18.03.2019

Скорость движения пара в паропроводе. Гидравлический расчет паропроводов


Потери энергии при движении жидкости по трубам определяются ре­жимом движения и характером внутренней поверхности труб. Свойства жидкости или газа учитываются в расчете с помощью их параметров: плотности р и кинематической вязкости v. Сами же формулы, использу­емые для определения гидравлических потерь, как для жидкости, так и для пара являются одинаковыми.

Отличительная особенность гидравлического расчета паропровода заключается в необходимости учета при определении гидравлических потерь изменения плотности пара. При расчете газопроводов плотность газа определяют в зависимости от давления по уравнению состояния, написанному для идеальных газов, и лишь при высоких давлениях (больше примерно 1,5 МПа) вводят в уравнение поправочный коэффи­циент, учитывающий отклонение поведения реальных газов от поведе­ния идеальных газов.

При использовании законов идеальных газов для расчета трубопро­водов, по которым движется насыщенный пар, получаются значительные ошибки. Законы идеальных газов можно использовать лишь для сильно перегретого пара. При расчете паропроводов плотность пара определя­ют в зависимости от давления по таблицам. Так как давление пара в свою очередь зависит от гидравлических потерь, расчет паропроводов ведут методом последовательных приближений. Сначала задаются по­терями давления на участке, по среднему давлению определяют плот­ность пара и далее рассчитывают действительные потери давления. Ес­ли ошибка оказывается недопустимой, производят пересчет.

При расчете паровых сетей заданными являются расходы пара, его начальное давление и необходимое давление перед установками, ис­пользующими пар. Методику расчета паропроводов рассмотрим на при­мере.

ТАБЛИЦА 7.6. РАСЧЕТ ЭКВИВАЛЕНТНЫХ ДЛИН (Аэ=0,0005 м)

№ участка на рис. 7.4

Местные сопротивления

Коэффициент мест­ного сопротивления С

Эквивалентная дли­на 1э, м

Задвижка

Задвижка

Сальниковые компенсаторы (4 шт.)

Тройник при разделении по­токов (проход)

Задвижка

Сальниковые компенсаторы (3 шт.)

Тройник при разделении по­токов (проход)

Задвижка

Сальниковые компенсаторы (3 шт.)

Сальниковые компенсаторы (2 шт.)

0,5 0,3-2=0,бі

Тройник при разделении по­токов (ответвление) Задвижка

Сальниковые компенсаторы (2 шт)

Тройник при разделении по­токов (ответвление) Задвижка

Сальниковые компенсаторы (1 шт)

6,61 кг/м3.

(3 шт.)................................... *........................................................ 2,8-3 = 8,4

Тройник при разделении потока (проход) . . ._________________ 1__________

Значение эквивалентной длины при 2£ = 1 при k3 = 0,0002 м для трубы диамет­ром 325X8 мм по табл. 7.2 /э=17,6 м, следовательно, суммарная эквивалентная дли­на для участка 1-2: /э = 9,9-17,6= 174 м.

Приведенная длина участка 1-2: /пр і-2=500+174=674 м.

Источником тепла называется комплекс оборудования и устройств, с помощью которых осуществляется преобразование природных и искусственных видов энергии в тепловую энергию с требуемыми для потребителей параметрами. Потенциальные запасы основных природных видов …

В результате гидравлического расчета тепловой сети определяют диаметры всех участков теплопроводов, оборудования и запорно-регули - рующей арматуры, а также потери давления теплоносителя на всех эле­ментах сети. По полученным значениям потерь …

В системах теплоснабжения внутренняя коррозия трубопроводов и оборудования приводит к сокращению срока их службы, авариям и зашламлению воды продуктами коррозии, поэтому необходимо пре­дусматривать меры борьбы с ней. Сложнее обстоит дело …

Из формулы (6.2) видно, что потери давления в трубопроводах прямо пропорциональны плотности теплоносителя. Диапазон колебаний температуры в водяных тепловых сетях . В этих условиях плотность воды составляет .

Плотность же насыщенного пара при составляет 2,45 т.е. примерно в 400 раз меньше.

Поэтому допустимая скорость движения пара в трубопроводах принимается значительно большей, чем в водяных тепловых сетях (примерно в 10-20 раз).

Отличительная особенность гидравлического расчета паропровода заключается в необходимости учета при определении гидравлических потерь изменения плотности пара.

При расчете паропроводов плотность пара определяют в зависимости от давления по таблицам. Так как давление пара в свою очередь зависит от гидравлических потерь, расчет паропроводов ведут методом последовательных приближений. Сначала задаются потерями давления на участке, по среднему давлению определяют плотность пара и далее рассчитывают действительные потери давления. Если ошибка оказывается недопустимой, производят пересчет.

При расчете паровых сетей заданными являются расходы пара, его начальное давление и необходимое давление перед установками, использующими пар.

