау.
  • 41. Сущность и значение клинико-генеалогического метода, сбор данных для составления родословных, применение генеалогического метода.
  • 42.Критерии доминантного типа наследования на родословных: аутосомные, сцепленные с х - хромосомой и голандрические признаки.
  • 43. Критерии рецессивного типа наследования на родословных: аутосомные и сцепленные с х - хромосомой признаки.
  • 44. Вариабельность в проявлении действия гена: пенетрантность, экспрессивность. Причины вариабельности. Плейотропное действие гена.
  • 45. Мгк, цель, задачи. Показание направления в мгк. Проспективное и ретроспективное консультирование.
  • 46. Пренатальная диагностика. Методы: уз, амниоцентез, биопсия ворсин хориона. Показания к пренатальной диагностике.
  • 47. Сцепление и локализация генов. Метод картирования, предложенный т. Морганом.
  • 49. Гибридные клетки: получение, характеристика, использование для картирования.
  • 50. Картирование генов с использованием морфологических нарушений хромосом (транслокаций и делеций).
  • 51. Картирование генов у человека: метод днк-зондов.
  • 53. Митоз и его биологическое значение. Проблемы клеточной пролиферации в медицине.
  • 54. Мейоз и его биологическое значение
  • 55. Сперматогенез. Цитологические и цитогенетические характеристики.
  • 56. Овогенез. Цитологические и цитогенетические характеристики.
  • 58. Взаимодействие неаллельных генов. Комплементарность.
  • 59. Взаимодействие неаллельных генов. Эпистаз, его виды
  • 60. Взаимодействие неаллельных генов. Полимерия, ее виды.
  • 61. Хромосомная теория наследственности. Полное и неполное сцепление генов.
  • 62. Зигота, морула и формирование бластулы.
  • 63. Гаструляция. Типы гаструл.
  • 64. Основные этапы эмбриогенеза. Зародышевые листки и их производные. Гисто - и органогенез.
  • 65. Провизорные органы. Анамнии и амниоты.
  • 66. Генетическая структура популяции. Популяция. Дем. Изолят. Механизмы нарушения равновесия генов в популяции.
  • 68. Генетический груз, его биологическая сущность. Генетический полиморфизм.
  • 69. История становления эволюционных идей.
  • 70. Сущность представлений Дарвина о механизмах эволюции живой природы.
  • 71. Доказательства эволюции: сравнительно-анатомические, эмбриологические, палеонтологические и др.
  • 72. Учение а.И.Северцова о филэмбриогенезах.
  • 73. Вид. Популяция - элементарная единица эволюции. Основные характеристики популяции.
  • 74. Элементарные эволюционные факторы: мутационный процесс, популяционные волны, изоляция и их характеристика.
  • 75. Формы видообразования и их характеристика.
  • 76. Формы естественного отбора и их характеристика.
  • 78. Предмет антропологии, ее задачи и методы
  • 79. Конституциональные варианты человека в норме по Сиго.
  • 80. Конституциональные варианты человека в норме по э.Кречмеру.
  • 81. Конституциональные варианты человека в норме по в.Н.Шевкуненко и а.М.Геселевич.
  • 82.Конституциональные варианты человека в норме по Шелдону
  • 83. Доказательства животного происхождения человека.
  • 84.Место человека в системе классификации в системе животного мира. Морфо-физиологические отличия человека от приматов.
  • 85. Палеонтологические данные о происхождении приматов и человека.
  • 86. Древнейшие люди - архантропы.
  • 87. Древние люда - палеоантропы.
  • 88. Неоантропы.
  • 89.Расы - как выражение генетического полиморфизма человечества.
  • 90.Биоценоз, биотоп, биогеоценоз, компоненты биогеоценоза.
  • 91.Экология как наука. Направления экологии.
  • 93.Глобальные экологические проблемы.
  • 94.Абиотические факторы: энергия Солнца; температура.
  • 95. Абиотические факторы: осадки, влажность; ионизирующие излучения.
  • 96. Экосистема. Виды экосистем.
  • 97. Адаптивные экологические типы человека. Тропический адаптивный тип. Горный адаптивный тип.
  • 68. Генетический груз, его биологическая сущность. Генетический полиморфизм.

