14.03.2019

Совершенствование вакуумных деаэраторов. Интересные и нужные сведения о строительных материалах и технологиях


МИНИСТЕРСТВО ЭНЕРГЕТИКИ И ЭЛЕКТРИФИКАЦИИ СССР

ГЛАВНОЕ ТЕХНИЧЕСКОЕ УПРАВЛЕНИЕ ПО ЭКСПЛУАТАЦИИ ЭНЕРГОСИСТЕМ

ТИПОВАЯ ИНСТРУКЦИЯ
ПО ЭКСПЛУАТАЦИИ АВТОМАТИЗИРОВАННЫХ
ДЕАЭРАЦИОННЫХ УСТАНОВОК
ПОДПИТКИ ТЕПЛОСЕТИ

ТИ 34-70-032-84

СОЮЗТЕХЭНЕРГО
Москва 1985

РАЗРАБОТАНО предприятием «Сибтехэнерго»

ИСПОЛНИТЕЛЬ А.М. БРАВИКОВ

УТВЕРЖДЕНО Главным техническим управлением по эксплуатации энергосистем 13.07.84 г.

Заместитель начальника Д.Я. ШАМАРАКОВ

ТИПОВАЯ ИНСТРУКЦИЯ ПО ЭКСПЛУАТАЦИИ АВТОМАТИЗИРОВАННЫХ ДЕАЭРАЦИОННЫХ УСТАНОВОК ПОДПИТКИ ТЕПЛОСЕТИ

ТИ 34-70-032-84

Вводится впервые

Срок действия установлен

до 01.01.95 г.

Настоящая Типовая инструкция распространяется на автоматизированные деаэрационные установки с вакуумными струйно-барботажными деаэраторами и атмосферными деаэраторами со струйными и струйно-барботажными колонками, работающими на постоянных среднесуточных гидравлических нагрузках при равномерном распределении потоков воды и пара между всеми параллельно работающими деаэраторами, объединенными групповым регулированием режима деаэрации.

Типовая инструкция устанавливает требования к эксплуатации деаэрационных установок подпитки теплосети.

Типовая инструкция является основой при составлении местной инструкции и обязательна для инженерно-технического персонала электростанций и отопительно-производственных котельных, разрабатывающего местные инструкции.

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Деаэраторы подпитки теплосети предназначены для удаления из подпиточной воды коррозионно-активных газов - кислорода и свободной углекислоты.

1.2. Деаэрационная установка состоит из:

Подогревателя недеаэрированной воды;

Деаэрационных колонок-деаэраторов;

Подпиточных насосов;

Подпорного бака подпиточных насосов.

Роль подпорных баков, как правило, выполняют аккумуляторные баки теплосетей или деаэраторные баки атмосферных деаэраторов, а также в некоторых установках с вакуумными деаэраторами специально установленные для этой цели баки;

Средств автоматического регулирования, обеспечивающих автоматическое поддержание режима деаэрации и подпитки теплосети (приложение );

Индивидуальных для каждого вакуумного деаэратора газоотсасывающих устройств;

Индивидуального для каждого атмосферного деаэратора охладителя выпара;

Охладителя деаэрированной воды в установках с атмосферными деаэраторами.

1.3. Технические (проектные) характеристики деаэраторов (рис. - ) приведены в табл. .



а - выпускаемые с 1976 г.; б - выпущенные в период 1968 - 1976 гг. и реконструированные;
в - опытные данные зависимостей остаточного содержания кислорода в деаэрированной
воде от нагрева воды в деаэраторе;
1 - цилиндрический горизонтальный корпус; 2 - 5 - дырчатые струйные тарелки; 6 - барботажная тарелка;
7 - секционирующий порог; 8 - испарительный отсек; 9 - водоотводящий канал; 10 - пароперепускной
клапан; 11 - водоперепускной короб; 12 - патрубок подвода воды на деаэрацию; 13 - патрубок подвода
теплоносителя; 14 - патрубок отвода выпара; 15 - патрубок отвода деаэрированной воды; 16 и 17 -
датчики измерения температуры в отсеке и уровня воды, используемые при наладке деаэратора;
18 - отверстие в перегородке между секциями деаэратора ДВ-800 и ДВ-1200;
I - для деаэратора ДВ-400, выпущенного в период 1968 - 1976 гг., испытанного на ТЭЦ Горьковского
автозавода; максимальная производительность деаэратора 500 т/ч при температуре недеаэрированной
воды 30 °С; II - для деаэратора ДВ-800, выпущенного в период 1968 - 1976 гг., испытанного на
Усть-Каменогорской ТЭЦ. Максимальная производительность деаэратора 800 т/ч при температуре
недеаэрированной воды 30
° C; II - для деаэратора ДВ-400, выпущенного после 1976 г., испытанного в
тепловых сетях г. Курска

Рис. 2. Атмосферный деаэратор со струйной колонкой:

а - конструкция деаэратора; б - зависимости остаточного содержания кислорода в деаэрированной воде
от расхода воды в деаэратор для колонки БКЗ производительностью 200 т/ч; в - зависимости предельной
производительности деаэратора от температуры недеаэрированной воды, поступающей в деаэратор;
1 - деаэрационная колонка; 2 - деаэраторный бак; 3 и 4 - патрубки подвода воды и пара; 5 и 6 - патрубки
отвода деаэрированной воды и паровоздушной смеси; 7 - водораспределительное устройство;
8 - 12 - струйные тарелки; 13 - парораспределительное устройство; температура недеаэрированной воды,
поступающей в деаэратор: I - 97 °С;
II - 67 °С и III - 40 °С; IV и V - колонки БКЗ производительностью
200 и 100 т/ч; - - - - предполагаемый характер протекания процесса

Рис. 3. Атмосферные деаэраторы со струйно-барботажной колонкой производительностью:

а - от 50 до 100 т/ч; б - от 200 до 300 т/ч; в - от 75 до 300 т/ч;
1 - деаэрационная колонка; 2 - деаэраторный бак; 3 и 4 - патрубки подвода воды и пара;
5 и 6 - патрубки отвода деаэрированной воды и паровоздушной смеси; 7 - водосливной гидрозатвор;
8 и 9 - струйные тарелки; 10 - барботажная тарелка; 11 - пароперепускной клапан;
12 - водозаливная труба; 13 - водораспределительное устройство

Таблица 1

Вакуумные деаэраторы (рис. , а и б )

Атмосферные деаэраторы с колонкой

Таблица 2

Остаточное содержание свободной углекислоты за деаэратором (если в нормально работающем деаэраторе не происходит полного ее удаления) устраняется путем подщелачивания подпиточной воды.

1.5. Деаэраторы подпитки теплосети один раз в год должны подвергаться внутреннему осмотру через съемные люки, а при необходимости текущему ремонту и чистке деаэрирующих элементов.

1.6. Условные обозначения элементов схем приведены в приложении .

2. ПРЕДОХРАНИТЕЛЬНЫЕ УСТРОЙСТВА И МЕРЫ БЕЗОПАСНОСТИ ПРИ ЭКСПЛУАТАЦИИ ДЕАЭРАЦИОННЫХ УСТАНОВОК

2.1. Деаэраторы атмосферного типа должны подвергаться испытанию и техническому освидетельствованию по нормам Госгортехнадзора СССР.

2.2. В качестве защитных устройств от недопустимого повышения давления и от переполнения водой в атмосферных и вакуумных деаэраторах применяются гидравлические затворы.

2.3. Давление срабатывания гидрозатвора в атмосферных деаэраторах 0,15 МПа (1,5 кгс/см 2), максимально допустимое давление в деаэраторе при работе гидрозатвора 0,17 МПа (1,7 кгс/см 2).

2.4. При сливе деаэрированной воды из вакуумного деаэратора в бак атмосферного давления самотеком установка защитных гидравлических затворов не требуется, так как роль защитного затвора выполняет сливной трубопровод. При этом запорная и регулирующая арматура на сливном трубопроводе должна отсутствовать.

2.5. Атмосферные и вакуумные деаэраторы перед включением в работу после монтажа и ремонта, связанного с восстановлением плотности деаэратора, а также по мере необходимости должны подвергаться гидравлическому испытанию избыточным давлением 0,2 МПа (2,0 кгс/см 2), но не реже чем через каждые 8 лет.