Удельную располагаемую потерю давления в магистрали и в отдельных расчетных участках, , определяют по располагаемому перепаду давления:

, (6.13)

где длина основной расчетной магистрали, м ; величину для разветвленных паровых сетей принимают 0,5.

Диаметры паропроводов подбираются по номограмме (рис.6.3) при эквивалентной шероховатости труб мм и плотности пара кг/м 3 . Действительные значения R Д и скорости пара подсчитываются по средней действительной плотности пара:

где и значения R и , найденные по рис. 6.3. При этом проверяется, чтобы действительная скорость пара не превышала максимально допустимых значений: для насыщенного пара м/с ; для перегретого м/с (значения в числителе принимаются для паропроводов диаметром до 200 мм , в знаменателе - больше 200 мм , для отводов эти значения можно увеличивать на 30 %).



Так как значение в начале расчета неизвестно, то им задаются с последующим уточнением по формуле:

, (6.16)

где , удельный вес пара в начале и конце участка.

Контрольные вопросы

1. Каковы задачи гидравлического расчета трубопроводов тепловой сети?

2. Что такое относительная эквивалентная шероховатость стенки трубопровода?

3. Приведите основные расчетные зависимости для гидравлического расчета трубопроводов водяной тепловой сети. Что такое удельная линейная потеря давления в трубопроводе и какова ее размерность?

4. Приведите исходные данные для гидравлического расчета разветвленной водяной тепловой сети. Какова последовательность отдельных расчетных операций?

5. Как производится гидравлический расчет паровой сети теплоснабжения?


Высокая эффективность использования энергии пара прежде всего зависит от правильной конструкции паро-конденсатных систем. Для достижения максимальной эффективности паро-конденсатных систем существует ряд правил, которые необходимо знать и учитывать при проектирование, монтаже и пуско-наладочных работах:
— При производстве пара необходимо стремиться к выработке пара высокого давления, т.к. паровой котел является более быстродействующим при высоком давлении, чем при низком. Это связано с тем, что скрытая теплота парообразования при низком давлении более большая, чем при высоком давлении. Иначе говоря, необходимо затратить больше энергии для выработки пара при низком давлении, чем при высоком, относительно разного уровня тепловой энергии в воде.
— Для использования в технологическом оборудовании всегда подавайте пар минимально допустимого давления, т.к. теплопередача при низком давлении, когда скрытая теплота парообразования выше, более эффективна. В противном случае тепловая энергии пара уйдет вместе с конденсатом высокого давления. И ее приходится ловить на уровне утилизации вторичного пара, если заниматься энергосбережением. — Всегда вырабатывайте максимальное количество пара из вторичного тепла, остающегося после технологического процесса, т.е. обеспечивая работоспособность отвода и использования конденсата. Не правильно смонтированное и не правильно работающее оборудование в паро-конденсатных системах служат источником потерь энергии пара. А также являются причиной не стабильной работы всей паро-конденсатной системы.

Установка конденсатоотводчика Конденсатоотводчики устанавливаются как для дренажа магистральных паропроводов, так и для отвода конденсата от теплообменного оборудования. Конденсатоотводчики служат для удаления конденсата, образующегося в паропроводе вследствие тепловых потерь в окружающую среду. Теплоизоляция снижает уровень тепловых потерь, но не исключает их полностью. Поэтому на всем протяжении паропровода необходимо предусматривать узлы отвода конденсата. Отвод конденсата необходимо организовывать не реже 30-50 м на горизонтальных участках трубопроводов. Первый конденсатоотводчик за котлом должен иметь пропускную способность не менее 20 % от производительности котла. При длине трубопровода более 1000 м пропускная способность первого конденсатоотводчика должна быть 100 % от производительности котла. Это требуется для удаления конденсата в случае уноса котловой воды. Обязательная установка конденсатоотводчика требуется перед всеми подъемами, регулирующими клапанами и на коллекторах.

Отвод конденсата необходимо осуществлять с помощью карманов отстойников. Для труб диаметром до 50 мм диаметр отстойника может быть равен диаметру основного паропровода. Для паропроводов диаметром свыше 50 мм рекомендуется использовать отстойники на один/два типоразмера меньше. В нижней части отстойника рекомендуется установить запорный кран или глухой фланец для очистки (продувки) системы. Во избежание засорения конденсатоотводчика отвод конденсата нужно делать на некотором расстоянии от нижней части отстойника.

Узел отвода конденсата Перед конденсатоотводчиком необходимо установить фильтр, а за конденсатоотводчиком — обратный клапан (защита от заполнения конденсатом системы при отключении пара в паропроводе). Для уверенности в корректной работе конденсатоотводчика рекомендуется устанавливать смотровые стекла (для визуального контроля).