    Для характеристики популяции существенно понятие генетического груза – L. Под этим термином понимают отношение разницы между фактической средней приспособленностью популяции и наибольшей приспособленностью одного из генотипов, имеющихся в популяции, к наибольшей приспособленности:

    Иначе говоря, фактическая средняя приспособленность популяции ниже той, которая была бы, если бы вся популяция состояла только из наиболее приспособленных генотипов. Менее приспособленные генотипы составляют как бы груз, который тянет популяцию вниз. В то же время из поколения в поколение протекает эволюция популяции в сторону ослабления влияния генетического груза.

    Генетический груз слагается из многих величин. В популяции постоянно происходит расщепление на генотипы A1A1, A1A2 и A2A2, неодинаковые по своей приспособленности и поэтому подвергающиеся действию того или иного типа отбора. При большей приспособленности гетерозигот (сверхдоминирование) от них постоянно выщепляются гомозиготы с более низкой приспособленностью. Этот компонент генетического груза можно назвать сегрегационным грузом (Ls).

    В результате мутационного процесса в популяции накапливаются мутантные гены. За счет их также снижается средняя приспособленность популяции (мутационный груз Lm).

    За счет повышения доли гомозигот при инбридинге создается инбредный груз (Li), также уменьшающий среднюю приспособленность популяции, иногда очень резко (инбредная депрессия).

    Порой говорят также об эволюционном грузе (Le), имея в виду случаи, когда протекает интенсивный, но еще далекий от завершения отбор в пользу одного аллеля.

    В популяционных системах, способных к обмену носителями генетической информации, возникает проблема элиминации этих носителей (в первую очередь, диплоидных), оказавшихся не на своем месте. В результате генотипы, адаптированные к одной нише, погибают, оказавшись в смежной нише. Это явление называется генетическим грузом, вносимым особями, оказавшимися «не на месте».

    М. Кимура выдвинул принцип минимальности генетического груза, смысл которого заключается в том, что в процессе эволюции происходит изменение всех генетических параметров таким образом, чтобы генетический груз был минимальным.

    ВНОСИМЫЙ ГРУЗ

    Этот груз создается в связи с присутствием в генофонде в результате мутаций и иммиграции худших аллелей. Естественный отбор быстро сократил бы этот груз, если бы он постоянно не пополнялся, и если бы многие из этих генов не имели временной защиты.

    Мутационный груз (mutational load). Этот груз создается за счет непрерывно возникающих вредных мутаций и был мастерски описан Мёллером (1950а). Холдейн (1937) показал, что величина приспособленности популяции понижается в степени, грубо говоря, равной сумме частот всех мутаций.

    Иммиграционный груз (immigration load). Иммиграционный груз создается включением в данный генофонд посторонних генов, которые в новой генотипической среде понижают приспособленность. Были ли эти гены полезными или вредными в их прежней среде – не играет роли.

    Компенсация груза у человека (Ли, 1953; Левонтин, 1953) и сходные редкие явления приводят к возобновлению притока вредных генов в генофонд следующего поколения, и, быть может, их правильнее отнести к категории вносимого груза.

    СБАЛАНСИРОВАННЫЙ ГРУЗ

    Частота худших генотипов, образуемых некоторыми локусами, слишком высока, чтобы ее можно было отнести за счет вносимого груза. Кроу (1948), Лернер (1954), Добржанский (1955Ь, 1959а) и Уоллес (1958) привлекли внимание к другому источнику таких вариантов, названному Добржанским «сбалансированным грузом». Этот груз обусловлен тем, что отбор благоприятствует балансу между разными аллелями или эпистатическими генами, которые путем рекомбинаций и выщепления дают в каждом поколении худшие генотипы. Здесь вновь можно различать несколько подтипов. Сбалан­сированный груз создается с помощью многих защитных механизмов, обсуждавшихся в этой главе, таких, как приспособление к гетерогенности среды (эффект Людвига), селективное преимущество редких генотипов, гены, спо­собствующие энергичному расселению, гены, ответственные за гетерогамию, и другие. (Гены, обусловливающие сдвиг в соотношениях при расщеплении, также, вероятно, должны быть по определению включены в эту группу.) В сущности, каждый механизм, способствующий накоплению наследственной изменчивости (см. начало), создает свой собственный генетический груз.

