10.03.2019

Современные технологии производства изделий из композиционных материалов. Использование композитных материалов в строительстве


Введение. 2

1. Общие сведения о композиционных материалах.. 3

2. Состав и строение композита.. 5

3. Оценка матрицы и упрочнителя в формировании свойств композита.. 10

3.1. Композиционные материалы с металлической матрицей 10

3.2. Композиционные материалы с неметаллической матрицей 10

4. Строительные материалы – композиты.. 12

4.1. Полимеры в строительстве. 12

4.2. Композиты и бетон.. 16

4.3. Алюминиевые композитные панели.. 19

Заключение. 23

Список использованной литературы.. 24

Введение

В начале XXI века задаются вопросом о будущих строительных материалах. Бурное развитие науки и техники затрудняет прогнозирование: еще четыре десятилетия назад не было широкого применения полимерных строительных материалов, а о современных «истинных» композитах было известно только узкому кругу специалистов. Тем не менее, можно предположить, что основными строительными материалами также будут металл, бетон и железобетон, керамика, стекло, древесина, полимеры. Строительные материалы будут создаваться на той же сырьевой основе, но с применением новых рецептур компонентов и технологических приемов, что даст более высокое эксплуатационное качество и соответственно долговечность и надежность. Будет максимальное использование отходов различных производств, отработавших изделий, местного и домашнего мусора. Строительные материалы будут выбираться по экологическим критериям, а их производство будет основываться на безотходных технологиях.

Уже сейчас имеется обилие фирменных названий отделочных, изоляционных и других материалов, которые в принципе отличаются только составом и технологией. Этот поток новых материалов будет увеличиваться, а их эксплуатационные свойства совершенствоваться с учетом суровых климатических условий и экономии энергетических ресурсов России.

1. Общие сведения о композиционных материалах

Композицио́нный материа́л - неоднородный сплошной материал, состоящий из двух или более компонентов, среди которых можно выделить армирующие элементы, обеспечивающие необходимые механические характеристики материала, и матрицу (или связующее), обеспечивающую совместную работу армирующих элементов.

Механическое поведение композита определяется соотношением свойств армирующих элементов и матрицы, а также прочностью связи между ними. Эффективность и работоспособность материала зависят от правильного выбора исходных компонентов и технологии их совмещения, призванной обеспечить прочную связь между компонентами при сохранении их первоначальных характеристик.

В результате совмещения армирующих элементов и матрицы образуется комплекс свойств композита, не только отражающий исходные характеристики его компонентов, но и включающий свойства, которыми изолированные компоненты не обладают. В частности, наличие границ раздела между армирующими элементами и матрицей существенно повышает трещиностойкость материала, и в композитах, в отличие от металлов, повышение статической прочности приводит не к снижению, а, как правило, к повышению характеристик вязкости разрушения.

высокая удельная прочность

высокая жёсткость (модуль упругости 130…140 ГПа)

высокая износостойкость

высокая усталостная прочность

из КМ возможно изготовить размеростабильные конструкции

Причём, разные классы композитов могут обладать одним или несколькими преимуществами. Некоторых преимуществ невозможно добиться одновременно.

Недостатки композиционных материалов

Большинство классов композитов (но не все) обладают недостатками:

высокая стоимость

анизотропия свойств

повышенная наукоёмкость производства, необходимость специального дорогостоящего оборудования и сырья, а следовательно развитого промышленного производства и научной базы страны

2. Состав и строение композита

Композиты - многокомпонентные материалы, состоящие из полимерной, металлической., углеродной, керамической или др. основы (матрицы), армированной наполнителями из волокон, нитевидных кристаллов, тонкодиспeрсных частиц и др. Путем подбора состава и свойств наполнителя и матрицы (связующего), их соотношения, ориентации наполнителя можно получить материалы с требуемым сочетанием эксплуатационных и технологических свойств. Использование в одном материале нескольких матриц (полиматричные композиционные материалы) или наполнителей различной природы (гибридные композиционные материалы) значительно расширяет возможности регулирования свойств композиционных материалов. Армирующие наполнители воспринимают основную долю нагрузки композиционных материалов.

По структуре наполнителя композиционные материалы подразделяют на волокнистые (армированы волокнами и нитевидными кристаллами), слоистые (армированы пленками, пластинками, слоистыми наполнителями), дисперсноармированные, или дисперсно-упрочненные (с наполнителем в виде тонкодисперсных частиц). Матрица в композиционных материалах обеспечивает монолитность материала, передачу и распределение напряжения в наполнителе, определяет тепло-, влаго-, огне - и хим. стойкость.

По природе матричного материала различают полимерные, металлические, углеродные, керамические и др. композиты.

Наибольшее применение в строительстве и технике получили композиционные материалы, армированные высокопрочными и высокомодульными непрерывными волокнами. К ним относят: полимерные композиционные материалы на основе термореактивных (эпоксидных, полиэфирных, феноло-формальд., полиамидных и др.) и термопластичных связующих, армированных стеклянными (стеклопластики), углеродными (углепластики), орг. (органопластики), борными (боропластики) и др. волокнами; металлич. композиционные материалы на основе сплавов Al, Mg, Cu, Ti, Ni, Сг, армированных борными, углеродными или карбидкремниевыми волокнами, а также стальной, молибденовой или вольфрамовой проволокой;

Композиционные материалы на основе углерода, армированного углеродными волокнами (углерод-углеродные материалы); композиционные материалы на основе керамики, армированной углеродными, карбидокремниевыми и др. жаростойкими волокнами и SiC. При использовании углеродных, стеклянных, арамидных и борных волокон, содержащихся в материале в кол-ве 50-70%, созданы композиции (см. табл) с уд. прочностью и модулем упругости в 2-5 раз большими, чем у обычных конструкционных материалов и сплавов. Кроме того, волокнистые композиционные материалы превосходят металлы и сплавы по усталостной прочности, термостойкости, виброустойчивости, шумопоглощению, ударной вязкости и др. свойствам. Так, армирование сплавов Аl волокнами бора значительно улучшает их механические характеристики и позволяет повысить т-ру эксплуатации сплава с 250-300 до 450-500 °С. Армирование проволокой (из W и Мо) и волокнами тугоплавких соединений используют при создании жаропрочных композиционных материалов на основе Ni, Cr, Co, Ti и их сплавов. Так, жаропрочные сплавы Ni, армированные волокнами, могут работать при 1300-1350 °С. При изготовлении металлических волокнистых композиционных материалов нанесение металлической матрицы на наполнитель осуществляют в основном из расплава материала матрицы, электрохимическим осаждением или напылением. Формование изделий проводят гл. обр. методом пропитки каркаса из армирующих волокон расплавом металла под давлением до 10 МПа или соединением фольги (матричного материала) с армирующими волокнами с применением прокатки, прессования, экструзии при нагр. до т-ры плавления материала матрицы.