Удаление воздуха Содержание воздуха в паропроводе значительно снижает теплопередачу в теплообменном оборудовании. Для удаления воздуха из паропровода в качестве автоматических воздушников используются термостатические конденсатоотводчики. «Воздушники» устанавливаются в верхних точках системы, как можно ближе к теплообменному оборудованию. Вместе с «воздушником» устанавливается прерыватель вакуума. При остановке системы охлаждаются трубопроводы и оборудование, вследствие чего происходит конденсация пара. А так как объем конденсата намного меньше объема пара, давление в системе падает ниже атмосферного, из-за чего образуется вакуум. Из-за вакуума в системе могут быть повреждены теплобменники и уплотнения арматуры.

Редукционные станции Для получения пара с требуемым давлением необходимо использовать редукционные клапаны. Во избежание гидроударов необходимо организовать отвод конденсата перед редукционным клапаном.

Фильтры Скорость пара в трубопроводах в большинстве случаев составляет 15-60 м/с. Учитывая возраст и качество котлов и трубопроводов, поступаемый к потребителю пар, как правило, бывает сильно загрязнен. Частицы окалины и грязи при столь высоких скоростях существенно сокращают срок службы паропроводов. Наиболее подвержены разрушению регулирующие клапаны, так как скорость пара в зазоре между седлом и клапаном может достигать сотен метров в секунду. В связи с этим в обязательном порядке необходимо устанавливать фильтры перед регулирующими клапанами. Размер ячеек сетки фильтров, устанавливаемых на паропроводе, рекомендуется 0,25 мм. В отличие от водяных систем, на паропроводах рекомендуется устанавливать фильтр таким образом, чтобы сетка находиласьв горизонтальной плоскости, так как при установке крышкой вниз возникает дополнительный конденсатный карман, способствующий увлажнению пара и увеличивающий вероятность возникновения конденсатной пробки.

Сепараторы пара Конденсатоотводчики, установленные на магистральном паропроводе, отводят уже сформировавшийся конденсат. Однако для получения качественного сухого пара этого бывает недостаточно, так как пар к потребителю поступает влажным из-за конденсатной взвеси, увлекаемой потоком пара. Влажный пар, так же как и грязь, вследствие высоких скоростей способствует эрозионному износу трубопроводов и арматуры. Для того чтобы избежать этих проблем, рекомендуется использовать сепараторы пара. Пароводяная смесь, попадая в корпус сепаратора через входной патрубок, закручивается по спирали. Взвешенные частицы влаги за счет центробежных сил отклоняются к стенке сепаратора, образуя конденсатную пленку. На выходе из спирали при столкновении с отбойником происходит срыв пленки. Образовавшийся конденсат удаляется через дренажное отверстие в нижней части сепаратора. Сухой пар поступает в паропровод за сепаратором. Во избежание потерь пара на дренажном патрубке сепаратора необходимо предусмотреть узел отвода конденсата. Верхний штуцер предназначен для установки автоматического воздушника. Сепараторы рекомендуется устанавливать как можно ближе к потребителю, а также, перед расходомерами и регулирующей арматурой. Срок службы сепаратора обычно превышает срок службы трубопровода.

Предохранительные клапаны При выборе предохранительных клапанов необходимо учитывать конструкцию и уплотнения клапана. Основным требованием, предъявляемым к предохранительным клапанам, кроме корректно выбранного давления срабатывания, является правильная организация отвода сбрасываемой среды. Для воды дренажный трубопровод обычно направляется вниз (сброс в канализацию). В паровых системах, как правило, дренажный трубопровод направляется вверх, на крышу здания или в другое безопасное для персонала место. Из-за этого необходимо учитывать, что после сброса пара в случае срабатывания клапана, происходит образование конденсата, который скапливается в дренажном патрубке за клапаном. При этом создается дополнительное давление, препятствующее срабатыванию клапана и сбросу среды при заданном давлении срабатывания/ Другими словами, в том случае если давление срабатывания 5 бар, и трубопровод, направленный вверх, заполнен на 10 м водой, предохранительный клапан сработает только при давлении 6 бар. Кроме того, в моделях без герметичного уплотнения по штоку вода будет вытекать через крышку клапана. Поэтому во всех случаях, когда выпускной патрубок предохранительного клапана направлен вверх, необходимо организовывать дренаж через специальное отверстие в корпусе клапана или непосредственно через дренажный трубопровод. Запрещается устанавливать запорную арматуру между источником давления и предохранительным клапаном, а также на выпускном трубопроводе. При выборе предохранительного клапана, предназначенного для установки на паропроводе, необходимо исходить из расчета, что пропускной способности будет достаточно, если она будет составлять 100 % от всего возможного расхода пара плюс 20 % запаса. Давление срабатывания дожно быть не ниже 1,1 от рабочего давления во избежание преждевременного износа вследствие частого срабатывания.