    Наиболее хорошо известны следующие типы сбалансированного груза:

    1) Груз, создаваемый невыгодностью гомозизот. Этот груз создается выщеплением вредных гомозигот по локусам, по которым приспособленность гетерозиготы выше, чем приспособленность одной из гомозигот. В каждом случае сбалансированного полиморфизма всегда создается такой груз.

    2. Груз несовместимости. У млекопитающих этот груз представляет собой результат вредного антигенного взаимодействия между эмбрионом и матерью вследствие несовместимости их генотипов. Вероятность гибели человеческого эмбриона с группой крови А или В приблизительно на 10% выше в случае, если его мать имеет группу крови 0, чем, если она имеет ту же группу, что и эмбрион. Смертность в эмбриональном периоде, вызываемая несовместимостью в локусе АВ0, составляет приблизительно 2,4% (Кроу и Мортон, 1960). Эта смертность быстро привела бы к элиминации сравнительно более редких генов, если бы она не компенсировалась другими факторами, вероятно, селективным преимуществом гетерозигот.

    3. Груз, создаваемый гетерогенностью внешних условий. Эта форма генетического груза сходна с иммиграционным грузом. [Данный вопрос разобран в работе В.Гранта (1991). В популяционных системах, способных к обмену носителями генетической информации, возникает проблема элиминации этих носителей (в первую очередь, диплоидных), оказавшихся не на своем месте. В результате генотипы, адаптированные к одной нише, погибают, оказавшись в смежной нише. Это явление называется генетическим грузом, вносимым особями, оказавшимися «не на месте».

    Ныне много делается для анализа характера и степени нарушений, вызванных в биосфере; к сожалению, гораздо меньше исследований посвящено изучению того, как эти изменения влияют на биологические особенности человека и других организмов. Особенно это касается генетических последствий загрязнений, хотя они могут оказать определяющее влияние на судьбу человечества в целом. Мутагены среды способны проникать в клетки и поражать их генетическую программу (вызывать мутации). В том случае, когда поражение затрагивает ДНК, которая находится в зародышевых клетках человека, гибнут эмбрионы или рождаются младенцы, имеющие наследственные дефекты. Мутации в клетках тела организма (соматических клетках) вызывают рак, поражения иммунной системы, уменьшают продолжительность жизни.

    Генетический груз. Социальные и биологические критерии качества человека не совпадают, но и не так уж далеки друг от друга. Генетический груз. Постоянное давление мутаций и миграции генов, а также выщепление биологически менее приспособленных генотипов по сбалансированным полиморфным локусам. Понятие генетического груза ввел Г. Мёллер в 1950 г. в работе «Наш груз мутаций». Средняя величина генетического груза у человека равна 3-5 летальным эквивалентам. ГЕНЕТИЧЕСКИЙ ГРУЗ -- часть наследственной изменчивости популяций (генетической информации), которая определяет появление менее приспособленных особей, погибающих в процессе естественного отбора. Изучение Г.г. в виде вредных мутаций у человека (наследственные заболевания, врожденные пороки развития) важно для практических вопросов медицинской генетики. С ростом загрязнения окружающей среды частота вредных мутаций увеличивается. Генетический груз во многих семьях наиболее явно проявляется при рождении детей с разного рода генетическими отклонениями в виде физических и психических дефектов. Ныне таких детей рождается 10%, т.е. среди миллиона детей сто тысяч рождается с разными отклонениями от нормального развития.