2.6. Подпорные баки должны быть оборудованы переливной трубой для защиты от переполнения и выравнивания давления внутри и снаружи бака. Пропускная способность переливной трубы должна быть не менее пропускной способности всех труб, подводящих воду к баку. Сечение вестовой трубы для баков атмосферного давления должно обеспечивать свободное поступление в бак и свободный выпуск из бака воздуха, исключающие образование вакуума при откачке воды из бака и повышение давления выше атмосферного при заполнении бака.

2.7. Баки-аккумуляторы должны иметь антикоррозионную защиту, которая может быть осуществлена с помощью:

Герметизирующей жидкости АГ-4 (герметика);

Различных покрытий внутренней поверхности баков;

Катодной защиты.

2.8. Ежегодно определяется состояние баков-аккумуляторов и пригодность их к дальнейшей эксплуатации в соответствии с противоаварийным циркуляром № Ц-08-82 (Т) «О предотвращении внезапных разрушений металлических баков-аккумуляторов горячей воды» (М.: СПО Союзтехэнерго, 1984).

3. ДЕАЭРАЦИОННЫЕ УСТАНОВКИ С ВАКУУМНЫМИ ДЕАЭРАТОРАМИ (рис. - )

3.1. Особенности тепловых схем деаэрационных установок

Рис. 6. Схема деаэрационной установки с вакуумным деаэратором, вакуумным подпорным баком и выносным баком-аккумулятором (а ) и защитного гидрозатвора (б ).


3.2.4. Дать заявку на сборку электрических схем питания электроприводов запорно-регулирующей арматуры, КИП и насосов.

3.2.5. Дать заявку на подготовку к работе водоподготовительной установки.

3.2.8. Подготовить к работе подогреватель недеаэрированной воды; собрать схемы отвода из подогревателя конденсата, греющего пара и неконденсирующихся газов. Для схемы рис. подготовить к работе подогреватель перегретой воды.

а) открыть задвижку на охлаждающей воде перед эжектором;

б) открытием регулирующего клапана РКР на недеаэрированной воде подать охлаждающую воду через эжектор в количестве 100 - 160 т/ч;

в) плавно открывая задвижку 17 на паропроводе перед эжектором, в течение 10 - 15 мин поднять давление перед соплами эжектора до номинального значения 0,60 МПа (6,0 кгс/см 2);

г) создать вакуум в деаэраторе 95 - 97 %.

3.3.3. Включить в работу подогреватель недеаэрированной воды ПНВ, для этого необходимо:

а) открыть задвижку 16 на подводе пара в ПНВ, при этом необходимо следить за температурой воды на выходе из подогревателя, которая не должна превышать 35 °С (по условиям работы водоподготовительной установки);

б) повысить температуру воды на выходе из подогревателя до 30 - 35 °С дистанционным открытием регулирующего клапана РКТ-1 на подаче пара в подогреватель;

в) проворить работу подогревателя;

г) при недостаточном нагреве воды проверить схему отвода неконденсирующихся газов, а при повышении уровня до максимально допустимого значения проверить схему отвода конденсата;

д) проверить работу регулятора температуры недеаэрированной воды, для чего, дистанционно прикрывая регулирующий клапан РКТ-1, понизить температуру воды на выходе из подогревателя до минимально допустимого значения, затем регулятор переключить на автоматическую работу, после чего регулирующий клапан должен начать открываться. Аналогично проверить работу автоматического регулятора при максимально допустимой температуре.

3.3.8. Контролируя давление на стороне всасывания сетевых насосов, плавно увеличить в деаэратор расход недеаэрированной воды до среднесуточного значения одновременным открытием регулирующего клапана РКР на недеаэрированной воде и задвижки 19. Система автоматического регулирования при этом должна поддерживать регулируемые параметры в заданном диапазоне.

Примечани я : 1. При пуске установки (см. рис. ) с опорожненным баком-аккумулятором включать в работу подпиточный насос НП следует только после набора уровня воды в баке-аккумуляторе выше минимально допустимого значения на 1,0 м, после чего подать перегретую воду в деаэратор. 2. Включение в параллельную работу второго деаэратора (установки рис. и ) производится аналогично включению в работу первого деаэратора в соответствии с пп. , , - .

3.4. Обслуживание деаэрационной установки

а) регулярно, не реже двух раз в смену, обходить оборудование деаэрационной установки, записывать в оперативный журнал все операции, проводимые с оборудованием; записывать в суточную ведомость основные параметры режима работы деаэрационной установки;

б) следить за нормальной работой контрольно-измерительных приборов, средств автоматики;

в) при обнаружении отклонений в показаниях контрольно-измерительных приборов от требуемых значений необходимо выяснить причину и принять меры к их устранению;

г) производить запись в журнале дефектов о неполадках в работе деаэрационной установки, устранение которых силами вахтенного персонала является невозможным;

д) осуществлять ежесменное опробование электрической схемы сигнализации и делать соответствующие записи в оперативном журнале;

е) следить за нормальной работой подпиточных насосов, регулярно пополняя смазку подшипников, следить за вибрацией электродвигателя и насоса, устранять повышенные протечки воды через уплотнения вала насоса. Периодически чередовать в работе резервный и рабочий насосы. Опробование в работе устройств автоматического включения резерва насоса (АВР), а также чередование насосов в работе производить согласно имеющемуся на ТЭЦ графику;

ж) периодически продувать водомерные стекла;

з) периодически (один раз в две недели) проверять исправность перемычки аварийной подпитки 21 расхаживанием задвижек;

и) не реже двух раз в смену определять содержание кислорода и свободной углекислоты в подпиточной воде на стороне нагнетания подпиточных насосов после перемычки аварийной подпитки.

Для деаэрационных установок, не прошедших испытания, контролируемые параметры рекомендуется выдерживать в указанном диапазоне:

Температуру недеаэрированной воды, поступающей в деаэраторы, 30 - 35 °С, при этом производительность деаэратора близка к номинальной. При повышении температуры недеаэрированной воды производительность деаэратора увеличивается, но не более чем до 120 % номинальной производительности. При понижении температуры недеаэрированной воды производительность уменьшается;

Давление в деаэраторе 0,0075 - 0,06 МПа (0,075 - 0,5 кгс/см 2);

Нагрев воды в деаэраторе 15 - 25 °С. Максимальный нагрев воды в деаэраторе при производительности менее номинальной превышает 25 °С;

Температуру греющей среды (перегретой воды) в пределах 65 - 120 °С;

Давление на стороне нагнетания подпиточного насоса не менее 95 % номинального значения (режим перегрузки насоса). При давлении менее 98 % включить в работу резервный насос;

Давление пара перед соплами эжектора 0,5 - 0,7 МПа (5,0 - 7,0 кгс/см 2). Нагрев охлаждающей воды в эжекторе ЭП-3-25/75 при этом должен составлять 5 - 10 °С. За пределами указанного диапазона нагрева работать не рекомендуется, так как при меньшем нагреве происходит эрозионный износ трубок эжектора из-за больших скоростей воды в трубках, а при большем - запаривается эжектор.

3.5. Останов деаэрационной установки

3.5.1. Перед плановым остановом деаэрационной установки необходимо накопить запас деаэрированной воды - полный располагаемый объем аккумуляторных баков.

3.5.2. После получения распоряжения о предстоящем останове подготовить к работе перемычку аварийной подпитки 21;

Закрыть контрольный кран 20;

Открыть задвижку 15.

3.5.3. Для теплосетей с выносными аккумуляторными баками (см. рис. и ) предупредить персонал, обслуживающий узел подпитки от аккумуляторных баков, о предстоящем увеличении расхода воды на подпитку от аккумуляторных баков.

3.5.4. Плавно прикрывая регулирующий клапан, уменьшить расход недеаэрированной воды в деаэраторы до 30 % номинальной производительности. При этом система автоматического регулирования должна выдерживать регулируемые параметры в заданных пределах. При понижении давления в обратном коллекторе теплосети ниже допустимого и невозможности повысить давление путем увеличения расхода воды от аккумуляторных баков подать на подпитку теплосети химически очищенную недеаэрированную воду через перемычку аварийной подпитки.

3.5.5. Отключить деаэратор по перегретой воде, для этого в схемах (см. рис. и ) закрыть регулирующий клапан РКТ-2 и задвижку 18 на перегретой воде, а в схеме (см. рис. ) отключить подогреватель ППВ по пару и затем по воде.

3.5.6. Отключить эжектор по пару, закрыв задвижку 17 на подводе пара к эжектору.

3.5.7. Отключить деаэратор по недеаэрированной воде, закрыв:

Регулирующий клапан РКР;

Задвижки перед эжектором и помимо эжектора на недеаэрированной воде.