Запорная арматура При выборе типа запорной арматуры прежде всего необходимо учитывать высокую скорость пара. Если европейские производители парового оборудования рекомендуют выбирать диаметр паропровода таким образом, чтобы скорость пара была 15-40 м/с, то в России рекомендуемая скорость пара зачастую может достигать 60 м/с. Перед закрытой арматурой всегда образуется конденсатная пробка. При резком открытии арматуры существует высокая вероятность возникновения гидроудара. В связи с этим крайне нежелательно в качестве запорной арматуры на паропроводе использовать шаровые краны. Перед использованием как запорной, так и регулирующей арматуры на вновь смонтированном трубопроводе необходимо предварительно продуть трубопровод во избежание повреждения седловой части арматуры окалиной и шлаком.

Диаметр паропровода определяется как:

Где: D – максимально потребляемое количество пара участком, кг/ч,

D= 1182,5 кг/ч (по графику работы машин и аппаратов для участка по производству творога) /68/;

- удельный объем насыщенного пара, м 3 /кг,
=0,84м 3 /кг;

- скорость движения пара в трубопроводе м/с, принимается 40м/с;

d =
=0,100 м=100 мм

К цеху подведен паропровод диаметром 100 мм, следовательно, его диаметра достаточно.

Паропроводы стальные, бесшовные, толщина стенки 2,5 мм

4.2.3. Расчет трубопровода для возврата конденсата

Диаметр трубопровода определяется по формуле:

d=
, м,

где Мк – количество конденсата, кг/ч;

Y – удельный объем конденсата, м 3 /кг, Y=0,00106 м 3 /кг;

W – скорость движения конденсата, м/с, W=1м/с.

Мк=0,6* D, кг/ч

Мк=0,6*1182,5=710 кг/ч

d=
=0,017м=17мм

Подбираем стандартный диаметр трубопровода dст=20мм.

4.2.3 Расчет изоляции тепловых сетей

С целью сокращения потерь тепловой энергии трубопроводы изолируют. Поведем расчет изоляции питающего паропровода с диаметром 110 мм.

Толщина изоляции для температуры окружающей среды 20ºС при заданной тепловой потере определяется по формуле:

, мм,

где d - диаметр неизолированного трубопровода, мм, d=100мм;

t - температура неизолированного трубопровода, ºС, t=180ºС;

λиз - коэффициент теплопроводности изоляции, Вт/м*К;

q- тепловые потери с одного погонного метра трубопровода, Вт/м.

q=0,151 кВт/м = 151 Вт/м²;

λиз=0,0696 Вт/м²*К.

В качестве изоляционного материала используется шлаковая вата.

=90 мм

Толщина изоляции не должна превышать 258 мм при диаметре труб 100 мм. Полученная δиз<258 мм.

Диаметр изолированного трубопровода составит d=200 мм.

4.2.5 Проверка экономии тепловых ресурсов

Тепловая энергия определяется по формуле:

t=180-20=160ºС

Рисунок 4.1 Схема трубопровода

Площадь трубопровода определяется по формуле:

R= 0,050 м, H= 1 м.

F=2*3,14*0,050*1=0,314м²

Коэффициент теплопередачи неизолированного трубопровода определяется по формуле:

,

где а 1 =1000 Вт/м²К, а 2 =8 Вт/м²К, λ=50 Вт/мК, δст=0,002м.

=7,93.

Q=7,93*0,314*160=398 Вт.

Коэффициент теплопроводности изолированного трубопрвода определяется по формуле:

,

где λиз=0,0696 Вт/мК.

=2,06

Площадь изолированного трубопровода определяется по формуле F=2*3,14*0,1*1=0,628м²

Q=2,06*0,628*160=206Вт.

Выполненные расчеты показали, что при использовании изоляции на паровом трубопроводе толщиной 90 мм экономиться 232 Вт тепловой энергии с 1 м трубопровода, то есть тепловая энергия расходуется рационально.

4.3 Электроснабжение

На заводе основными потребителями электроэнергии являются:

Электролампы (осветительная нагрузка);

Электроснабжение на предприятии от городской сети через трансформаторную подстанцию.

Система электроснабжения – трехфазный ток с промышленной частотой 50 Гц. Напряжение внутренней сети 380/220 В.

Расход энергии:

В час пиковой нагрузки – 750 кВт/ч;

Основные потребители энергии:

Технологическое оборудование;

Силовые установки;

Система освещения предприятия.

Распределительная сеть 380/220В от распределительных шкафов до машинных пускателей выполнена кабелем марки ЛВВР в стальных трубах, к двигательным проводам ЛВП. В качестве заземления используется нулевой провод питающей сети.