    Генетический груз -- постоянное присутствие в генофонде популяции или вида (в т.ч. человека) вредных мутантных (измененных) генов, возникающих обычно под воздействием различных мутагенных факторов окружающей среды. Генетический груз -- наличие и накопление в популяции негативных генетических изменений, летальных мутаций, ведущее к увеличению частоты наследственных заболеваний и снижению жизнеспособности в ряде поколений.

    Генетический груз -- совокупность неблагоприятных генов, унаследованных людьми современных поколений от людей предыдущих поколений, а также возникающих в результате мутаций в каждом новом поколении. Этот «генетический груз» дорого обходится людям как экономически, так и психологически. Считается, что критическая величина частоты генетических нарушений у новорожденных составляет 13%. Это означает, что генетический груз уже настолько велик, что вырождение популяции становится неизбежным. Кстати, это было одним из главных соображений, заставивших противостоявшие друг другу ядерные державы еще в 60-е годы договориться о прекращении испытаний этого оружия в воздухе, на земле и на воде. Тем не менее радиоактивное загрязнение среды снова возрастает. Кроме того, многие химические вещества, загрязняющие воздух, воду и пищу, обладают сильным мутагенным действием. Это ставит под угрозу сохранение генофонда человечества.

    Методика генетического мониторинга начинает реально разрабатываться, он ставит перед собой задачу определения объемов и динамики нарушения наследственного здоровья людей, обусловленного влиянием генетического груза. Генетические последствия загрязнения среды обитания человека изучены пока недостаточно. Воздействие генетического груза на экономику, трудовые и оборонные ресурсы очень велико. Только содержание больных синдромом Дауна и фенилкетонурией, которых в московские дома для инвалидов в период с 1964 по 1979 г. поступило 75680 человек, обошлось государству в миллиард рублей (в ценах того времени).

    Мутационный груз характеризуется наличием в геноме хромосомных и генных мутаций, в основном доминантных, с явным летальным исходом, з современных популяциях человека он имеет тенденцию к значительному росту. Давление мутаций на каждое поколение людей очень велико. У человека частота мутаций в среднем составляет 5 10.

    В его половых клетках имеется около 100 тыс. генов. Каждая оплодотворенная яйцеклетка получает в среднем еще 10 новых мутаций (Н.П. Дубинин, 1990). Было установлено, что в каждом поколении 50% оплодотворенных яйцеклеток или гибнут, или возникшие из них организмы не оставляют потомства. При этом 12% браков бесплодны вследствие дефектов воспроизводительной системы. По мнению Н.П. Дубинина, удвоение объема естественных мутаций недопустимо для человека, особенно если учесть, что генетический груз наиболее явно проявляется при рождении детей с разными генетическими отклонениями в виде физических и психических дефектов (10%).

    Все нарушения в генетической информации человека, подрывающие наследственное здоровье населения, объединяются под названием генетического груза (Н.П. Дубинин, 1978,1990). Внедрение эколого-генетического мониторинга позволит выяснить патогенез нарушений в генофонде человека под влиянием все нарастающего прессинга деформированной загрязненной среды. Действие радиации и генетический груз в популяциях человека». Жизнь в атомном и химическом мире». Различают сегрегационный и мутационный груз. Сегрегационный груз -- это часть генетического груза, унаследованная людьми современных поколений от людей, принадлежавших к поколениям, жившим на протяжении многих предыдущих веков. Возможно, этот груз пришел к предыдущим и современным поколениям от предков, живших на разных этапах антропогенеза. Можно сказать, что сегрегационный груз представлен «старыми» мутациями.

    Мутационный груз -- это часть генетического груза, которая обусловлена «новыми», т. е. «свежими» мутациями генов и хромосом, возникающими заново в каждом новом поколении. К сожалению, реальная величина вреда, наносимого генетическим грузом, возникающим в каждом поколении, наследственному здоровью населения, не оценена до сего времени достоверно. От атомной индустрии к началу XXI века, по оценкам Р. Бертелл, генетически пострадало не менее 223 млн. человек (Bertell, in litt., 2000). При этом надо учесть, что эти генетические изменения могут передаться из поколения в поколение.