Если в результате проделанных операций обслуживающему персоналу не удается выяснить причину повышения содержания кислорода в деаэрированной воде, то дальнейшую наладку должен проводить специально подготовленный персонал в соответствии с рекомендациями приложения .

3.6.13. При появлении гидравлических ударов необходимо прекратить поступление перегретой воды в деаэратор, закрыв регулирующий клапан РКТ-2 на трубопроводе перегретой воды. Причиной возникновения гидравлических ударов в работающем деаэраторе, как правило, является недогрев воды в деаэраторе до температуры насыщения, т.е. повышения давления в деаэраторе без повышения температуры деаэрированной воды. После закрытия регулирующего клапана РКТ-2 персонал должен выяснить причину повышения давления в деаэраторе, для этого проверить:

а) режим работы эжектора (давление пара перед эжектором и нагрев охлаждающей воды в эжекторе установить в соответствии с п. );

б) отсутствие присосов воздуха в вакуумную систему (закрыть вентили на дренажных, водомерных стеклах и т.д.);

в) работу эжектора «на себя», для этого после отключения деаэратора по перегретой воде (закрыв регулирующий клапан РКТ-2 и задвижку 18) закрыть задвижку на линии отсоса из деаэратора. Исправный эжектор при работе «на себя» при давлении пара перед соплами эжектора 0,5 - 0,6 МПа (5,0 - 6,0 кгс/см 2) и более должен создавать разрежение 96 - 91 %. Если эжектор не создает указанного разрежения, то необходимо проверить заполнение гидрозатворов эжектора водой, для этого отключить эжектор по пару и затем после повышения давления во всасывающем патрубке эжектора до атмосферного плавно в течение 15 мин повышать давление пара перед соплами эжектора до 0,5 - 0,6 МПа (5,0 - 6,0 кгс/см 2), при этом гидрозатворы заполняются водой. Если после заполнения гидрозатворов водой эжектор не создает требуемого разрежения, то он неисправен и для выявления неисправности необходимо его вскрытие.

3.6.14. При выходе воды из сигнального гидрозатвора 7 (рис. ) и выбросе воды из выхлопного патрубка 3 проверить унос воды отсасываемыми газами из деаэратора. Для предотвращения уноса прикрыть задвижку на линии отсоса из деаэратора на 85 - 95 %. Если при этом выброс воды из эжектора прекратится, то при работе деаэратора задвижку на линии отсоса следует открывать не полностью, а лишь до тех пор, пока давление в деаэраторе и на стороне всасывания эжектора не выровняется.

Рис. 7. Трехступенчатый пароструйный эжектор ЭП-3-25/75:

а - схема расположения патрубков; б - зависимость давления (абсолютного) всасывания от расхода
воздуха в отсасываемой эжектором ЭП-3-25/75 смеси при отсасывании паровоздушной смеси с
температурой 20,4
° С и абсолютном давлении рабочего пара 0,51 МПа (5,1 кгс/см 2);
1 - патрубок подвода паровоздушной смеси; 2 - патрубок подвода рабочего пара; 3 - патрубок выхода
газов в атмосферу; 4 - патрубок отвода конденсата; 5 и 6 - патрубки подвода и отвода охлаждающей
воды; 7 - патрубок для сигнализации переполнения водой третьей ступени эжектора

Если при выбросе воды из выхлопного патрубка давление на стороне всасывания эжектора будет меньше, чем давление в деаэраторе над барботажной тарелкой, на 0,02 МПа (0,2 кгс/см 2), то из этого следует, что деаэратор заполнен водой и вода из деаэратора поступает в эжектор. Причины заполнения деаэратора водой приведены в приложении .

4. ДЕАЭРАЦИОННАЯ УСТАНОВКА С АТМОСФЕРНЫМИ ДЕАЭРАТОРАМИ (рис. )


Рис. 8. Схема деаэрационной установки с атмосферными деаэраторами:

1 - из водоподготовительной установки; 2 - деаэрационная колонка с деаэраторным баком; 3 - защитный гидрозатвор; 4 - бак-аккумулятор;
5 - из коллектора 1,2 - 2,5 кгс/см 2 ; 6 - в промливневую канализацию; 7 - в основной цикл ТЭЦ; 8 - в атмосферу; 9 - 13 - оперативная арматура;
14 - контрольный кран; 15 - на химический анализ; 16 - из теплосети; 17 - на сторону всасывания сетевых насосов;
18 - от насосов технической воды; 19 - перемычка аварийной подпитки; РКДД - регулирующий клапан давления в деаэраторах;
РКТ - регулирующий клапан температуры недеаэрированной воды; ОДВ - охладитель деаэрированной воды; ОВ - охладитель выпара
(остальные обозначения см. рис. и )


4.1.2. Проверить закрытие задвижек на трубопроводах:

Подвода недеаэрированной воды перед охладителем деаэрированной воды (задвижка 10);

Опорожнения деаэраторных баков;

Подвода пара к деаэраторам (задвижка 9) и к подогревателю недеаэрированной воды (задвижка 11);

Нагнетания подпиточных насосов НП-1;

Перепуска деаэрированной и недеаэрированной воды помимо охладителя деаэрированной воды;

Перепуска воды помимо регулируемых клапанов РКР и РКУ.

4.1.3. Проверить закрытие вентилей на дренажах паропроводах перед задвижками 9 и 11.

4.1.4. Закрыть все регулирующие клапаны, не находящиеся в работе.

4.1.5. Открыть задвижки на трубопроводах выпаров в атмосферу всех деаэраторов.

4.1.6. Открыть на 30 % задвижку 12 на недеаэрированной воде помимо охладителей выпаров.

4.1.7. Проверить открытие задвижек на трубопроводах:

Подвода выпара в охладители выпаров всех деаэраторов;

Охлаждающей воды перед охладителями выпаров и после них;

Уравнительных по пару и воде;

Подвода недеаэрированной воды перед каждым деаэратором;

Отвода деаэрированной воды из деаэраторов;

Подвода пара перед каждым деаэратором;

Перед регулирующими клапанами РКР и РКУ и после них;

Деаэрированной воды перед и после ОДВ;

Недеаэрированной воды перед и после ОДВ;

Всасывания подпиточных насосов.

4.2. Пуск деаэрационной установки (при подпитке теплосетей в период пуска от аккумуляторных баков)

4.2.1. Включить в работу регулятор давления в деаэраторах, после чего клапан РКД должен открыться.

4.2.2. Прогреть паропровод подвода пара в деаэраторы до задвижки 9, открыв дренажный вентиль перед задвижкой.

4.2.3. Прогреть деаэраторы, плавно открывая задвижку 9. После открытия задвижки 9 закрыть дренажный вентиль перед нею.

При повышении давления в деаэраторах до 0,125 МПа (1,25 кгс/см 2) клапан РКДД должен автоматически закрыться. В случае повышения давления в деаэраторах более 0,125 МПа (1,25 кгс/см 2) открытие задвижки 9 прекратить, если при этом рост давления не остановится, то задвижку 9 частично прикрыть.

4.2.4. Открыть задвижку 10 на недеаэрированной воде перед ОДВ. При заполнении деаэраторных баков до 0,5 максимально допустимого уровня включить в работу подпиточный насос НП-1. После проверки работы насоса открыть задвижку на стороне нагнетания насоса.

Примечани е . При пуске деаэрационной установки с наполненными деаэраторными баками (при уровне воды в баках более 0,5 максимально допустимого значения уровня) перед подачей в деаэраторы недеаэрированной воды следует включать в работу подпиточный насос НП-1.

4.2.5. Подать в деаэраторы недеаэрированную воду (не более 30 % номинальной производительности) открытием регулирующего клапана РКР, после чего задвижку 9 на подводе пара к деаэраторам открыть полностью (если она не полностью была открыта).

4.2.6. Проверить работу автоматического регулятора уровня воды в деаэраторных баках. Для этого открытием регулирующего клапана РКУ на подпитке теплосети понизить уровень воды в деаэраторных баках до минимально допустимого значения (при этом следует контролировать давление на стороне всасывания сетевых насосов). Затем регулятор уровня поставить на автоматическую работу, после чего регулирующий клапан РКУ должен автоматически закрыться. Аналогично проверить работу регулятора уровня при максимально допустимом уровне в баках.