Один из общих технологических методов изготовления полимерных и металлич. волокнистых и слоистых композиционные материалы - выращивание кристаллов наполнителя в матрице непосредственно в процессе изготовления деталей. Такой метод применяют, напр., при создании эвтектич. жаропрочных сплавов на основе Ni и Со. Легирование расплавов карбидными и интерметаллич. соед., образующими при охлаждении в контролируемых условиях волокнистые или пластинчатые кристаллы, приводит к упрочнению сплавов и позволяет повысить т-ру их эксплуатации на 60-80 oС. композиционные материалы на основе углерода сочетают низкую плотность с высокой теплопроводностью, хим. стойкостью, постоянством размеров при резких перепадах т-р, а также с возрастанием прочности и модуля упругости при нагреве до 2000 °С в инертной среде. О методах получения углерод-углеродных композиционные материалы см. Углепластики. Высокопрочные композиционные материалы на основе керамики получают при армировании волокнистыми наполнителями, а также металлич. и керамич. дисперсными частицами. Армирование непрерывными волокнами SiC позволяет получать композиционные материалы, характеризующиеся повыш. вязкостью, прочностью на изгиб и высокой стойкостью к окислению при высоких т-рах. Однако армирование керамики волокнами не всегда приводит к значит. повышению ее прочностных св-в из-за отсутствия эластичного состояния материала при высоком значении его модуля упругости. Армирование дисперсными металлич. частицами позволяет создать керамико-металлич. материалы (керметы), обладающие повыш. прочностью, теплопроводностью, стойкостью к тепловым ударам. При изготовлении керамич. композиционные материалы обычно применяют горячее прессование, прессование с послед. спеканием, шликерное литье (см. также Керамика). Армирование материалов дисперсными металлич. частицами приводит к резкому повышению прочности вследствие создания барьеров на пути движения дислокаций. Такое армирование гл. обр. применяют при создании жаропрочных хромоникелевых сплавов. Материалы получают введением тонкодисперсных частиц в расплавленный металл с послед. обычной переработкой слитков в изделия. Введение, напр., ТhO2 или ZrO2 в сплав позволяет получать дисперсноупрочненные жаропрочные сплавы, длительно работающие под нагрузкой при 1100-1200 °С (предел работоспособности обычных жаропрочных сплавов в тех же условиях - 1000-1050 °С). Перспективное направление создания высокопрочных композиционные материалы-армирование материалов нитевидными кристаллами ("усами"), к-рые вследствие малого диаметра практически лишены дефектов, имеющихся в более крупных кристаллах, и обладают высокой прочностью. наиб. практич. интерес представляют кристаллы Аl2О3, BeO, SiC, B4C, Si3N4, AlN и графита диаметром 1-30 мкм и длиной 0,3-15 мм. Используют такие наполнители в виде ориентированной пряжи или изотропных слоистых материалов наподобие бумаги, картона, войлока. композиционные материалы на основе эпоксидной матрицы и нитевидных кристаллов ThO2 (30% по массе) имеют раст 0,6 ГПа, модуль упругости 70 ГПа. Введение в композицию нитевидных кристаллов может придавать ей необычные сочетания электрич. и магн. св-в. Выбор и назначение композиционные материалы во многом определяются условиями нагружения и т-рой эксплуатации детали или конструкции, технол. возможностями. наиб. доступны и освоены полимерные композиционные материалы Большая номенклатура матриц в виде термореактивных и термопластич. полимеров обеспечивает широкий выбор композиционные материалы для работы в диапазоне от отрицат. т-р до 100-200°С - для органопластиков, до 300-400 °С - для стекло-, угле - и боропластиков. Полимерные композиционные материалы с полиэфирной и эпоксидной матрицей работают до 120-200°, с феноло-формальдегидной - до 200-300 °С, полиимидной и кремнийорг. - до 250-400°С. Металлич. композиционные материалы на основе Аl, Mg и их сплавов, армированные волокнами из В, С, SiC, применяют до 400-500°С; композиционные материалы на основе сплавов Ni и Со работают при т-ре до 1100-1200 °С, на основе тугоплавких металлов и соед. - до 1500-1700°С, на оснбве углерода и керамики - до 1700-2000 °С. Использование композитов в качестве конструкц., теплозащитных, антифрикц., радио - и электротехн. и др. материалов позволяет снизить массу конструкции, повысить ресурсы и мощности машин и агрегатов, создать принципиально новые узлы, детали и конструкции. Все виды композиционные материалы применяют в хим., текстильной, горнорудной, металлургич. пром-сти, машиностроении, на транспорте, для изготовления спортивного снаряжения и др.

Композиционные материалы – искусственно созданные материалы, которые состоят из двух или более компонентов, различающихся по составу и разделенных выраженной границей, и которые имеют новые свойства, запроектированные заранее.

Компоненты композиционного материала различны по геометрическому признаку. Компонент, непрерывный во всем объеме композиционного материала, называется матрицей . Компонент прерывистый, разделенный в объеме композиционного материала, называется арматурой . Матрица придает требуемую форму изделию, влияет на создание свойств композиционного материала, защищает арматуру от механических повреждений и других воздействий среды.

В качестве матриц в композиционных материалах могут быть использованы , полимеры органические и неорганические, керамические, углеродные и другие материалы. Свойства матрицы определяют технологические параметры процесса получения композиции и ее : плотность, удельную прочность, рабочую температуру, сопротивление усталостному разрушению и воздействию агрессивных сред. Армирующие или упрочняющие компоненты равномерно распределены в матрице. Они, как правило, обладают высокой , и и по этим показателям значительно превосходят матрицу. Вместо термина армирующий компонент можно использовать термин наполнитель.

Классификация композиционных материалов

По геометрии наполнителя композиционные материалы подразделяются на три группы:

  • с нульмерными наполнителями, размеры которых в трех измерениях имеют один и тот же порядок;
  • с одномерными наполнителями, один из размеров которых значительно превышает два других;
  • с двухмерными наполнителями, два размера которых значительно превышают третий.

По схеме расположения наполнителей выделяют три группы композиционных материалов:

  • с одноосным (линейным) расположением наполнителя в виде волокон, нитей, нитевидных кристаллов в матрице параллельно друг другу;
  • с двухосным (плоскостным) расположением армирующего наполнителя, матов из нитевидных кристаллов, фольги в матрице в параллельных плоскостях;
  • с трехосным (объемным) расположением армирующего наполнителя и отсутствием преимущественного направления в его расположении.

По природе компонентов композиционные материалы разделяются на четыре группы:

  • композиционные материалы, содержащие компонент из металлов или сплавов;
  • композиционные материалы, содержащие компонент из неорганических соединений оксидов, карбидов, нитридов и др.;
  • композиционные материалы, содержащие компонент из неметаллических элементов, углерода, бора и др.;
  • композиционные материалы, содержащие компонент из органических соединений эпоксидных, полиэфирных, фенольных и др.

Свойства композиционных материалов зависят не только от физико-химических свойств компонентов, но и от прочности связи между ними. Максимальная прочность достигается, если между матрицей и арматурой происходит образование или .