Предусматривается общее (рабочее и аварийное) и местное (ремонтное и аварийное) освещение. Местное освещение питается от понижающих трансформаторов малой мощности при напряжении 24В. Нормальное аварийное освещение питается от электрической сети на напряжении 220В. При полном исчезновении напряжении на шинах подстанции аварийное освещение питается от автономных источников («сухих аккумуляторов»), встроенных в светильники или от АГП.

Рабочее (общее) освещение предусматривается на напряжении 220В.

Светильники предусматриваются в исполнении, соответствующим характеру производства и условиям среды помещений, в которых они устанавливаются. В производственных помещениях предусматриваются с люминистцентными лампами, устанавливаемые на комплектных линиях из специальных подвесных коробов, располагаемых на высоте около 0,4м от пола.

Для эвакуационного освещения устанавливаются щитки аварийного освещения, подключаемые к другому (независимому) источнику освещения.

Производственное освещение осуществляется люминесцентными лампами и лампами накаливания.

Характеристики ламп накаливания, используемых для освещения производственных помещений:

1) 235- 240В 100Вт Цоколь Е27

2) 235- 240В 200Вт Цоколь Е27

3) 36В 60Вт Цоколь Е27

4) ЛСП 3902А 2*36 Р65ИЭК

Наименование светильников, используемых для освещения холодильных камер:

Cold Force 2*46WT26HF FO

Для уличного освещения используются:

1) RADBAY 1* 250 WHST E40

2) RADBAY SEALABLE 1* 250WT HIT/ HIE MT/ME E40

Обслуживание электросиловых и осветительных приборов осуществляется специальной службой предприятия.

4.3.1 Расчет нагрузки от технологического оборудования

Тип электродвигателя подбирается из каталога технологического оборудования.

Р ноп, КПД – паспортные данные электродвигателя, выбираются из электротехнических справочников /69/.

Р пр - присоединительная мощность

Р пр =Р ном /

Тип магнитного пускателя выбирается для каждого электродвигателя конкретно. Расчёт нагрузки от оборудования сведён в таблицу 4.4

4.3.2 Расчет осветительной нагрузки /69/

Аппаратный цех

Определим высоту подвеса светильников:

H р =Н 1 -h св -h р

Где: Н 1 - высота помещений, 4,8м;

h св - высота рабочей поверхности над полом, 0,8м;

h р - расчетная высота подвеса светильников, 1,2м.

H р =4,8-0,8-1,2=2,8м

Выбираем равномерную систему распределения светильников по углам прямоугольника.

Расстояние между светильниками:

L= (1,2÷1,4)·H р

L=1,3·2,8=3,64м

N св = S/L 2 (шт)

n св =1008/3,64м 2 =74 шт

Принимаем 74 светильника.

N л =n св ·N св

N л =73·2 = 146 шт

i=А*В/Н*(А+В)

где: А - длина, м;

В – ширина помещения, м.

i=24*40/4,8*(24+40) = 3,125

От потолка-70%;

От стен -50%;

От рабочей поверхности-30%.

Q=E min *S*k*Z/N л *η

к- коэффициент запаса, 1,5;

N л - число ламп, 146 шт.

Q=200*1,5*1008*1,1/146*0,5= 4340 лм

Выбираем лампу типа ЛД-80.

Творожный цех

Ориентировочное число осветительных ламп:

N св =S/L 2 (шт)

где: S- площадь освещенной поверхности, м 2 ;

L - расстояние между светильниками, м.

n св =864/3,64м 2 = 65,2 шт

Принимаем 66 светильников.

Определяем ориентировочное число ламп:

N л =n св ·N св

N св - количество ламп в светильнике

N л =66·2 = 132 шт

Определим коэффициент использования светового потока по таблице коэффициентов:

i=А*В/Н*(А+В)

где: А - длина, м;

В – ширина помещения, м.

i=24*36/4,8*(24+36) = 3

Принимаем коэффициенты отражения света:

От потолка-70%;

От стен -50%;

От рабочей поверхности-30%.

По индексу помещения и коэффициенту отражения выбираем коэффициент использования светового потока η=0,5

Определим световой поток одной лампы:

Q=E min *S*k*Z/N л *η

где: E min - минимальная освещённость, 200лк;

Z –коэффициент линейной освещённости 1,1;

к- коэффициент запаса, 1,5;

η – коэффициент использования светового потока, 0,5;

N л - число ламп, 238 шт.

Q=200*1,5*864*1,1/132*0,5 = 4356 лм

Выбираем лампу типа ЛД-80.

Цех по переработке сыворотки

n св =288/3,64 2 =21,73 шт

Принимаем 22 светильников.

Число ламп:

i=24*12/4,8*(24+12) =1,7

Световой поток одной лампы:

Q=200*1,5*288*1,1/56*0,5=3740 лк

Выбираем лампу типа ЛД-80.