4.2.7. Включить в работу подогреватель недеаэрированной воды ПНВ, для этого необходимо:

а) прогреть паропровод подачи пара в ПНВ до задвижки 10, открыв дренажный вентиль перед задвижкой;

б) открыть задвижку 10 на подводе пара в ПНВ, после чего дренажный вентиль перед задвижкой закрыть;

в) дистанционным открытием клапана РКТ повысить температуру на выходе из подогревателя ПНВ до требуемого в п. значения;

г) проверить работу подогревателя. При недостаточном нагреве воды в подогревателе проверить схему отвода неконденсирующихся газов, а при повышении уровня до максимально допустимого значения проверить схему отвода конденсата.

4.2.8. Проверить работу регулятора температуры недеаэрированной воды, для этого, прикрывая регулирующий клапан РКТ на подводе пара к подогревателю, понизить температуру воды на выходе из подогревателя для деаэраторов (см. рис. ) до 94 °С, а для деаэраторов (см. рис. ) до 89 °С. Затем регулятор переключить на автоматическую работу, после чего регулирующий клапан должен начать закрываться. Аналогично проверить работу автоматического регулятора при максимально допустимой температуре.

4.2.9. Закрыть задвижки на выпаре в атмосферу всех деаэраторов.

4.2.10. Плавно увеличить расход недеаэрированной воды в деаэраторы до среднесуточного значения открытием регулирующего клапана РКР, следя за давлением на стороне всасывания сетевых насосов. Средства автоматического регулирования при этом должны поддерживать регулируемые параметры в заданных пределах.

4.2.11. В установившемся режиме (через 1 ч после пуска) определить содержание кислорода и свободной углекислоты в подпиточной воде на стороне нагнетания подпиточных насосов НП-1.

4.3. Подключение одного деаэратора к параллельно работающим деаэраторам

4.3.1. Убедиться в выполнении пп. - , и .

4.3.2. Дать заявку на включение в работу КИП.

4.3.3. Проверить закрытие задвижки на линии опорожнения деаэраторного бака.

4.3.4. Открыть задвижку на выпаре в атмосферу.

4.3.5. Проверить открытие задвижки на выпаре к охладителю выпара.

4.3.6. Включить охладитель выпара по охлаждающей воде, открыв задвижки до и после охладителя выпара.

4.3.7. Подать пар в деаэратор, открыв задвижку на подводе пара к деаэратору.

4.3.8. Открыть задвижку на уравнительном трубопроводе по пару.

4.3.9. Подать в деаэратор воду, открыв задвижку на недеаэрированной воде перед деаэратором на 20 - 30 %.

Примечани е . При подключении деаэратора с заполненным деаэраторным баком к параллельно работающим деаэраторам перед подачей в деаэратор недеаэрированной воды следует открыть задвижки на уравнительном трубопроводе по воде и на отводе деаэрированной воды из деаэратора.

4.3.10. При выравнивании уровня воды с другими деаэраторами открыть задвижку на уравнительном трубопроводе по воде.

4.3.11. Открыть задвижку на отводе деаэрированной воды из деаэратора.

4.3.12. Полностью открыть задвижку на подводе недеаэрированной воды в деаэратор.

4.3.13. Закрыть задвижку на выпаре в атмосферу.

4.4. Обслуживание деаэрационной установки

4.4.1. При обслуживании деаэрационной установки следует руководствоваться пп. и .

д) уровень воды в деаэраторных баках должен поддерживаться на середине максимально допустимого значения ±0,5 м;

е) расход охлаждающей воды через охладители выпаров должен равняться расчетному значению. При отсутствии расходомера расчетный расход охлаждающей воды определяется приближенно по перепаду давления на входе воды в охладитель выпара и выходе из него в соответствии с паспортными данными охладителя выпара.

4.5. Останов одного деаэратора при параллельно работающих деаэраторах

4.5.1. Установить расход недеаэрированной воды в деаэраторы в соответствии с производительностью остающихся в работе деаэраторов прикрытием регулирующего клапана РКР.

4.5.2. Закрыть задвижки на трубопроводах перед деаэратором в такой последовательности:

На недеаэрированной воде;

На подводе пара в деаэратор;

На отводе из деаэратора деаэрированной воды;

На уравнительном трубопроводе по воде;

На уравнительном трубопроводе по пару;

На охлаждающей воде перед охладителем выпара и после него.

4.5.3. Опорожнить бак (при необходимости), открыв задвижку на трубопроводе опорожнения.

4.6. Останов деаэрационной установки

4.6.1. Перед плановым остановом деаэрационной установки создать запас деаэрированной воды, заполнив аккумуляторные баки.

4.6.2. После получения распоряжения о предстоящем останове подготовить к работе перемычку аварийной подпитки 19; закрыть контрольный кран 14; открыть задвижку 13.

4.6.3. Предупредить персонал, обслуживающий узел подпитки от аккумуляторных баков, о предстоящем увеличении расхода воды от аккумуляторных баков.

4.6.4. Плавно, следя за давлением во всасывающем коллекторе сетевых насосов, уменьшить расход недеаэрированной воды в деаэраторы до 15 - 20 % номинальной производительности прикрытием регулирующего клапана РКР. При этом система автоматического регулирования должна выдержать регулируемые параметры в заданных пределах.

При понижении давления во всасывающем коллекторе ниже допустимого и невозможности повысить давление путем увеличения расхода воды от аккумуляторных баков подать на подпитку теплосети химически очищенную недеаэрированную воду через перемычку 19.

При повышении давления в деаэраторах более 0,125 МПа (1,25 кгс/см 2) разгрузку деаэраторов по воде прекратить, при необходимости увеличить в деаэраторы расход недеаэрированной воды для восстановления давления в деаэраторах.

4.6.5. Отключить по пару подогреватель недеаэрированной воды.

4.6.6. Отключить по пару деаэраторы, закрыв регулирующий РКД-1 и задвижку 9 на подводе пара к деаэраторам.

4.6.7. Отключить деаэраторы по воде, закрыв регулирующий клапан РКР на подводе недеаэрированной воды в деаэраторы и задвижку 10 перед охладителем деаэрированной воды.

4.6.8. Остановить подпиточный насос.

4.6.9. Закрыть задвижки на стороне нагнетания подпиточных насосов.

4.6.10. При необходимости опорожнить деаэраторные баки, открыв задвижки на трубопроводах опорожнения баков.

4.7. Действия персонала при нарушении режима и неполадках в обслуживаемом оборудовании

4.7.1. Наиболее опасными нарушениями режима работы деаэрационной установки являются:

Превышение допустимого давления в деаэраторах;

Переполнение водой деаэраторных баков.

4.7.6. При нарушении режима нормальной работы деаэрационной установки обслуживающий персонал должен восстановить контролируемые параметры в соответствии с требуемыми значениями по п. . При этом следует руководствоваться пп. , , - .

4.7.7. При повышении давления в деаэраторах свыше 0,125 МПа (1,25 кгс/см 2) прикрытием регулирующего клапана РКДД понизить давление в деаэраторах до 0,120 МПа (1,20 кгс/см 2). При необходимости прикрыть задвижку 9 (см. рис. ).

4.7.8. При достижении максимально допустимого уровня воды в деаэраторных баках прикрытием регулирующего клапана РКР понизить уровень до номинального значения. При необходимости для понижения уровня прикрыть задвижку за клапаном РКР.

4.7.9. При быстром росте уровня в деаэраторных баках (например, при останове всех насосов подпитки теплосети) уменьшить расход недеаэрированной воды в деаэраторы, контролируя при этом давление в деаэраторах. При повышении давления в деаэраторах более 0,125 МПа (1,25 кгс/см 2) поддерживать достигнутый расход недеаэрированной воды, а после восстановления давления закрыть клапан РКДД и, при необходимости, задвижку перед ним. Затем закрыть клапан РКР и задвижку перед ним.

4.7.10. При выбросе воды через воздушник охладителя выпара следует определить причину, вызвавшую его. Выброс воды может происходить из-за:

Большого уноса влаги из колонки с выпаром, сопровождающимся гидравлическими ударами в трубопроводе выпара. Для предотвращения уноса влаги необходимо уменьшить расход охлаждающей воды через охладители выпаров, приоткрыв задвижку помимо охладителей выпаров. После чего (через 1 ч) проверить содержание кислорода и свободной углекислоты в подпиточной воде;

Засорения трубопровода дренажа охладителя выпара. Признаком засорения трубопровода является понижение температуры дренажа (от 100 °С) до температуры наружного воздуха;

Нарушения плотности трубной системы охладителя выпара. Для определения неплотности следует закрыть задвижку на выпаре перед охладителем выпара. Наличие выброса воды через воздушник или выход воды через трубопровод дренажа указывает на наличие неплотности в трубной системе охладителя выпара.