В композиционных материалах с нульмерным наполнителем наибольшее распространение получила металлическая матрица. Композиции на металлической основе упрочняются равномерно распределенными дисперсными частицами различной дисперсности. Такие материалы отличаются .

В таких материалах матрица воспринимает всю нагрузку, а дисперсные частицы наполнителя препятствуют развитию пластической деформации. Эффективное упрочнение достигается при содержании 5…10 % частиц наполнителя. Армирующими наполнителями служат частицы тугоплавких оксидов, нитридов, боридов, карбидов. Дисперсионно упрочненные композиционные материалы получают методами порошковой металлургии или вводят частицы армирующего порошка в жидкий расплав металла или сплава.

Промышленное применение нашли композиционные материалы на основе , упрочненные частицами оксида алюминия (Al 2 O 3). Их получают прессованием алюминиевой пудры с последующим спеканием (САП). Преимущества САП проявляются при температурах выше 300 o С, когда алюминиевые сплавы разупрочняются. Дисперсионно упрочненные сплавы сохраняют эффект упрочнения до температуры 0,8 Т пл .

Сплавы САП удовлетворительно деформируются, легко обрабатываются резанием, свариваются и . Из САП выпускают полуфабрикаты в виде листов, профилей, труб, фольги. Из них изготавливают лопатки компрессоров, вентиляторов и турбин, поршневые штоки.

В композиционных материалах с одномерными наполнителями упрочнителями являются одномерные элементы в форме нитевидных кристаллов, волокон, проволоки, которые скрепляются матрицей в единый монолит. Важно, чтобы прочные волокна были равномерно распределены в пластичной матрице. Для армирования композиционных материалов используют непрерывные дискретные волокна с размерами в поперечном сечении от долей до сотен микрометров.

Материалы, армированные нитевидными монокристаллами, были созданы в начале семидесятых годов для авиационных и космических конструкций. Основным способом выращивания нитевидных кристаллов является выращивание их из перенасыщенного пара (ПК-процесс). Для производства особо высокопрочных нитевидных кристаллов оксидов и других соединений осуществляется рост по П-Ж-К – механизму: направленный рост кристаллов происходит из парообразного состояния через промежуточную жидкую фазу.

Осуществляется создание нитевидных кристаллов вытягиванием жидкости через фильеры. Прочность кристаллов зависит от сечения и гладкости поверхности.

Композиционные материалы этого типа перспективны как . Для увеличения КПД тепловых машин лопатки газовых турбин изготавливают из никелевых сплавов, армированных нитями сапфира (Al 2 O 3), это позволяет значительно повысить температуру на входе в турбину (предел прочности сапфировых кристаллов при температуре 1680 o С выше 700 МПа).

Армирование сопл ракет из порошков вольфрама и молибдена производят кристаллами сапфира как в виде войлока, так и отдельных волокон, в результате этого удалось удвоить материала при температуре 1650 o С. Армирование пропиточного полимера стеклотекстолитов нитевидными волокнами увеличивает их прочность. Армирование литого металла снижает его в конструкциях. Перспективно упрочнение стекла неориентированными нитевидными кристаллами.

Для армирования композиционных материалов применяют металлическую проволоку из разных металлов: стали разного состава, вольфрама, ниобия, – в зависимости от условий работы. Стальная проволока перерабатывается в тканые сетки, которые используются для получения композиционных материалов с ориентацией арматуры в двух направлениях.

Для армирования легких металлов применяются волокна бора, карбида кремния. Особенно ценными свойствами обладают углеродистые волокна, их применяют для армирования металлических, керамических и полимерных композиционных материалов.

Эвтектические композиционные материалы – сплавы эвтектического или близкого к эвтектическому состава, в которых упрочняющей фазой выступают ориентированные кристаллы, образующиеся в процессе направленной кристаллизации. В отличие от обычных композиционных материалов, эвтектические получают за одну операцию. Направленная ориентированная структура может быть получена на уже готовых изделиях. Форма образующихся кристаллов может быть в виде волокон или пластин. Способами направленной кристаллизации получают композиционные материалы на основе , кобальта, ниобия и других элементов, поэтому они используются в широком интервале температур.

В истории развития техники может быть выделено два важных направления:

  • развитие инструментов, конструкций, механизмов и машин,
  • развитие материалов.

Какое из них главнее сказать сложно, т.к. они довольно тесно взаимосвязаны, но без развития материалов технический прогресс невозможен в принципе. Не случайно, историки подразделяют ранние цивилизационные эпохи на каменный век, бронзовый век и век железный.

Нынешний 21 век уже можно отнести к веку композиционных материалов (композитов).

Понятие композиционных материалов сформировалось в середине прошлого, 20 века. Однако, композиты вовсе не новое явление, а только новый термин, сформулированный материаловедами для лучшего понимания генезиса современных конструкционных материалов.

Композиционные материалы известны на протяжении столетий. Например, в Вавилоне использовали тростник для армирования глины при постройке жилищ, а древние египтяне добавляли рубленную солому в глиняные кирпичи. В Древней Греции железными прутьями укрепляли мраморные колонны при постройке дворцов и храмов. В 1555-1560 при постройке храма Василия Блаженного в Москве русские зодчие Барма и Постник использовали армированные железными полосами каменные плиты. Прямыми предшественниками современных композиционнных материалов можно назвать железобетон и булатные стали.

Существуют природные аналоги композиционных материалов - древесина, кости, панцири и т.д. Многие виды природных минералов фактически представляют собой композиты. Они не только прочны, но обладают также превосходными декоративными свойствами.

Композиционные материалы - многокомпонентные материалы, состоящие из пластичной основы - матрицы, и наполнителей, играющих укрепляющую и некоторые другие роли. Между фазами (компонентами) композита имеется граница раздела фаз.

Сочетание разнородных веществ приводит к созданию нового материала, свойства которого существенно отличаются от свойств каждого из его составляющих. Т.е. признаком композиционного материала является заметное взаимное влияние составных элементов композита, т.е. их новое качество, эффект.

Варьируя состав матрицы и наполнителя, их соотношение, применяя специальные дополнительные реагенты и т.д., получают широкий спектр материалов с требуемым набором свойств.

Большое значение расположение элементов композитного материала, как в направлениях действующих нагрузок, так и по отношению друг к другу, т.е. упорядоченность. Высокопрочные композиты, как правило, имеют высокоупорядоченную структуру.

Простой пример. Горсть древесных опилок, брошенная в ведро цементного раствора никак не повлияет на его свойства. Если опилками заменить половину раствора - то существенно изменится плотность материала, его теплофизические константы, себестоимость производства и др. показатели. Но, горсть полипропиленовых волокон сделает бетон ударопрочным и износостойким, а полведра фибры обеспечат ему упругость, совсем не свойственную минеральным материалам.

В настоящее время в область композиционных материалов (композитов), принято включать разнообразные искусственные материалы, разрабатываемые и внедряемые в различных отраслях техники и промышленности, отвечающие общим принципам создания композитных материалов

Почему интерес к композиционным материалам проявляется именно сейчас? Потому, что традиционные материалы уже не всегда или не вполне отвечают потребностям современной инженерной практики.