Приемное отделение

Ориентировочное число светильников:

n св =144/3,64м 2 =10,8 шт

Принимаем 12 светильников

Число ламп:

Коэффициент использования светового потока:

i=12*12/4,8*(12+12)=1,3

Световой поток одной лампы:

Q=150*1,5*144*1,1/22*0,5=3740 лк

Выбираем лампу типа ЛД-80.

Установлена мощность одной осветительной нагрузки Р=N 1 *Р л (Вт)

Расчет осветительной нагрузки по методу удельных мощностей.

E min =150 лк W*100=8,2 Вт/м 2

Пересчет на освещенность 150 лк осуществляется по формуле

W= W*100* E min /100, Вт/м 2

W= 8,2*150/100 = 12,2 Вт/м 2

Определение суммарной мощности, необходимой для освещения (Р), Вт.

Аппаратный цех Р= 12,2*1008= 11712 Вт

Творожный цех Р= 12,2*864= 10540 Вт

Приемное отделение Р=12,2*144= 1757 Вт

Цех переработки сыворотки Р= 12,2* 288= 3514 Вт

Определяем число мощностей N л = Р/Р 1

Р 1 – мощность одной лампы

N л (аппаратного цеха) = 11712 / 80= 146

N л (творожного цеха) = 10540 / 80= 132

N л (приемного отделения) = 1756/ 80= 22

N л (цеха переработки сыворотки) = 3514/80 = 44

146+132+22+44= 344; 344*80= 27520 Вт.

Таблица 4.5 – Расчет силовой нагрузки

Наименование оборудования

Тип, марка

Количество

Тип электродвигателя

Мощность

КПД электродвига-

Тип магнит-

ного пуска

Номинальная Р

Электрическая

Р

Смесител

Фасовочный автомат

Дозатор Я1-ДТ-1

Фасовочный автомат

Фасовочный автомат

Линия производства твор

Таблица 4.6 – Расчёт осветительной нагрузки

Наименование помещений

Мин. освеще

Тип лампы

Кол-во ламп

Элект-ричес-

ность кВт

Удельная мощ-ность, Вт/м 2

Приемное отделение

Творожный цех

Аппаратный цех

Цех по переработке сыворотки

4.3.3 Проверочный расчет силовых трансформаторов

Активная мощность: Р тр =Р мак /η сети

где: Р мак =144,85 кВт (по графику «Расход мощности по часам суток»)

η сети =0,9

Р тр =144,85/0,9=160,94 кВт

Полная мощность, S, кВ·А

S=Р тр /соsθ

S=160,94/0,8=201,18 кВ·А

Для трансформаторной подстанции ТМ-1000/10 полная мощность составляет 1000кВ·А, полная мощность при существующей на предприятии нагрузки составляет 750кВ·А, но с учетом технического переоснащения творожного участка и организации переработки сыворотки необходимая мощность должна составлять: 750+201,18=951,18 кВ·А < 1000кВ·А.

Расход электроэнергии на 1 т вырабатываемой продукции:

Р=

где М- масса всех вырабатываемых продуктов, т;

М=28,675 т

Р=462,46/28,675=16,13 кВт*ч/т

Таким образом, из графика расхода электроэнергии по часам суток видно, что наибольшая мощность требуется в промежутке времени с 8 00 до 11 00 и с 16до 21часов. В этот период времени происходит приемка и обработка поступающего молока-сырья, производство изделий, розлив напитков. Небольшие скачки наблюдаются в период с 8до 11 , когда идет большинство процессов обработки молока для получения продуктов.

4.3.4 Расчет сечений и выбор кабелей.

Сечение кабеля находят по потере напряжения

S=2 PL*100/γ*ζ*U 2 , где:

L – длина кабеля, м.

γ – удельная проводимость меди, ОМ * м.

ζ – допустимые потери напряжения,%

U- напряжение сети, В.

S= 2*107300*100*100 / 57,1*10 3 *5*380 2 =0,52 мм 2 .

Вывод: сечение используемого предприятием кабеля марки ВВР 1,5 мм 2 – следовательно, имеющийся кабель обеспечит участки электроэнергией.

Таблица 4.7 – Почасовой расход электроэнергии на выработку продуктов

Часы суток

Насос 50-1Ц7,1-31

Счетчик Взлет-ЭР

Охладитель

Насос Г2-ОПА

ППОУ ЦКРП-5-МСТ

Сепаратор-нормализатор ОСЦП-5

Счетчик-расходомер

Творогоизготовитель ТИ

Продолжение таблицы 4.7

Часы суток

Мембранный насос

Обезвоживатель

Стабилизатор

параметров

Насос П8-ОНБ-1

Автомат фасовочный SAN/T

Измельчитель-смеситель-250

Автомат фасовочный

Фарш мешалка

Продолжение таблицы 4.7

Часы суток

Сепаратор-

Осветлитель

Ванна ВДП

Насос-дозатор НРДМ

Установка

Ванна ВДП

Насос погружной Seepex

Трубчатый

пастеризатор

Продолжение таблицы 4.7

Часы суток

Автомат фасовочный

Приемное отделение

Аппаратный цех

Творожный цех

Цех переработки сыворотки

Окончание таблицы 4.7

Часы суток

Неучтенные потери 10%

График расхода электроэнергии.