    В результате генетический груз в популяциях человека может достигнуть через несколько поколений катастрофических величин. В настоящее время важна комплексная система мероприятий по генетическому мониторингу популяций в сочетании со скринингом химических соединений на мутагенную активность. Выше приведена в наиболее общей форме ее схема. В основу схемы положен принцип мониторинга -- непрерывного слежения. На уровне глобальных и локальных загрязнений биосферы выделяется интегральный мониторинг за ростом врожденных дефектов в популяциях человека. Эта часть задачи может частично решаться с помощью уже известных методов учета числа врожденных заболеваний и аномалий в популяциях, путем биохимического скрининга по изоморфным белкам и цитогенетического скрининга. Известную пользу могут принести данные о динамике злокачественных новообразований и изменений в продолжительности жизни.

    Параллельно необходимо оценивать генетический груз в популяциях животных и растений. При изучении зависимости между состоянием среды обитания и генетическим грузом выявляется особая уязвимость нервно-психических функций человека. По общемировым данным, наблюдается ежегодный рост количества неполноценных детей. Так, по минимальным оценкам, нарушения психики отмечаются примерно у 10% населения нашей страны, что составляет около 15 млн. человек. Только в 1990 г. в средней школе обучалось 0,8 млн. детей с ослабленными умственными способностями. Содержание умственно отсталых детей обходится государству в сотни миллионов рублей, т.е. существенно сказывается на его экономике. Один из этих подходов связан с учетом популяционных характеристик. В качестве показателя оценки генетического груза используют медико-статистические показатели (частота спонтанных абортов, частота мертворождений, вес детей при рождении, вероятность выживания, соотношение полов, частота заболеваний врожденных и приобретенных, показатели роста и развития детей).

    В соответствии с вышеизложенным Н. П. Дубинин делает очень важный вывод о необходимости организации государственной службы генетического мониторинга, призванной реально определить объем и рост генетического груза в соответствии со степенями экологического напряжения и разработать рекомендации по недопущению факторов, ведущих к его возрастанию. Основная трудность, препятствующая мониторингу за проявлением новых мутаций в популяции человека, состоит в огромном разнообразии генетических особенностей людей и в том, что эти популяции уже накопили большой генетический груз.

    О его величине свидетельствуют показатели частоты наследственных заболеваний и врожденных уродств. В ряде стран Европы и США ежегодно рождается от 3 до 7%, а в Японии до 10% детей с генетически контролируемыми врожденными заболеваниями. Эти величины возрастут, если добавить довольно большое число наследственных заболеваний, проявляющихся к концу первого года развития, не выявляющихся при рождении. Всякая живая система, используя обратные связи, всегда стремится к самосохранению. Система обратных связей в биосфере направлена на элиминацию1 человека как вида. Увеличивается генетический «груз» человечества, отмечается рост психических и нервных заболеваний, снижается общая сопротивляемость болезням, усиливается стресс перенаселения в городах, агрессия, страх и т. д. Человек для оправдания названия своего вида «Человек разумный» должен планировать дальнейшую деятельность так, чтобы сохранить оставшуюся и по возможности восстановить утраченную биоту планеты за счет естественной саморегуляции природной среды.

    Если уродства возникают в течение эмбриогенеза, то в природе такие маленькие человеческие существа были бы нежизнеспособны. Однако современная медицина позволяет им выжить. Такие люди, несущие уродства или мутантные гены, иногда могут давать потомство, тем самым отягощая генетический груз человечества. Н. П. Дубинин пишет: «По данным московских домов для инвалидов, по умственной отсталости за период с 1964 по 1979 г. в эти дома поступило 75680 больных фенилкетонурией и с синдромом Дауна. Их содержание за это время обошлось государству в миллиард рублей. Такова цена двух болезней. На самом деле число людей в нашей стране, подверженных влиянию генетического груза, исчисляется десятками миллионов. Человечество становится все более больным и дегенеративным. Одна из главных причин антропоэкологического напряжения и утомления -- несоответствие между адаптационными возможностями организма человека, формировавшегося в процессе эволюции на протяжении многих тысячелетий, и современными условиями среды его обитания, способной резко изменяться в течение нескольких десятков лет.