Матрицами в композиционных материалах являются металлы, полимеры, цементы и керамика. В качестве наполнителей используются самые разнообразные искусственные и природные вещества в различных формах (крупноразмерные, листовые, волокнистые, дисперсные, мелкодисперсные, микродисперсные, наночастицы).

Известны также многокомпонентные композиционные материалы, в т.ч.:

  • полиматричные, когда в одном композиционном материале сочетают несколько матриц,
  • гибридные, включающие несколько разных наполнителей, каждый из которых имеет свою роль.

Наполнитель, как правило, определяет прочность, жесткость и деформируемость композита, а матрица обеспечивает его монолитность, передачу напряжений и стойкость к различным внешним воздействиям.

Особое место занимают декоративные композиционные материалы, имеющие выраженные декоративне свойства.

Разрабатываются композитные материалы со специальными свойствами, например радиопрозрачные материалы и радиопоглощающие материалы, материалы для тепловой защиты орбитальных космических аппаратов, материалы с малым коэффициентом линейного термического расширения и высоким удельным модулем упругости и другие.

Композиционные материалы используются во всех областях науки, техники, промышленности, в т.ч. в жилищном, промышленном и специальном строительство, общем и специальном машиностроении, металлургии, химической промышленности, энергетике, электронике, бытовой технике, производстве одежды и обуви, медицине, спорте, искусствах и т.д.

Структура композиционных материалов.

По механической структуре композиты делятся на несколько основных классов: волокнистые, слоистые, дисперсноупрочненные, упрочненные частицами и нанокомпозиты.

Волокнистые композиты армируются волокнами или нитевидными кристаллами. Даже небольшое содержание наполнителя в композитах такого типа приводит к существенному улучшению механических свойств материала. Широко варьировать свойства материала позволяет также изменение ориентации размера и концентрации волокон.

В слоистых композиционных материалах матрица и наполнитель расположены слоями, как, например, в триплексах, фанере, клееных деревянных конструкциях и слоистых пластиках.

Микроструктура остальных классов композиционных материалов характеризуется тем, что матрицу наполняют частицами армирующего вещества, а различаются они размерами частиц. В композитах, упрочненных частицами, их размер больше 1 мкм, а содержание составляет 20-25% (по объему), тогда как дисперсноупрочненные композиты включают в себя от 1 до 15% (по объему) частиц размером от 0,01 до 0,1 мкм. Размеры частиц, входящих в состав нанокомпозитов еще меньше и составляют 10-100 нм.

Некоторые распространеные композиты

Бетоны - самые распространенные композиционные материалы. В настоящее время производится большая номенклатура бетонов, отличающихся по составам и свойствам. Современные бетоны производятся как на традиционных цементных матрицах, так и на полимерных (эпоксидных, полиэфирных, фенолоформальдегидных, акриловых и т.д.). Современные высокоэффективные бетоны по прочности приближаются к металлам. Популярными становятся декоративные бетоны.

Органопластики - композиты, в которых наполнителями служат органические синтетические, реже - природные и искусственные волокна в виде жгутов, нитей, тканей, бумаги и т.д. В термореактивных органопластиках матрицей служат, как правило, эпоксидные, полиэфирные и фенольные смолы, а также полиимиды. Органопластики обладают низкой плотностью, они легче стекло- и углепластиков, обладают относительно высокой прочностью при растяжении; высоким сопротивлением удару и динамическим нагрузкам, но, в то же время, низкой прочностью при сжатии и изгибе. К наиболее распространенным органопластикам относятся древесные композиционные материалы. По объемам производства органопластики превосходят стали, аллюминий и пластмассы.

В зарубежной литературе в последнее время становятся популярными новые термины - биополимеры, биопластики и соответственно - биокомпозиты.

Древесные композиционные материалы. К наиболее распространенным древесным композитам относятся арболиты, ксилолиты, цементностружечные плиты, клееные деревянные конструкции, фанеры и гнутоклееные детали, древесные пластики, древесностружечные и древесноволокнистые плиты и балки, древесные прессмассы и пресспорошки, термопластичные древесно-полимерные композиты.

Стеклопластики - полимерные композиционные материалы, армированные стеклянными волокнами, которые формуют из расплавленного неорганического стекла. В качестве матрицы чаще всего применяют как термореактивные синтетические смолы (фенольные, эпоксидные, полиэфирные и т.д.), так и термопластичные полимеры (полиамиды, полиэтилен, полистирол и т.д.). Стеклопластики обладают высокой прочностью, низкой теплопроводностью, высокими электроизоляционными свойствами, кроме того, они прозрачны для радиоволн. Слоистый материал, в котором в качестве наполнителя применяется ткань, плетенная из стеклянных волокон, называется стеклотекстолитом.

Углепластики - наполнителем в этих полимерных композитах служат углеродные волокна. Углеродные волокна получают из синтетических и природных волокон на основе целлюлозы, сополимеров акрилонитрила, нефтяных и каменноугольных пеков и т.д. Матрицами в угепластиках могут быть как термореактивные, так и термопластичные полимеры. Основными преимуществами углепластиков по сравнению со стеклопластиками является их низкая плотность и более высокий модуль упругости, углепластики - очень легкие и, в то же время, прочные материалы.

На основе углеродных волокон и углеродной матрицы создают композиционные углеграфитовые материалы - наиболее термостойкие композиционные материалы (углеуглепластики), способные долго выдерживать в инертных или восстановительных средах температуры до 3000° С.

Боропластики - композиционные материалы, содержащие в качестве наполнителя борные волокна, внедренные в термореактивную полимерную матрицу, при этом волокна могут быть как в виде мононитей, так и в виде жгутов, оплетенных вспомогательной стеклянной нитью или лент, в которых борные нити переплетены с другими нитями. Применение боропластиков ограничивается высокой стоимостью производства борных волокон, поэтому они используются главным образом в авиационной и космической технике в деталях, подвергающихся длительным нагрузкам в условиях агрессивной среды.

Пресспорошки (прессмассы). Известно более 10000 марок наполненных полимеров. Наполнители используются как для снижения стоимости материала, так и для придания ему специальных свойств. Впервые наполненный полимер начал производить др. Бакеланд (Leo H. Baekeland, США), открывший в начале 20 в. способ синтеза фенолформфльдегидной (бакелитовой) смолы. Сама по себе эта смола - вещество хрупкое, обладающее невысокой прочностью. Бакеланд обнаружил, что добавка волокон, в частности, древесной муки к смоле до ее затвердевания, увеличивает ее прочность. Созданный им материал - бакелит - приобрел большую популярность. Технология его приготовления проста: смесь частично отвержденного полимера и наполнителя - пресс-порошок - под давлением необратимо затвердевает в форме. Первое серийное изделие произведено по данной технологии в 1916, это - ручка переключателя скоростей автомобиля «Роллс-Ройс». Наполненные термореактивные полимеры широко используются в самых разных областях техники. Для наполнения термореактивных и термопластичных полимеров применяются разнообразные наполнители - древесная мука, каолин, мел, тальк, слюда, сажа, стекловолокно, базальтовое волокно и др,

Текстолиты - слоистые пластики, армированные тканями из различных волокон. Технология получения текстолитов была разработана в 1920-х г.г. на основе фенолформальдегидной смолы. Полотна ткани пропитывают смолой, затем прессуют при повышенной температуре, получая текстолитовые пластины или фасонные изделия. Связующими в текстолитах является широкий круг термореактивных и термопластичных полимеров, а иногда и неорганические связующие на основе силикатов и фосфатов. В качестве наполнителя используются ткани из самых разнообразных волокон - хлопковых, синтетических, стеклянных, углеродных, асбестовых, базальтовых и т.д. Соответственно разнообразны свойства и применение текстолитов.