Приложение 1

1. В деаэрационной установке автоматически регулируются следующие параметры:

Температура недеаэрированной воды (перед атмосферными деаэраторами и перед водоподготовительной установкой для деаэрационных установок с вакуумными деаэраторами);

Давление в атмосферных деаэраторах;

Температура деаэрированной воды на выходе из вакуумного деаэратора;

Уровень воды в подпорном баке, если подпорный бак не является аккумуляторным баком;

Давление во всасывающем коллекторе сетевых насосов.

2. О предельных значениях режимов деаэрационной установки световая и звуковая сигнализация оповещает при:

Повышении и понижении давления во всасывающем коллекторе сетевых насосов;

Понижении давления на стороне нагнетания подпиточных насосов;

Повышении и понижении уровня воды в подпорном баке;

Повышении температуры воды перед водоподготовительной установкой (для вакуумных деаэраторов);

Повышении и понижении давления в атмосферных деаэраторах.

3. Подпиточные насосы должны быть оснащены системой АВР, которая срабатывает при отключении электродвигателя работающего насоса.

Подпиточные насосы, предназначенные для работы в переменных режимах (как правило, насосы, подающие воду на подпитку от аккумуляторных баков), дополнительно должны быть оснащены системой АВР, которая срабатывает при понижении давления на стороне нагнетания работающего подпиточного насоса.

Приложение 2

Вакуумные деаэраторы, выпущенные в период 1968 - 1976 гг., имеют производительность менее проектной. Для доведения производительности деаэратора до проектного значения деаэратор следует реконструировать по разработкам Сибтехэнерго (см. рис. , б ).

Реконструкция требует:

Демонтировать пароперепускной короб в барботажной тарелке; отверстие от короба заглушить рассверленным листом с такой же степенью перфорации, как и барботажная тарелка; короб в тарелке 5 заглушить на 50 %;

Увеличить площадь отверстий в барботажной тарелке в два раза за счет сверления новых отверстий;

В деаэраторах ДВ-800 и ДВ-1200 в межсекционной перегородке вырезать уравнительное отверстие площадью 0,15 м 2 .

Приложение 3

химически очищенная вода;

водопроводная вода;

деаэрированная подпиточная вода;

сетевая вода;

конденсат пара;

задвижка;

регулирующий клапан;

обратный клапан;

измерение температуры;

измерение давления;

измерение уровня;

подвод воды;

отвод воды;

3.6.1 - настоящей Типовой инструкции.

2. Наладку вакуумных деаэраторов должен проводить специально подготовленный персонал.

3. Основные принципы работы деаэраторов:

3.1. В основе процесса деаэрации воды в деаэраторах лежит закон растворимости газа в жидкости, согласно которому содержание растворенного в жидкости газа пропорционально парциальному давлению газа, соприкасающегося со свободной поверхностью жидкости. Закон растворимости газа приемлем для длительно протекающих процессов. Для кратковременных процессов (таким процессом является деаэрация воды в термических деаэраторах) этот закон справедлив лишь для поверхностного слоя воды, непосредственно соприкасающегося с газами.

3.2. В термических деаэраторах для обеспечения процесса деаэрации парциальное давление газов уменьшается до давления, близкого к нулю, путем заполнения деаэратора водяным паром и отвода выделившихся из воды газов.

3.3. Для повышения интенсивности процесса деаэрации в термических деаэраторах увеличивается поверхность взаимодействия воды с паром, для этого поток воды разбивается на тонкие струи или организуется барботажный слой воды путем пропуска пара через слой воды.

4. Основные причины повышенного содержания кислорода в деаэрированной воде (на выходе из деаэратора):

4.1. Режимные факторы, устраняемые обслуживающим персоналом по пп. - настоящей Типовой инструкции.

4.2. Заполнение деаэратора (струйных отсеков) неконденсирующимися газами, вызванное:

Неудовлетворительной работой эжектора;

Повышенными присосами воздуха через неплотности вакуумной системы;

Повышенным содержанием газов, растворенных в недеаэрированной воде, поступающей в деаэратор, и большим поступлением в деаэратор недеаэрированной воды.

4.3. Переполнение деаэратора водой.

4.4. Присосы воздуха в отбираемую для химического анализа воду в пробоотборном трубопроводе.

5. Порядок проведения наладки режима деаэрации:

5.1. Убедиться в выполнении обслуживающим персоналом пп. - настоящей Типовой инструкции. Если пробоотборный трубопровод работает под разрежением, то опрессовку его производить в следующем порядке:

а) отключить деаэратор по перегретой воде и повысить давление в деаэраторе до атмосферного, отключив эжектор по пару. Последующие операции выполнять по п. настоящей Типовой инструкции;

б) если при повышении давления в деаэраторе до атмосферного из пробоотборного трубопровода прекратится поступление воды, то опрессовать пробоотборный трубопровод следует охлаждающей водой. Давление охлаждающей воды при этом должно быть больше высоты столба воды в пробоотборном трубопроводе.

Вакуумная система заполняется водой и в деаэраторе создается избыточное давление 0,2 МПа (2,0 кгс/см 2).

5.7. Определение перегрузки эжектора газами, выделившимися в деаэраторе из деаэрируемой воды, производится путем увеличения расхода в деаэратор недеаэрированной воды до максимально допустимого значения. При этом целесообразно измерять расход выхлопных газов в выхлопном патрубке эжектора. Для измерения могут быть применены воздухомеры конструкции ХТГЗ, ЛМЗ, ВТИ и др.

Перегрузка эжектора определяется в следующем порядке:

а) включить в работу деаэратор согласно пп. - настоящей Типовой инструкции.

При минимальном расходе недеаэрированной воды (в деаэратор поступает только охлаждающая вода эжектора) произвести измерение контролируемых параметров, которые должны выдерживаться в соответствии с п. . настоящей Типовой инструкции, измерить температуру в конце струйного отсека согласно п. данного приложения и определить содержание кислорода в деаэрированной воде (на выходе из деаэратора) не менее трех раз в течение опыта;

б) увеличивая расход недеаэрированной воды в деаэратор на 100 т/ч в каждом опыте, определить, при каком расходе недеаэрированной воды эжектор начинает перегружаться газами.

Если расход выхлопных газов эжектора с увеличением расхода недеаэрированной воды в деаэраторе меняется пропорционально расходу недеаэрированной воды, то весь отсасываемый газ поступает в деаэратор с недеаэрированной водой, а присосы воздуха в вакуумную систему отсутствуют.

Если с увеличением расхода недеаэрированной воды в деаэратор в несколько раз (например, в два раза) расход выхлопных газов эжектора увеличится менее чем в два раза при условии, что качество деаэрированной воды осталось прежним, то из этого следует, что в деаэратор поступает большое количество газов через неплотности вакуумной системы.

Перегрузка эжектора может быть определена также по расходу выхлопных газов эжектора. Согласно рис. , б , эжектор перегружается при расходе 100 кг/ч.

5.8. При перегрузке эжектора газами, выделившимися в деаэраторе из воды, следует увеличить производительность газоотсасывающего устройства, установив дополнительный эжектор, или перевести существующий эжектор на пар более высокого давления. Предельное давление пара перед соплами ЭП-3-25/75 1,0 МПа (10,0 кгс/см 2).

. 16


Отопительные котлы чаще всего изготавливаются из стали. Проходящая через них вода в своем составе имеет кислород и углекислый газ. Оба эти элемента оказывают на металлические конструкции котла крайне негативное влияние. Постоянный контакт стали с этими газами неизбежно приводит к ее ржавлению. Для того чтобы исправить ситуацию и продлить срок службы оборудования, в котельных включаются специальная установка — деаэратор. Что это такое? Об этом и поговорим далее в статье.

Определение

Деаэратором называется специальное оборудование, предназначенное для удаления кислорода из теплоносителя отопительных систем путем подогревания последнего паром. Таким образом, помимо очищающей функции, устройства этого типа выполняют также термическую. Одна и та же установка деаэрации может применяться для подогрева и очистки как питательной, так и подпиточной воды.

Особенности конструкции

Относительная простота конструкции — это то, что отличает деаэратор. Что это такое, мы с вами выяснили. Теперь давайте посмотрим, как устроено это оборудование. Представляет собой деаэратор котельной цистерну (БДА) со смонтированной на ней вертикальной колонной (КДА), установленную на опорах. Дополнительным элементом оборудования этого типа является гидравлическая система, защищающая его от превышения давления. Колонка приваривается к баку без фланца — напрямую.