    Именно эта диспропорция может служить причиной генетического напряжения и утомления, что является выражением генетического груза. Если «средние» оценки влияния загрязнения среды на заболеваемость имеют какое-то значение, то независимо от частных значений этой связи в разных случаях, специалисты единодушны в том, что степень этого влияния во многих странах в последние десятилетия быстро нарастает. В главе 1 уже говорилось, что избавление человека от естественного отбора привело к увеличению неблагоприятного генетического груза и ослаблению естественных защитных сил организма. На этом фоне ухудшение качества среды оказывает все возрастающее действие на здоровье людей. Многие такие состояния субъективно не воспринимаются как обусловленные загрязнением среды.

    Однако искусственный отбор и селекция в некоторых случаях имели негативные последствия. В аграрных ландшафтах успешнее размножались животные, приспособленные для жизни в условиях, созданных человеком (пастбища, хлевы и т. д.). С увеличением зависимости от искусственных условий местообитания и питания сохранились такие генотипы, которые вряд ли выжили бы в дикой природе. При заботе со стороны человека генетически неполноценные животные обычно не вымирают. При этом «неполноценные», «вредные», «отрицательные» гены не исчезают, а продолжают накапливаться и размножаться в популяциях. Это привело к возникновению и накоплению наследственного бремени («генетического груза») в животноводстве. Детеныши, больные из-за мутантных генов (хромосомных изменений), а также в результате нарушений развития в течение эмбриогенеза, нежизнеспособны в условиях дикой природы и, скорее всего, были бы ею «отбракованы». Однако развитие медицины и общее повышение уровня жизни человека, особенно в XIX и XX вв., вывело человеческую популяцию из-под влияния естественного отбора, и поэтому у человечества накопился достаточно значительный генетический груз. В наше время известно более двух тысяч наследственных болезней человека, вызванных различными мутациями.

    Эволюционные изменения связаны не только с образованием и вымиранием видов, преобразованием органов, но и с перестройкой онтогенетического развития.

    Онтогенез - это индивидуальное развитие, оно представляет собой неотъемлемое свойство жизни, как эволюция, и её продукт. Организм в онтогенезе ни на одной из стадий развития не является мозаикой частей, органов или признаков. Морфологическая и функциональная целостность организма в его жизненных проявлениях не вызывает никаких сомнений. Еще Аристотель при сравнении различных организмов установил единство их строения и обосновал учение о морфологическом сходстве. Большое значение в истории вопроса о взаимозависимостях частей организма имели взгляды Ж. Кювье. По его представлениям, организм является целостной системой, строение которой определяется ее функцией; отдельные части и органы находятся во взаимной связи, их функции согласованы и приспособлены к известным условиям внешней среды. Ч. Дарвин отмечал, что координация частей есть результат исторического процесса приспособления организма к условиям жизни. В дальнейшем многие ученые подчеркивали тот факт, что организм всегда развивается как целое. Онтогенез можно определить как усложнение организации данного поколения. Процесс онтогенеза представляет собой реализацию генетической информации.

    Онтогенез - есть предопределенный процесс, и, в отличие от эволюции, является развитием по программе, развитием, направленным к определенной конечной цели, которой является достижение половозрелости и размножения. Чем сложнее организация взрослого организма, а это является отражением эволюции, тем сложнее и длительнее процесс его онтогенеза.

    Онтогенез состоит из этапов (одна особенность онтогенеза): эмбриональный этап, постэмбриональное развитие и жизнь взрослого организма. Крупные этапы (периоды) развития можно подразделить на более дробные стадии, как в эмбриональном развитии позвоночных - бластулы, гаструлы, нейрулы. Стадию дробления, в свою очередь, можно разделить на стадии двух, четырех, восьми и более бластомеров. В результате представление об этапности онтогенеза теряется и вырисовывается вполне плавный процесс индивидуального развития. Изменение группы в филогенезе могут возникнуть лишь посредством изменения в онтогенезе, обычно эти изменения индивидуального развития касаются поздних стадий развития, что отмечалось выше. Впервые взаимосвязь онтогенеза и филогенеза раскрыл в ряде положений К. Бэр, которым Ч. Дарвин дал обобщенное название «Закон зародышевого сходства». В 1864 г. Ф. Мюллер сформулировал положение о том, что филогенетические преобразования связаны с онтогенетическими изменениями и что эта связь проявляется двумя путями.