Композиционные материалы с металлической матрицей. При создании композитов на основе металлов в качестве матрицы применяют алюминий, магний, никель, медь и т.д. Наполнителем служат высокопрочные волокна, тугоплавкие частицы различной дисперсности, нитевидными монокристаллы оксида алюминия, оксида бериллия, карбидов бора и кремния, нитридов алюминия и кремния и т.д. длиной 0,3-15 мм и диаметром 1-30 мкм.

Основными преимуществами композиционных материалов с металлической матрицей по сравнению с обычным (неусиленным) металлом являются: повышенная прочность, повышенная жесткость, повышенное сопротивление износу, повышенное сопротивление ползучести.

Композиционные материалы на основе керамики. Армирование керамических материалов волокнами, а также металлическими и керамическими дисперсными частицами позволяет получать высокопрочные композиты, однако, ассортимент волокон, пригодных для армирования керамики, ограничен свойствами исходного материала. Часто используют металлические волокна. Сопротивление растяжению растет незначительно, но зато повышается сопротивление тепловым ударам - материал меньше растрескивается при нагревании, но возможны случаи, когда прочность материала падает. Это зависит от соотношения коэффициентов термического расширения матрицы и наполнителя.

Армирование керамики дисперсными металлическими частицами приводит к новым материалам (керметам) с повышенной стойкостью, устойчивостью относительно тепловых ударов, с повышенной теплопроводностью. Из высокотемпературных керметов делают детали для газовых турбин, арматуру электропечей, детали для ракетной и реактивной техники. Твердые износостойкие керметы используют для изготовления режущих инструментов и деталей. Кроме того, керметы применяют в специальных областях техники - это тепловыделяющие элементы атомных реакторов на основе оксида урана, фрикционные материалы для тормозных устройств и т.д.

Введение

Введение

Композиционный материал – неоднородный сплошной материал, состоящий из двух или более компонентов, среди которых можно выделить армирующие элементы, обеспечивающие необходимые механические характеристики материала, и матрицу, обеспечивающую совместную работу армирующих элементов. Механическое поведение композита определяется соотношением свойств армирующих элементов и матрицы, а также прочностью связи между ними. Эффективность и работоспособность материала зависят от правильного выбора исходных компонентов и технологии их совмещения, призванной обеспечить прочную связь между компонентами при сохранении их первоначальных характеристик. В результате совмещения армирующих элементов и матрицы образуется комплекс свойств композита, не только отражающий исходные характеристики его компонентов, но и включающий свойства, которыми изолированные компоненты не обладают. В частности, наличие границ раздела между армирующими элементами и матрицей существенно повышает трещиностойкость материала, и в композитах, в отличие от металлов, повышение статической прочности приводит не к снижению, а, как правило, к повышению характеристик вязкости разрушения.

Преимущества композиционных материалов:

Высокая удельная прочность;

Высокая жёсткость (модуль упругости 130…140 ГПа);

Высокая износостойкость;

Высокая усталостная прочность;

Из КМ возможно изготовить размеростабильные конструкции, причём, разные классы композитов могут обладать одним или несколькими преимуществами.

Наиболее частые недостатки композиционных материалов:

Высокая стоимость;

Анизотропия свойств;

Повышенная наукоёмкость производства, необходимость специального дорогостоящего оборудования и сырья, а следовательно развитого промышленного производства и научной базы страны.

1. Классификация композиционных материалов

Композиты – многокомпонентные материалы, состоящие из полимерной, металлической., углеродной, керамической или др. основы (матрицы), армированной наполнителями из волокон, нитевидных кристаллов, тонкодиспeрсных частиц и др. Путем подбора состава и свойств наполнителя и матрицы (связующего), их соотношения, ориентации наполнителя можно получить материалы с требуемым сочетанием эксплуатационных и технологических свойств. Использование в одном материале нескольких матриц (полиматричные композиционные материалы) или наполнителей различной природы (гибридные композиционные материалы) значительно расширяет возможности регулирования свойств композиционных материалов. Армирующие наполнители воспринимают основную долю нагрузки композиционных материалов.

По структуре наполнителя композиционные материалы подразделяют на волокнистые (армированы волокнами и нитевидными кристаллами), слоистые (армированы пленками, пластинками, слоистыми наполнителями), дисперсноармированные, или дисперсно-упрочненные (с наполнителем в виде тонкодисперсных частиц). Матрица в композиционных материалах обеспечивает монолитность материала, передачу и распределение напряжения в наполнителе, определяет тепло-, влаго-, огне- и хим. стойкость.

По природе матричного материала различают полимерные, металлические, углеродные, керамические и др. композиты.

Композиционные материалы с металлической матрицей представляют собой металлический материал (чаще Al, Mg, Ni и их сплавы), упрочненный высокопрочными волокнами (волокнистые материалы) или тонкодисперсными тугоплавкими частицами, не растворяющимися в основном металле (дисперсно-упрочненные материалы). Металлическая матрица связывает волокна (дисперсные частицы) в единое целое.

Композиционные материалы с неметаллической матрицей нашли широкое применение. В качестве неметаллических матриц используют полимерные, углеродные и керамические материалы. Из полимерных матриц наибольшее распространение получили эпоксидная, фенолоформальдегидная и полиамидная. Угольные матрицы, коксованные или пироуглеродные, получают из синтетических полимеров, подвергнутых пиролизу. Матрица связывает композицию, придавая ей форму. Упрочнителями служат волокна: стеклянные, углеродные, борные, органические, на основе нитевидных кристаллов (оксидов, карбидов, боридов, нитридов и других), а также металлические (проволоки), обладающие высокой прочностью и жесткостью.

Композиционные материалы с волокнистым наполнителем (упрочнителем) по механизму армирующего действия делят на дискретные, в которых отношение длинны волокна к диаметру относительно невелико, и с непрерывным волокном. Дискретные волокна располагаются в матрице хаотично. Диаметр волокон от долей до сотен микрометров. Чем больше отношение длинны к диаметру волокна, тем выше степень упрочнения.

Часто композиционный материал представляет собой слоистую структуру, в которой каждый слой армирован большим числом параллельных непрерывных волокон. Каждый слой можно армировать также непрерывными волокнами, сотканными в ткань, которая представляет собой исходную форму, по ширине и длине соответствующую конечному материалу. Нередко волокна сплетают в трехмерные структуры.