В промышленной котельной с паровыми или водогрейными котлами имеется система трубопроводов, которая предназначена для соединения между собой всего действующего оборудования; парогенераторов, насосов, деаэрационных, установок, теплообменных аппаратов и т. д.

Трубопроводы состоят из системы труб и арматуры, предназначенной для отключения отдельных трубопроводов и их участков, для регулирования количества транспортируемого теплоносителя и изменения его направления.

Все трубопроводы в зависимости от назначения разделяются на водопроводы, паропроводы, мазутопроводы и газопроводы. Водопроводы предназначены для подачи и распределения потоков воды: сырой, химически очищенной, конденсата, питательной, охлаждающей отдельные элементы оборудования. Паропроводы, мазутопроводы и газопроводы соответственно предназначены для подачи и распределения пара различных параметров, мазута и газа.

Все трубопроводы принято также разделять на главные и вспомогательные. К главным водопроводам относят питательные линии для подачи воды в котлы. Главными паропроводами являются паропроводы, соединяющие паровые, котлы со сборным коллектором (к которому присоединены паропроводы, снабжающие паром различных потребителей), а также паропроводы к питательным трубонасосам и подогревателям сетевой воды. Вспомогательными трубопроводами являются продувочные, обдувочные, дренажные, выхлопные и другие служебные паро- и водопроводы.

Эксплуатация паропроводов и водопроводов должна производиться в соответствии с «Правилами устройства и безопасной эксплуатации трубопроводов пара и горячей воды», а газопроводов в соответствии с «Правилами безопасности в газовом хозяйстве» Госгортехнадзора СССР.

Все трубопроводы пара и горячей воды разделяются на четыре категории в зависимости от теплоносителя, его температуры и давления (табл. 10-3).

Правила распространяются на трубопроводы, транспортирующие пар с избыточным давлением более 68,6 кПа или горячую воду с температурой выше 115°С. Правила не распространяются на трубопроводы, расположенные в пределах котла (до главной отключающей задвижки), на трубопроводы первой категории с наружным диаметром менее 51 мм и трубопроводы остальных категорий с наружным диаметром менее 71 мм, а также на продувочные, сливные и выхлопные трубопроводы.

В настоящее время все элементы трубопроводов выполняются в соответствии с отраслевыми стандартами (ОСТ). Расчет диаметров трубопроводов производится по расходу протекающей среды и рекомендуемым значениям скорости.
Внутренний диаметр трубопровода (м) определяется по формуле

где G -расход среды, протекающей по трубопроводу, т/ч; w -рекомендуемая скорость среды, м/с; р -плотность среды, кг/м3.
При расчете трубопроводов рекомендуются следующие скорости пара и воды (м/с):

После определения диаметра трубопровода по формуле (10-8) подбирают по нормалям трубопроводы, соответствующие протекающей среде, с диаметром, наиболее близким к вычисленному. По окончательно принятому диаметру трубопровода проверяют действительную скорость (м/с) по формуле

Материал и толщина стенок трубопроводов выбираются в зависимости от давления и температуры протекающей среды в соответствии с правилами Госгортехнадзора. Трубопроводы изготовляют из бесшовных электросварных и водогазопроводных труб. Водогазопроводные трубы применяются для среды с давлением менее 1 МПа и температурой ниже 200 °С (трубы обыкновенные) и с давлением менее 1,6 МПа и температурой ниже 200 °С (трубы усиленные). Трубопроводы, работающие при давлении более 1,6 МПа и температуре 300 °С и выше, выполняются из бесшовных труб, изготовленных из углеродистой стали марок 10 и 20 при подаче теплоносителя с температурой до 450 °С и из легированной стали различных марок для подачи теплоносителя с более высокой температурой.

При сооружении трубопроводов трубы между собой и с арматурой соединяют сваркой, посредством фланцев. В настоящее время трубы соединяют между собой, как правило, сваркой, а фланцевые соединения применяют только при установке арматуры, работающей с низким давлением. Для уплотнения фланцевых соединений применяются прокладки. Материал прокладок должен быть эластичным и стойким к воздействию температур и коррозии. Наиболее трудно уплотняемой средой является насыщенный пар, затем вода и перегретый пар.
Прокладки для пара и горячей воды давлением до 4 МПа чаще всего изготовляют из паронита или клингирита. Для крепления трубопроводов и передачи их веса и веса протекающей среды на колонны, стены и перекрытия здания применяются опоры и подвески.