На горизонтальном баке деаэратора смонтированы входной и выходной патрубки для подключения магистралей подачи и отвода среды. Снизу установлены сливы. Еще одним элементом конструкции является предназначенный для сбора дегазованной воды сборный бак. Расположен он под днищем БДА.

Такого оборудования, как деаэратор, схема которого представлена ниже, обычно состоит из двух гидрозатворов. Один из них защищает устройство от любого превышения допустимого давления, а второй — от опасного. Также в конструкцию гидравлической системы деаэратора входит расширительный бачок. Выпары из деаэратора поступают в специальный охладитель, имеющий вид горизонтального цилиндра.

Конструкция колонны

Колонна представляет собой цилиндрическую обечайку с дном эллиптической формы. Как и на баке, на ней имеются патрубки для подвода и отвода среды. Внутри колонны установлены специальные тарелки с отверстиями, через которые проходит вода. Такая конструкция позволяет значительно увеличить площадь соприкосновения среды и пара, а следовательно, производить нагрев с максимальной скоростью.

Виды оборудования

В современных котельных может устанавливаться деаэратор воды:

    вакуумный;

    атмосферный.

В первом типе деаэраторов удаление газов из воды производится в вакууме. В конструкцию таких установок дополнительно включается паро- или водоструйный эжектор. Последняя разновидность узлов чаще всего используется в системах с котлами средней или малой мощности. Вместо эжекторов для создания вакуума могут применяться специальные насосы. Некоторым недостатком такого оборудования, как вакуумный деаэратор, является то, что пар из него нужно удалять принудительно, в то время как из атмосферных он выходит естественным путем — под давлением.

Помимо двух рассмотренных видов деаэраторов, в котельных могут устанавливаться устройства повышенного давления. Работают они при 0.6-0.8 МПа. Иногда в тепловую схему котельных также включается оборудование пониженного давления.

Сфера использования

Где же может применяться деаэратор? Что это такое, вы теперь знаете. Поскольку такое устройство предназначено для дегазации рабочей среды, применяется оно в основном там, где есть нагревательное оборудование, изготовленное из стали.

Чаще всего деаэраторы используются в системах отопления и ГВС. Котельные с водогрейными котлами обычно оснащаются установками вакуумного типа. Также в таких схемах могут использоваться деаэраторы атмосферные. Установки пониженного и повышенного давления применяются по большей мере в системах, функционирующих благодаря работе парового котла. Первая разновидность (на 0.025-0.2 МПа) монтируется в не слишком мощных системах, рассчитанных на малое количество потребителей. используются в тепловых схемах с котлами, подающими большое количество пара.

Тарельчатый деаэратор: принцип работы

Схема очистки газов в деаэраторах реализуется двухступенчатая: струйная (в колонне) и барботажная (в баке). Помимо этого, в систему включается затопленное барботажное устройство. Вода подается в колонну, где обрабатывается паром. Далее она стекает в бак, выдерживается в нем и отводится обратно в систему. Пар первоначально подается в БДА. После вентиляции внутреннего объема он поступает в колонну. Проходя через отверстия барботажной тарелки, пар подогревает воду до температуры насыщения.

Струйным методом из воды удаляются все газы. Одновременно с этим происходит конденсация пара. Его остатки смешиваются с выделившимся из среды газом и отводятся в охладитель. Конденсат от выпара сливается в дренажную емкость. Во время отстаивания воды в баке из нее выходят остаточные мелкие пузырьки газа. Отводится вода в сборный бак. Иногда горизонтальная емкость используется только для отстаивания. В таких установках обе ступени дегазации размещаются в колонне.

Деаэрация подпиточной воды

Теплоноситель в системе отопления циркулирует непрерывно. Но объем его со временем, в результате утечек, все же понемногу уменьшается. Поэтому в систему отопления подается подпиточная вода. Как и основная, она должна проходить процесс деаэрации. Первоначально вода поступает в подогреватель, а затем проходит через фильтры химической очистки. Далее, как и питательная, она попадает в колонну деаэратора. Освобожденная от перетекает к Последний направляет ее во всасывающий коллектор или в бак хранения.

Химическая деаэрация

Таким образом, ответ на вопрос о том, что такое деаэратор котельной, прост. Это оборудование, предназначенное для кипячения воды горячим паром с целью удаления кислорода. Однако иногда газы из теплоносителя в таких установках удаляются не полностью. В этом случае для дополнительной очистки в воду котельных могут добавляться разного рода реагенты, предназначенные для связывания кислорода. Это может быть, к примеру, В данном случае для качественной деаэрации воды требуется ее подогрев. Иначе химические реакции будут происходить слишком медленно. Также для ускорения процесса связывания кислорода могут использоваться разного рода катализаторы. Иногда воду деаэрируют и путем пропускания через слой обычных металлических стружек. Последние в этом случае быстро окисляются.

Особенности монтажа

Устройство деаэратора не слишком сложное. Однако его монтаж должен производиться с точным соблюдением всех положенных технологий. При установке такого оборудования руководствуются прежде всего приложенными к нему производителем чертежами и проектом котельной. Перед началом монтажа производится осмотр установки и ее расконсервация. Обнаруженные дефекты устраняются. Собственно сама процедура установки включает в себя следующие этапы:

    бак монтируется на фундаменте;

    к нему приваривается водосливная горловина;

    нижняя часть колонки обрезается по наружному диаметру;

    колонна устанавливается на бак (при этом закрепленные внутри нее тарелки должны располагаться строго горизонтально);

    колонна приваривается к баку;

    монтируются охладитель выпара и гидрозатвор;

    в соответствии с чертежами производится подключение магистралей;

    устанавливается запорная и регулирующая арматура;

    проводятся гидравлические испытания оборудования.

Распылительные установки

Рассмотренные выше конструкции называются тарельчатыми. Существуют также распылительные деаэраторы. Устройства этого типа используются реже и также представляют собой горизонтальный накопительный бак большой емкости. Отсутствие колонны — это то, что отличает такой деаэратор. Принцип работы его также немного другой. Пар в таких установках поступает снизу - из расположенной в баке горизонтально гребенки. Сама емкость разделена на зону подогрева и деаэрации. Питающая вода котла поступает в первый отсек из расположенного сверху распылителя. Здесь она разогревается до точки кипения и поступает в зону деаэрации, где паром из нее удаляется кислород.

Итак, вот и все, что можно сказать о таком устройстве, как деаэратор. Что это такое, надеемся, вы поняли, так как мы дали достаточно подробный ответ на этот вопрос. Так называют установку, обеспечивающую длительную работу водогрейных и паровых котлов. Выбор разновидности и способов монтажа этого оборудования осуществляется в соответствии с техническими характеристиками нагревательного оборудования и проектом котельной.

Цель работы : Определение фактических тепловых и дегазационных характеристик вакуумного деаэратора (ДВ) для сравнения их с заводскими гарантиями.

Конструкция и принцип работы вакуумного деаэратора

С целью предупреждения разрушений магистралей теплосети и отопительных устройств систем отопления города и предприятий в энергетике широко используются вакуумные деаэраторы, предназначенные для удаления коррозионно агрессивных газов (О 2 и СО 2) из подпиточной воды теплосети. Деаэрированная вода из ДВ сливается в баки-аккумуляторы, откуда насосами подпитки теплосети откачивается в цикл теплоснабжения города.

Экономическая эффективность от применения ДВ достигается благодаря обработке подпиточной воды при более низких температурах (40-60°С) и использованию при этом низкопотенциальных отборов пара теплофикационных турбин. Кроме того, в схемах подпитки теплосети ДВ позволяют сохранить конденсат греющего пара в цикле турбоустановки. Деаэраторы выпускаются производительностью 400 и 800 т/ч. Разработаны они НПО ЦКТИ им. И.И. Ползунова, изготавливаются Саратовским заводом энергетического машиностроения.

На Ново-Иркутской ТЭЦ установлено 8 вакуумных деаэраторов ДВ-800.

Вакуумный деаэратор представляет собой бак цилиндрической формы. Внутри бака расположены горизонтальные короба из листовой стали, которые обеспечивают разбрызгивание и переток поступающей в него воды по всему объему бака, в корпусе бака выполнены врезки трубопроводов:

  • - холодной воды;
  • - горячей воды;
  • - отсоса воздуха;
  • - слива из бака на коллектор бака-аккумулятора;
  • - отбора проб.