Композиционные материалы отличаются от обычных сплавов более высокими значениями временного сопротивления и предела выносливости (на 50 – 10 %), модуля упругости, коэффициента жесткости и пониженной склонностью к трещинообразованию. Применение композиционных материалов повышает жесткость конструкции при одновременном снижении ее металлоемкости. Прочность композиционных (волокнистых) материалов определяется свойствами волокон; матрица в основном должна перераспределять напряжения между армирующими элементами. Поэтому прочность и модуль упругости волокон должны быть значительно больше, чем прочность и модуль упругости матрицы. Жесткие армирующие волокна воспринимают напряжения, возникающие в композиции при нагружении, придают ей прочность и жесткость в направлении ориентации волокон.

Для упрочнения алюминия, магния и их сплавов применяют борные волокна, а также волокна из тугоплавких соединений (карбидов, нитридов, боридов и оксидов), имеющих высокие прочность и модуль упругости. Для армирования титана и его сплавов применяют молибденовую проволоку, волокна сапфира, карбида кремния и борида титана. Повышение жаропрочности никелевых сплавов достигается армированием их вольфрамовой или молибденовой проволокой. Металлические волокна используют и в тех случаях, когда требуются высокие теплопроводность и электропроводимость. Перспективными упрочнителями для высокопрочных и высокомодульных волокнистых композиционных материалов являются нитевидные кристаллы из оксида и нитрида алюминия, карбида и нитрида кремния, карбида бора и др. Композиционные материалы на металлической основе обладают высокой прочностью и жаропрочностью, в то же время они малопластичны. Однако волокна в композиционных материалах уменьшают скорость распространения трещин, зарождающихся в матрице, и практически полностью исчезает внезапное хрупкое разрушение. Отличительной особенностью волокнистых одноосных композиционных материалов являются анизотропия механических свойств вдоль и поперек волокон и малая чувствительность к концентраторам напряжения. Анизотропия свойств волокнистых композиционных материалов учитывается при конструировании деталей для оптимизации свойств путем согласования поля сопротивления с полями напряжения. Необходимо учитывать, что матрица может передавать напряжения волокнам только в том случае, когда существует прочная связь на поверхности раздела армирующее волокно – матрица. Для предотвращения контакта между волокнами матрица должна полностью окружать все волокна, что достигается при содержании ее не менее 15-20 %. Матрица и волокно не должны между собой взаимодействовать (должна отсутствовать взаимная диффузия) при изготовлении и эксплуатации, так как это может привести к понижению прочности композиционного материала. Армирование алюминиевых, магниевых и титановых сплавов непрерывными тугоплавкими волокнами бора, карбида кремния, борида титана и оксида алюминия значительно повышает жаропрочность. Особенностью композиционных материалов является малая скорость разупрочнения во времени с повышением температуры.

Основным недостатком композиционных материалов с одно и двумерным армированием является низкое сопротивление межслойному сдвигу и поперечному обрыву. Этого лишены материалы с объемным армированием.

В отличие от волокнистых композиционных материалов в дисперсно- упрочненных композиционных материалах матрица является основным элементом, несущим нагрузку, а дисперсные частицы тормозят движение в ней дислокаций.

Высокая прочность достигается при размере частиц 10-500 нм при среднем расстоянии между ними 100-500нм и равномерном распределении их в матрице. Прочность и жаропрочность в зависимости от объемного содержания упрочняющих фаз не подчиняются закону аддитивности. Оптимальное содержание второй фазы для различных металлов неодинаково, но обычно не превышает 5-10 об. %. Использование в качестве упрочняющих фаз стабильных тугоплавких соединений (оксиды тория, гафния, иттрия, сложные соединения оксидов и редкоземельных металлов), не растворяющихся в матричном металле, позволяет сохранить высокую прочность материала до 0,9-0,95 Тпл. В связи с этим такие материалы чаще применяют как жаропрочные. Дисперсно-упрочненные композиционные материалы могут быть получены на основе большинства применяемых в технике металлов и сплавов. Наиболее широко используют сплавы на основе алюминия – САП (спеченный алюминиевый порошок).

2. Состав, строение и свойства композиционных материалов

Свойства композиционных материалов зависят от состава компонентов, их сочетания, количественного соотношения и прочности связи между ними. Армирующие материалы могут быть в виде волокон, жгутов, нитей, лент, многослойных тканей. Содержание упрочнителя в ориентированных материалах составляет 60-80 об.%, в неориентированных (с дискретными волокнами и нитевидными кристаллами) 20-30 об.%. Чем выше прочность и модуль упругости волокон, тем выше прочность и жесткость композиционного материала. Свойства матрицы определяют прочность композиции при сдвиге и сжатии и сопротивление усталостному разрушению. В слоистых материалах волокна, нити, ленты, пропитанные связующим, укладываются параллельно друг другу в плоскости укладки. Плоские слои собираются в пластины. Свойства получаются анизотропными. Для работы материала в изделии важно учитывать направление действующих нагрузок. Можно создать материалы как с изотропными, так и с анизотропными свойствами. Можно укладывать волокна под разными углами, варьируя свойства композиционных материалов. От порядка укладки слоев по толщине пакета зависят изгибные и крутильные жесткости материала. Применяется укладка упрочнителей из трех, четырех и более нитей. Наибольшее применение имеет структура из трех взаимно перпендикулярных нитей. Упрочнители могут располагаться в осевом, радиальном и окружном направлениях. Трехмерные материалы могут быть любой толщины в виде блоков, цилиндров. Объемные ткани увеличивают прочность на отрыв и сопротивление сдвигу по сравнению со слоистыми. Система из четырех нитей строится путем разложения упрочнителя по диагоналям куба. Структура из четырех нитей равновесна, имеет повышенную жесткость при сдвиге в главных плоскостях. Однако создание четырехнаправленных материалов сложнее, чем трехнаправленных.