    Работы Ф. Мюллера послужили основой для формулировки Э. Геккелем (1866 г.) биогенетического закона , согласно которому «онтогенез есть краткое и быстрое повторение филогенеза». Основа биогенетического закона, как и рекапитуляции, заключается в эмпирической закономерности, отраженной в законе зародышевого сходства К. Бэра. Суть его заключается в следующем: самая ранняя стадия сохраняет значительное сходство с соответствующими стадиями развития родственных форм.

    Результаты эволюции онтогенеза :

    • 1) рационализация;
    • 2) автономизация;
    • 3) эмбрионизация.

    Рационализация заключается в усовершенствовании процесса с помощью его упрощения. Впервые взаимосвязь онто и филогенеза раскрыл К. Бэр в ряде положений которые Дарвин назвал «законом зародышевого сходства» суть егов следующем: самая ранняя стадия сохраняет значительное сходство в соответствии со стадиями развития родственных форм. Т.е процесс онтогенеза представляет собой известное повторение многих черт строения предковых форм: на ранних стадиях развития - более отдаленных предков, а на более поздних - более родственных форм.

    Северцова теория филэмбриогенеза -- теория, согласно которой эволюция совершается путем изменения хода онтогенеза, т. е. наследственные изменения строения органов животных, нарушающие течение исторического хода развития и изменяющие строение взрослых особей, проявляются в эмбриональном развитии. По данным автора, филогенез -- это совокупность онтогенезов генетического ряда поколений и всех тех наследственных преобразований, которые происходят на различных этапах индивидуального развития животных в ряде поколений.

    Анаболия, или надставка стадий, -- эволюционные изменения формообразования на конечных стадиях зародышевого развития. В связи с тем что анаболии изменяют поздние стадии развития органа, они не вызывают существенных перестроек других частей организма, поэтому встречаются чаще. Путем анаболии в основном формируются видовые и родовые признаки.

    Девиация -- эволюционные перестройки на средних стадиях зародышевого развития органа. Например, имеется сходство в закладке и начальном развитии чешуи у акуловых и рептилий. На средних стадиях зародышевого развития рептилий происходят отклонения, которые ведут к образованию ороговевшей чешуи, в та время как у акуловых формируется окостеневшая чешуя с зубцом. Очевидно, клубни и луковицы у растений возникли путем девиации. При этом рекапитуляция (повторение предковых признаков) наблюдается только до средних стадий эмбриогенеза, а затем развитие идет по новому пути.

    Архаллаксис -- изменения начальных стадий эмбриогенеза или изменения самих зачатков органа. Этим путем идет развитие волоса млекопитающих -- производного кожи -- без повторения предковых признаков. Архаллаксисы вызывают с самого начала коренную перестройку в развитии органа. Они могут быть причиной нарушения функции органа и его связей с другими частями организма, что может привести к смерти. Очевидно, поэтому в филогенезе они встречаются реже, чем другие филэмбриогенезы. При архаллаксисе не наблюдается палингенезов и рекапитуляции и поэтому положения биогенетического закона здесь неприемлемы.

    Следует отметить, что разные типы филэмбриогенезов не обособлены, они связаны и имеют взаимопереходы. Филэмбриогенезы характерны л для растений. Они возникают на разных стадиях развития и могут быть положительными (возникновение новых признаков) и отрицательными (выпадение, утрата старого признака).

    Если биогенетический закон фиксирует внимание на зависимости онтогенеза от филогенеза (Ф>О), то теория филэмбриогенезов показывает, что и изменения в онтогенезе влияют на филогенез (Ф-О) -- онтогенетическая обусловленность филогенеза.