На рис. 3 представлена принципиальная схема ДВ.

Химически очищенная вода (подлежащая деаэрации) через штуцер (1) поступает в распределительный коллектор (2) и далее на первую тарелку (3) . Перфорация первой тарелки рассчитана на пропуск 30% расхода воды при номинальной нагрузке деаэратора. Остальная вода через порог (4) первой тарелки сливается на вторую тарелку (5) . При нагрузках, отличных от номинальной, происходит перераспределение расходов воды через отверстия и перелив, однако расход воды через отверстия не может превысить 30% от номинальной нагрузки. Прошедшая сквозь отверстия первой тарелки вода сливается струями также на вторую тарелку. Такая конструкция первой тарелки объясняется выполняемой ею функцией встроенного охладителя выпара и должна обеспечить конденсацию необходимого расхода выпара в расчетном диапазоне изменения гидравлической нагрузки деаэратора. Вторая тарелка является основной. Зона ее перфорации секционирована перегородкой таким образом, что при минимальной нагрузке работает только часть отверстий тарелки. С увеличением нагрузки включаются в работу все отверстия. Благодаря этому исключается возможность перекосов по пару и воде. Со второй тарелки вода сливается струей на третью тарелку (6) , которая служит в основном для организации подачи воды на барботажный лист (7) . Перфорированная часть тарелки невелика и максимально приближена к ее борту. Обработанная на барботажном листе вода отводится из деаэратора по трубе (8) в бак-аккумулятор.

Рис. 3. Деаэратор вакуумный ДВ-800 М2:

1 - штуцер для подвода воды; 2 - распределительный коллектор; 3 - первая тарелка; 4 - перепускной порог; 5 - вторая тарелка; 6 - третья тарелка; 7 - барботажный лист; 8 - выход деаэрированной воды; 9 - вход перегретой воды (греющей среды); 10 - канал; 11 - перепускная труба; 12 - подвод пара

Рис. 1. Принципиальная схема двухступенчатого

вертикального вакуумного деаэратора.

В каталоге приведены данные о ваккумных деаэраторах типа ДВ производительностью 5, 15, 25, 50, 75, 100, 150, 200, 300, 400, 800 т/ч. Они предназначены для дегазации добавочной воды энергетических котлов и подпитачной воды систем теплоснабжения на ТЭЦ и в котельных, главным образом, водогрейных. В качестве теплоносителя в них может использоваться перегретая деаэрированная вода и пар.

Вертикально вакуумные деаэраторы производительностью 5-300 т/ч. На рис. 1 представлена конструктивная схема струйно-барботажных вертикальных вакуумных деаэраторов производительностью 5-300 т/ч, разработанных НПО ЦКТИ им. И.И. Ползунова в середине 60-х годов и изготовляемых ООО "Котломаш".

Вода, направляемая на дегазацию по трубе 1 , попадает на верхнюю тарелку 6 . Последняя секционирована с таким расчетом, что при минимальной (30%) нагрузке работает только часть отверстий во внутреннем секторе. При увелечении нагрузки включаются в работу дополнительные ряды отверстий. Секционирование верхней тарелки исключает гидравлические перекосы по пару и воде при изменениях нагрузки и во всех случаях обеспечивает обработку струй воды паром. Пройдя струйную часть, вода попадает на перепускную тарелку 5 , предназначенную для сбора и перепуска воды на начальный участок, расположенный ниже барботажной тарелки 3 . Перепускная тарелка 5 имеет отверстие в виде сектора, который с одной стороны примыкает к вертикальной сплошной перегородке 8 , идущей вниз до основания корпуса колонки. Вода с перепускной тарелки 5 направляется на непровальную барботажную тарелку 3 , выполненную в виде кольца с рядами отверстий, ориентированными перпендикулярно потоку воды.

К барботажной тарелке примыкает водосливный порог 9 , который проходит до нижнего основания деаэратора. Вода протекает по барботажному листу, переливается через порог и попадает в сектор, образуемый порогом 9 и перегородкой 8 , а затем отводится из деаэратора через трубу 11 . Весь пар подводится под барботажную тарелку по трубе 2 . Под тарелкой 3 устанавливается паровая подушка, и пар, проходя через отверстия, барботирует воду. С увеличением нагрузки, а следовательно, и расхода пара, высота паровой подушки увеличивается и избыточный пар перепускается в отвод барботажного листа через отверстия в перепускных трубах 4 . Затем пар проходит через горловину в перепускной тарелке 5 и поступает в струйный отсек, где большая часть конденсируется. Парогазовая смесь отсасывается по трубе 7 .

При использовании в качествегреющей среды перегретой воды последняя также подается под барбатажную тарелку по трубе 2 . Попадая в область с давлением ниже атмосферного, вода вскипает, образуя под листом паровую подушку. Вода, оставшаяся после вскипания, по подоперепускной трубе 10 поступает на барботажную тарелку, где проходит оброботку совместно с исходным потоком воды. Дальнейший путь пара, выделившегося из перегретой воды, не отличается от описанного выше.

Вся колонка изготавляется цельносварной. Для возможности ее разъема предусматривается монтажный стык, расположенный выше перепускной тарелки.

На рис. 2 приведена схема компоновки вертикального вакуумного деаэратора с охладителем выпара поверхностного типа. Часть потока исходной воды пропускается через охладитель выпара. Для обеспечения необходимого расхода выпара при всех нагрузках деаэратора расход воды на охладитель выпара должен соответствовать номинальной производительности и поддерживаться постоянным. Конденсат из охладителя выпара рекомендуется отводить отдельным трубопроводом через гидрозатвор в дренаж или на верхнюю тарелку дааэратора. С этой целью охладитель наклонен в сторону отвода конденсата (уклон 1:10).

Рис. 2. Схема компоновки вертикального вакуумного деаэратора с охладителем выпара поверхностного типа:

1 - вакуумный деаэратор; 2 - охладитель выпара; 3 - подвод греющей среды; 4 - подвод исходной воды; 5 - отвод деаэрированной воды; 6 - отвод конденсата; 7 - отвод газов.

Горизонтальные вакуумные деаэраторы производительностью 400 и 800 т/ч. ОАО НПО ЦКТИ разработаны горизонтальные вакуумные струйно-барботажные деаэраторы производительностью 400 и 800 т/ч. В качестве барботажной ступени в этой конструкции применена непровальная перфорированная тарелка.

Деаэратор независимо от производительности представляет собой цилиндр диаметром 3 м, в котором размещены все деаэрирующие элементы и охладитель выпара смешивающего типа.

На рис. 3 представлена принципиальная схема горизонтального вакуумного деаэратора с учетом изменений, внесенных в его конструкцию после начала производства (модернизированный вариант).

Рис. 3. Принципиальная схема двухступенчатого горизонтального вакуумного деаэратора.

Исходная вода через штуцер 1 поступает в распределительный коллектор 2 (сюда же попадается поток химически очищенной воды от системы охлаждения пароструйного эжектора) и далее на первую тарелку 3 . Перфорация первой тарелки рассчитана на пропуск 30% воды при номинальной нагрузке деаэратора. Остальная вода через порог 13 сливается на вторую тарелку 4 . При нагрузках, отличных от номинальной, происходит перераспределение расходов воды через отверстия и перелив, однако, расход воды в отверстиях не может превысить 30% номинальной нагрузки.

Прошедшая сквозь отверстия первой тарелки вода сливается струями также на вторую тарелку. Вторая тарелка является основной, ее зона перфорации секционирована перегородкой таким образом, что при минимальной нагрузке работает только часть отверстий тарелки. С увеличением нагрузки включаются в работу все отверстия. Таким образом исключается возможность перекосов по пару и воде.

Со второй тарелки 4 вода стекает струями на третью тарелку 6 , которая служит для организации подачи воды на начало барботажного листа 10 . Перфорированная часть тарелки 6 невелика и максимально приближена к ее борту. Обработанная на непровальном барботажном листе 10 вода отводится из деаэратора по трубе 7 . Греющая среда (перегретая деаэрированная вода) подается в деаэратор через перфорированную трубу 9 . При этом вода вскипает, и выделившийся пар поступает под барботажный лист, а оставшаяся вода по каналу 8 вытесняется на уровень барботажного листа и отводится из деаэратора, смешиваясь с деаэрированной водой.