Наибольшее применение в строительстве и технике получили композиционные материалы, армированные высокопрочными и высокомодульными непрерывными волокнами. К ним относят: полимерные композиционные материалы на основе термореактивных (эпоксидных, полиэфирных, феноло-формальдегидных, полиамидных и др.) и термопластичных связующих, армированных стеклянными (стеклопластики), углеродными (углепластики), органическими (органопластики), борными (боропластики) и др. волокнами; металлические композиционные материалы на основе сплавов Al, Mg, Cu, Ti, Ni, Сг, армированных борными, углеродными или карбидкремниевыми волокнами, а также стальной, молибденовой или вольфрамовой проволокой; композиционные материалы на основе углерода, армированного углеродными волокнами (углерод-углеродные материалы); композиционные материалы на основе керамики, армированной углеродными, карбидокремниевыми и др. жаростойкими волокнами и SiC. При использовании углеродных, стеклянных, амидных и борных волокон, содержащихся в материале в кол-ве 50-70%, созданы композиции с удельной прочностью и модулем упругости в 2-5 раз большими, чем у обычных конструкционных материалов и сплавов. Кроме того, волокнистые композиционные материалы превосходят металлы и сплавы по усталостной прочности, термостойкости, виброустойчивости, шумопоглощению, ударной вязкости и др. свойствам. Так, армирование сплавов Аl волокнами бора значительно улучшает их механические характеристики и позволяет повысить температуру эксплуатации сплава с 250-300 до 450-500 °С. Армирование проволокой (из W и Мо) и волокнами тугоплавких соединений используют при создании жаропрочных композиционных материалов на основе Ni, Cr, Co, Ti и их сплавов. Так, жаропрочные сплавы Ni, армированные волокнами, могут работать при 1300-1350°С. При изготовлении металлических волокнистых композиционных материалов нанесение металлической матрицы на наполнитель осуществляют в основном из расплава материала матрицы, электрохимическим осаждением или напылением. Формование изделий проводят гл. обр. методом пропитки каркаса из армирующих волокон расплавом металла под давлением до 10 МПа или соединением фольги (матричного материала) с армирующими волокнами с применением прокатки, прессования, экструзии при нагреве до температуры плавления материала матрицы.

Один из общих технологических методов изготовления полимерных и металлических волокнистых и слоистых композиционных материалов – выращивание кристаллов наполнителя в матрице непосредственно в процессе изготовления деталей. Такой метод применяют, напр., при создании эвтектических жаропрочных сплавов на основе Ni и Со. Легирование расплавов карбидными и интерметаллическими соединениями, образующими при охлаждении в контролируемых условиях волокнистые или пластинчатые кристаллы, приводит к упрочнению сплавов и позволяет повысить температуру их эксплуатации на 60-80oС. Композиционные материалы на основе углерода сочетают низкую плотность с высокой теплопроводностью, хим. стойкостью, постоянством размеров при резких перепадах температур, а также с возрастанием прочности и модуля упругости при нагреве до 2000 °С в инертной среде. Высокопрочные композиционные материалы на основе керамики получают при армировании волокнистыми наполнителями, а также металлическими и керамическими дисперсными частицами. Армирование непрерывными волокнами SiC позволяет получать композиционные материалы, характеризующиеся повышенной вязкостью, прочностью на изгиб и высокой стойкостью к окислению при высоких температурах. Однако армирование керамики волокнами не всегда приводит к значительному повышению ее прочностных свойств из-за отсутствия эластичного состояния материала при высоком значении его модуля упругости. Армирование дисперсными металлическими частицами позволяет создать керамико-металлические материалы (керметы), обладающие повышенной прочностью, теплопроводностью, стойкостью к тепловым ударам. При изготовлении керамических композиционных материалов обычно применяют горячее прессование, прессование с последующим спеканием, шликерное литье. Армирование материалов дисперсными металлическими частицами приводит к резкому повышению прочности вследствие создания барьеров на пути движения дислокаций. Такое армирование гл. обр. применяют при создании жаропрочных хромоникелевых сплавов. Материалы получают введением тонкодисперсных частиц в расплавленный металл с последующей обычной переработкой слитков в изделия. Введение, напр., ТhO2 или ZrO2 в сплав позволяет получать дисперсноупрочненные жаропрочные сплавы, длительно работающие под нагрузкой при 1100-1200°С (предел работоспособности обычных жаропрочных сплавов в тех же условиях 1000-1050°С). Перспективное направление создания высокопрочных композиционных материалов – армирование материалов нитевидными кристаллами ("усами"), которые вследствие малого диаметра практически лишены дефектов, имеющихся в более крупных кристаллах, и обладают высокой прочностью. Наиболее практический интерес представляют кристаллы Аl2О3, BeO, SiC, B4C, Si3N4, AlN и графита диаметром 1-30 мкм и длиной 0,3-15 мм. Используют такие наполнители в виде ориентированной пряжи или изотропных слоистых материалов наподобие бумаги, картона, войлока. Введение в композицию нитевидных кристаллов может придавать ей необычные сочетания электрических и магнитных свойств. Выбор и назначение композиционных материалов во многом определяются условиями нагружения и температурой эксплуатации деталей или конструкций, технол. возможностями. Наиболее доступны и освоены полимерные композиционные материалы. Большая номенклатура матриц в виде термореактивных и термопластичных полимеров обеспечивает широкий выбор композиционные материалы для работы в диапазоне от отрицательных температур до 100-200°С – для органопластиков, до 300-400 °С – для стекло-, угле – и боропластиков. Полимерные композиционные материалы с полиэфирной и эпоксидной матрицей работают до 120-200°, с феноло-формальдегидной – до 200-300 °С, полиимидной и кремнийорганической – до 250-400°С. Металлические композиционные материалы на основе Аl, Mg и их сплавов, армированные волокнами из В, С, SiC, применяют до 400-500°С; композиционные материалы на основе сплавов Ni и Со работают при температуре до 1100-1200 °С, на основе тугоплавких металлов и соединений – до 1500-1700°С, на основе углерода и керамики – до 1700-2000 °С. Использование композитов в качестве конструкционных, теплозащитных, антифрикционных, радио – и электротехнических и др. материалов позволяет снизить массу конструкции, повысить ресурсы и мощности машин и агрегатов, создать принципиально новые узлы, детали и конструкции. Все виды композиционные материалы применяют в химической, текстильной, горнорудной, металлургической промышленности, машиностроении, на транспорте, для изготовления спортивного снаряжения и др.

3. Экономическая эффективность применения композиционных материалов

Области применения композиционных материалов не ограничены. Они применяются в авиации для высоконагруженных деталей (обшивки, лонжеронов, нервюр, панелей, лопаток компрессора и турбины и т. д.), в космической технике для узлов силовых конструкций аппаратов, для элементов жесткости, панелей, в автомобилестроении для облегчения кузовов, рессор, рам, панелей кузовов, бамперов и т. д., в горной промышленности (буровой инструмент, детали комбайнов и т. д.), в гражданском строительстве (пролеты мостов, элементы сборных конструкций высотных сооружений и т. д.) и в других областях народного хозяйства.

Применение композиционных материалов обеспечивает новый качественный скачек в увеличении мощности двигателей, энергетических и транспортных установок, уменьшении массы машин и приборов. Композиционные материалы с неметаллической матрицей, а именно полимерные карбоволокниты используют в судо- и автомобилестроении (кузова гоночных машин, шасси, гребные винты); из них изготовляют подшипники, панели отопления, спортивный инвентарь, части ЭВМ. Высокомодульные карбоволокниты применяют для изготовления деталей авиационной техники, аппаратуры для химической промышленности, в рентгеновском оборудовании и другом. Карбоволокниты с углеродной матрицей заменяют различные типы графитов. Они применяются для тепловой защиты, дисков авиационных тормозов, химически стойкой аппаратуры. Изделия из бороволокнитов применяют в авиационной и космической технике (профили, панели, роторы и лопатки компрессоров, лопасти винтов, трансмиссионные валы вертолетов и т. д.). Органоволокниты применяют в качестве изоляционного и конструкционного материала в электрорадиопромышленности, авиационной технике и т. д.