Изменение температуры трубопровода вызывает изменение его длины. Каждый метр стальной трубы при изменении температуры на 100 К меняет свою длину на 1,2 мм. При изменении длины под влиянием температуры в трубопроводе возникают значительные термические напряжения, способные вызвать его разрушение. Во избежание этого необходимо предусматривать возможность свободного перемещения трубопровода в определенных направлениях для компенсации изменения его длины под воздействием температуры.
Компенсация тепловых удлинений трубопроводов осуществляется либо установкой компенсаторов, либо изгибами трубопровода, специально предусматриваемыми при его трассировке. Для правильной работы компенсаторов необходимо ограничить участок, удлинение которого он должен воспринимать, а также обеспечить свободное перемещение трубопровода на этом участке. Для этого опоры трубопровода выполняют неподвижными (мертвые точки) и подвижными. Неподвижные опоры фиксируют трубопровод в определенном положении и воспринимают усилия, появляющиеся в трубе даже при наличии компенсатора.

Компенсатор должен воспринимать удлинение между двумя неподвижными опорами. Подвижные опоры позволяют трубопроводу свободно перемещаться в определенном направлении. Расстояние между опорами выбирается так, чтобы не происходил прогиб трубопровода при его работе. Расстояние между опорами в зависимости от диаметра трубопровода составляет 3-8 м.

В зависимости от конструкции различают компенсаторы линзовые, сальниковые и гнутые из труб (П-образные и лирообразные). Линзовые компенсаторы применяются для давлений до 0,6 МПа в системах газоснабжения, сальниковые - до давлений 1,6 МПа в системах теплоснабжения, а гнутые - для любых давлений и любых трубопроводов.

Гнутые компенсаторы громоздки и малоудобны при компоновке трубопроводов, но наиболее надежны в эксплуатации, поэтому их применяют для компенсации удлинений паропроводов. В настоящее время при трассировке трубопроводов стремятся всемерно сократить число устанавливаемых компенсаторов, используя самокомпенсацию трубопроводов.

Схема трубопроводов промышленной и отопительной котельной должна быть простой и надежной, а устанавливаемая на трубопроводах арматура должна обеспечивать выполнение необходимых в эксплуатации переключений без нарушения технологического процесса работы основного и вспомогательного оборудования. Чаще всего в промышленно-отопительных котельных применяются схемы с поперечными связями между группами технологического оборудования, что обеспечивает достаточную маневренность и надежность оборудования при эксплуатации.

На рис. 10-8 приведена наиболее типичная схема главных трубопроводов промышленно-отопительной котельной первой категории. Главный магистральный паропровод, объединяющий все котлы, выполняется одиночным с секционированной перемычкой или двойным. Располагают арматуру так, чтобы иметь возможность отключать на ремонт любой из котлов без нарушения теплоснабжения потребителей. Паропровод низкого давления после РОУ выполнен двойным, что позволяет производить ремонты арматуры, РОУ, вспомогательного оборудования и обеспечивает надежную подачу пара на собственные нужды цеха. Трубопровод питательной воды от насосов до котлов через подогреватели выполнен одиночным с секционированными перемычками. Кроме того, предусмотрена подача питательной воды в котлы помимо подогревателей на случай ремонта или выхода их из строя.При повышенном давлении рекомендуется применение бесфланцевой арматуры, что повышает надежность соединений трубопроводов и снижает их стоимость. Задвижки диаметром более 500 мм должны иметь электрический привод. Для арматуры, управляемой вручную, устраиваются специальные площадки и лестницы, обеспечивающие удобство ее обслуживания. Все насосы с напорной стороны должны иметь обратные клапаны и отключающие устройства во всасывающем и напорном патрубках.

Во избежание гидравлических ударов в паропроводах предусматривается их дренаж. При этом прокладка трубопроводов производится с уклоном не менее 0,001 по направлению движения пара. Дренаж трубопроводов бывает пусковой и автоматический. Автоматический дренаж осуществляется путем установки конденсатоотводчиков. Паропроводы насыщенного пара и тупиковые паропроводы перегретого пара должны иметь автоматический дренаж. Пусковым дренажем оборудуются участки паропровода, в которых возможно скопление конденсата при их прогреве во время пуска или при отключении паропровода. В верхних точках трубопроводов предусматривается установка воздушников для удаления воздуха.

Для уменьшения тепловых потерь, а также во избежание ожога обслуживающего персонала все трубопроводы покрываются тепловой изоляцией. В соответствии с требованиями правил Госгортехнадзора после покрытия изоляцией трубопроводы окрашиваются. Цвета окраски трубопроводов различного назначения приведены в табл. 10-4.

При выполнении чертежей и схем трубопроводов, а также установленной на них арматуры применяются условные обозначения, приведенные в табл. 10-5.