Пар, проходя сквозь отверстия барботажного листа и слой воды на нем, догревает и интенсивно обрабатывает воду. При этом под листом 10 образуется соответствующая паровая подушка, высота которой с увеличением расхода пара возрастает, и избыточный пар перепускается трубой 12 в струйный отсек между второй и третьей тарелками. Сюда же направляется пар, прошедший сквозь отверстия барботажного листа, пересекая при этом струйный поток, сливающийся с третьей тарелки. В этом отсеке осуществляется основной подогрев воды и конденсации пара. Трубы 5 обеспечивают дополнительную вентиляцию зоны отвода деаэрированной воды.

В отсеке между первой и второй тарелками происходит конденсация оставшегося пара. Охлажденные неконденсирующиеся газы отсасываются эжектором по трубе 14 . Патрубок 11 служит для подачи в деаэратор пара в качестве дополнительного теплоносителя в схемах приготовления добавочной воды энергетических котлов. По трубе 9 в этом случае подается конденсат с производства.

ООО "Котломаш" выпускает вакуумные деаэраторы производительностью 400 и 800 т/ч, все внутренние элементы которых изготовляются из нержавеющей стали.

Вакуумные деаэраторы не имеют запаса воды в своем корпусе. При сливе деаэрированной воды самотеком в аккумуляторные баки уровень ее колеблется в сливном трубопроводе в зависимости от давления в деаэраторе, уровня воды в баке-аккумуляторе для устойчивой работы последнего необходимо предусматривать промежуточный бак атмосферного давления или вакуумный коллектор с регулируемым уровнем воды в них, причем вакуумный коллектор может применяться только в схемах с постоянной (базовой) нагрузкой деаэраторов и устанавливается непосредственно под деаэраторами. Для слива деаэрированной воды в аккумуляторные баки самотеком вакуумные деаэраторы должны размещаться на отметке, превышающей верхний уровень воды в баке не менее чем на 10 м.

Система автоматического регулирования вакуумной деаэрационной установки обеспечивает подвод к деаэратору греющей среды в количестве, необходимом для подогрева до температуры насыщения исходного потока воды и обеспечения требуемого расхода выпара (автоматическое регулирование давление в деаэраторе), и поддерживает, в случае необходимости, постоянный уровень в баке.

Вакуумные деаэраторы следует защищать от переполнения и от опасного повышения давления. Наиболее просто вопрос защиты решается при сливе деаэрированной воды самотеком в промежуточные (или аккумуляторные) баки атмосферного давления при обязательном отсутствии запорной и регулирующей арматуры на сливных трубопроводах. В этом случае защита осуществляется через переливные гидрозатворы баков, рассчитанные на пропуск максимального расхода воды, поступающей в деаэратор при аварийных ситуациях. В остальных случаях защита должна выполняться с помощью гидрозатвора, присоединяемого к сливному трубопроводу или промежуточному коллектору. Высота гидрозатвора выбирается в зависимости от места его присоединения к системе. При подводе к деаэратору в качестве греющей среды пара необходимо также устанавливать предохранительный гидрозатвор на паропроводе между деаэратором и регулятором давления.



Комплектация вакуумных деаэраторов вспомогательным оборудованием (в количестве по 1 шт.) приведена в таблице 1, 2, 3.

Технические характеристики вакуумных деаэраторов

Таблица 1.

Наименование показателя

Деаэратор ДВ-5

Деаэратор ДВ-15

Деаэратор ДВ-25

Деаэратор ДВ-50

Номинальная производительность, т/ч
Диапазон производительности, %
Диапазон производительности, т/ч
Рабочее давление избыточное, МПа

Растворимые в воде газы необходимо удалять, поскольку приводят к коррозии стенок котла, преждевременному износу, а иногда и к аварии. Растворенные газы (02, С02) и воздух удаляется из воды деаэрацией. Известно несколько ее способов деаэрации: термический, химический, электромагнитный, высокочастотный и ультра-звуковой. Три последних способа недостаточно освоены, и в котельных с паровыми и водогрейными котлами наибольшее распространение получил термический способ.
При термическом способе растворение в воде газов уменьшается с повышением температуры и совсем прекращается при достижении температуры кипения, когда растворенные газы полностью удаляются из воды.
Существует несколько типов термических деаэраторов, но в котельных с паровыми котлами применяются смешивающие деаэраторы атмосферного типа (ДСА). Такой деаэратор (рис. 94) состоит из вертикальной цилиндрической колонки 1 диаметром 1-2 м и высотой 1,5-2 м, установленной на горизонтальном цилиндрическом баке 2, предназначенном для сохранения запаса деаэрованной воды.

Рис. 94. Атмосферный деаэратор смешивающего типа: 1 — колонка; 2 — бак-аккумулятор; 3 — водоуказательное стекло; 4 — манометр; 5 — гидрозатвор; 6 — распределительное устройство; 7,8 — тарелки; 9 — распределитель пара; 10 — клапан; 11 — охладитель выпара; 12 — регулятор уровня воды; 13 — выпуск питательной воды из бака-аккумулятора; 14 — вестовая труба.

Из паровых котлов в нижнюю часть деаэрационной колонки через парораспределитель 9 подается пар с давлением 0,2-0,3 кгс/см2 и, поднимаясь вверх, подогревает химически очищенную воду до температуры кипения 102-104 °С. При этом из воды выделяются кислород и углекислый газ и вместе с остатками несконденсированного пара через вестовую трубу 14 выбрасываются в атмосферу. При закрытии вестовой трубы этот поток может быть направлен в охладитель выпара 11. Деаэрованная вода поступает в бак-аккумулятор. Из бака деаэрованная вода забирается питательным насосом для питания паровых котлов.
Вакуумный деаэратор (ДСВ). Для деаэрации подпиточной воды тепловых сетей в котельных с водогрейными котлами используются вакуумные деаэраторы (рис. 95).
Вакуумный деаэратор, как и атмосферный, состоит из колонки 4 и бака деаэрованной воды 6.

Рис. 95. Вакуумный деаэратор: 1 — бак-газоотделитель; 2 — водяной эжектор; 3 — охладитель выпара; 4 — деаэрационные колонки; 5 — водоводяной водоподогреватель; 6 — бак деаэрованной воды; 7 — центробежный насос; 8 — трубопровод городской воды; 9 — трубопровод воды к ХВО; 10- трубопровод заполнения бака- газоотделителя; 11 — змеевик

Вакуум в деаэрационной колонке создается водоструйным эжектором 2, присоединенным к верхней части колонки. Для облегчения работы эжектора перед ним устанавливается охладитель выпара 3, так как водоструйный эжектор работает лучше, когда температура испарения ниже. Вода через эжектор перекачивается центробежным насосом 7, создает разрежение, за счет которого из деаэрационной колонки отсасывается выпар и, смешавшись с водой, поступает в бак-газоотделитель 1. В баке вода опускается вниз, а выпар остается наверху и удаляется в атмосферу.
Вода после умягчения, пройдя водоводяной подогреватель 5, нагревается до 75-80 °С и подается в деаэрационную колонку 4, где закипает при давлении ниже атмосферного. Освободившись от кислорода и углекислого газа, вода стекает в бак деаэрированной воды. Вода из бака подается подпиточным насосом на подпитку тепловой сети.
Для сохранения температуры деаэрованной воды в деаэраторном баке устанавливают змеевик 11, через который проходит горячая вода из водогрейных котлов.
Вакуумные деаэраторы работают при давлении 0,3 абсолютной атмосферы (Р = 0,7 кгс/см2), которому соответствует температура кипения воды 68,9 °С.
Нормы качества питательной воды для водотрубных котлов с рабочим давлением пара до 4 МПа приведены в табл. 8.
Нормы качества сетевой и подпиточной воды водогрейных котлов даны в табл. 9.

Таблица 8

Нормы качества питательной воды для водотрубных котлов с рабочим давлением пара до 4 МПа

Наименование

Рабочее давление, МПа (кгс/см 2)

Прозрачность по шрифту, см, не менее

Общая жесткость, мг-экв/кг

Не норми­руется

300* Не норм.

Не нормируется

Значение рН при 25 °С

Таблица 9

Наименование

Система теплоснабжения

Открытая

Закрытая

Температура сетевой воды, «С

Прозрачность по шрифту, см, не более

Карбонатная жесткость: при рН < 8,5 мкг-экв/кг при рН > 8,5 мкг-экв/кг

800* 700 Не до

750* 600 пуска

375′ 300 ется

750* 600 э расчс

Значение рН при 25 °С

‘Для котлов, работающих на мазуте.