Список использованной литературы

Горчаков Г.И., Баженов Ю.М. Строительные материалы/ Г.И. Горчаков, Ю.М. Баженов. – М.: Стройиздат, 1986.

Строительные материалы / Под ред.В.Г. Микульского. – М.: АСВ, 2000.

Общий курс строительных материалов / Под ред. И.А. Рыбьева. – М.: Высшая школа, 1987.

Строительные материалы / Под ред.Г.И. Горчакова. – М: Высшая школа, 1982.

Эвальд В.В. Строительные материалы, их изготовление, свойства и испытания/ В.В. Эвальд. – С-Пб.: Л-М, 14-ое изд.,1933.

композиционный материал судлал, композиционный материал импекс
Композицио́нный материа́л (КМ), компози́т - искусственно созданный неоднородный сплошной материал, состоящий из двух или более компонентов с чёткой границей раздела между ними. большинстве композитов (за исключением слоистых) компоненты можно разделить на матрицу (или связующее) и включённые в неё армирующие элементы (или наполнители). композитах конструкционного назначения армирующие элементы обычно обеспечивают необходимые механические характеристики материала (прочность, жёсткость и т. д.), а матрица обеспечивает совместную работу армирующих элементов и защиту их от механических повреждений и агрессивной химической среды.

Механическое поведение композиции определяется соотношением свойств армирующих элементов и матрицы, а также прочностью связей между ними. Характеристики и свойства создаваемого изделия зависят от выбора исходных ком­понентов и технологии их совмещения.

При совмещении армирующих элементов и матрицы образуется композиция, обладающая набором свойств, отражающими не только исходные характеристики его компонентов, но и новые свойства, которыми отдельные компоненты не обладают. Например, наличие границ раздела между армирующими элементами и матрицей существенно повышает трещиностойкость материала, и в композициях, в отличие от однородных металлов, повышение статической прочности приводит не к снижению, а, как правило, к повышению характеристик вязкости разрушения.

Для создания композиции используются самые разные армирующие наполнители и матрицы. Это - гетинакс и текстолит (слоистые пластики из бумаги или ткани, склеенной термореактивным клеем), стекло- и графитопласт (ткань или намотанное волокно из стекла или графита, пропитанные эпоксидными клеями), фанера. Есть материалы, в которых тонкое волокно из высокопрочных сплавов залито алюминиевой массой. Булат - один из древнейших композиционных материалов. нём тончайшие слои (иногда нити) высокоуглеродистой стали «склеены» мягким низкоуглеродным железом.

Материаловеды экспериментируют с целью создать более удобные в производстве, а значит - и более дешёвые материалы. Исследуются саморастущие кристаллические структуры, склеенные в единую массу полимерным клеем (цементы с добавками водорастворимых клеев), композиции из термопласта с короткими армирующими волоконцами и прочее.

  • 1 Классификация композитов
  • 2 Преимущества композиционных материалов
  • 3 Недостатки композиционных материалов
    • 3.1 Высокая стоимость
    • 3.2 Анизотропия свойств
    • 3.3 Низкая ударная вязкость
    • 3.4 Высокий удельный объём
    • 3.5 Гигроскопичность
    • 3.6 Токсичность
    • 3.7 Низкая эксплуатационная технологичность
  • 4 Области применения
    • 4.1 Товары широкого потребления
    • 4.2 Спортивное оборудование
    • 4.3 Медицина
    • 4.4 Машиностроение
      • 4.4.1 Характеристика
      • 4.4.2 Технические характеристики
      • 4.4.3 Технико-экономические преимущества
      • 4.4.4 Области применения технологии
    • 4.5 Авиация и космонавтика
    • 4.6 Вооружение и военная техника
  • 5 См. также
  • 6 Примечания
  • 7 Литература
  • 8 Ссылки

Классификация композитов

Композиты обычно классифицируются по виду армирующего наполнителя:

  • волокнистые (армирующий компонент - волокнистые структуры);
  • слоистые;
  • наполненные пластики (армирующий компонент - частицы)
    • насыпные (гомогенные),
    • скелетные (начальные структуры, наполненные связующим).

Также композиты иногда классифицируют по материалу матрицы:

  • композиты с полимерной матрицей,
  • композиты с керамической матрицей,
  • композиты с металлической матрицей,
  • композиты оксид-оксид.

Преимущества композиционных материалов

Главное преимущество КМ в том, что материал и конструкция создается одновременно. Исключением являются препреги, которые являются полуфабрикатом для изготовления конструкций.

Стоит сразу оговорить, что КМ создаются под выполнение данных задач, соответственно не могут вмещать в себя все возможные преимущества, но, проектируя новый композит, инженер волен задать ему характеристики значительно превосходящие характеристики традиционных материалов при выполнении данной цели в данном механизме, но уступающие им в каких-либо других аспектах. Это значит, что КМ не может быть лучше традиционного материала во всём, то есть для каждого изделия инженер проводит все необходимые расчёты и только потом выбирает оптимум между материалами для производства.

  • высокая удельная прочность (прочность 3500 МПа)
  • высокая жёсткость (модуль упругости 130…140 - 240 ГПа)
  • высокая износостойкость
  • высокая усталостная прочность
  • из КМ возможно изготовить размеростабильные конструкции
  • легкость

Причём, разные классы композитов могут обладать одним или несколькими преимуществами. Некоторых преимуществ невозможно добиться одновременно.

Недостатки композиционных материалов

Композиционные материалы имеют достаточно большое количество недостатков, которые сдерживают их распространение.

Высокая стоимость

Высокая стоимость КМ обусловлена высокой наукоёмкостью производства, необходимостью применения специального дорогостоящего оборудования и сырья, а следовательно развитого промышленного производства и научной базы страны. Однако это справедливо лишь при замене композитами простых прокатных изделий из черных металлов. случае легких изделий, изделий сложной формы, коррозионно-стойких изделий, высокопрочных диэлектрических изделий композиты оказываются в выигрыше. Причем стоимость композитных изделий зачастую оказывается ниже аналогов из цветных металлов или нержавеющей стали.

Анизотропия свойств

Анизотропия - зависимость свойств КМ от выбора направления измерения. Например, модуль упругости однонаправленного углепластика вдоль волокон в 10-15 раз выше, чем в поперечном.

Для компенсации анизотропии увеличивают коэффициент запаса прочности, что может нивелировать преимущество КМ в удельной прочности. Таким примером может служить опыт применения КМ при изготовлении вертикального оперения истребителя МиГ-29. Из-за анизотропии применявшегося КМ вертикальное оперение было спроектировано с коэффициентом запаса прочности кратно превосходящим стандартный в авиации коэффициент 1,5, что в итоге привело к тому, что композитное вертикальное оперение Миг-29 оказалось равным по весу конструкции классического вертикального оперения, сделанного из дюралюминия.

Тем не менее, во многих случаях анизотропия свойств оказывается полезной. Например трубы, работающие при внутреннем давлении испытывают в два раза большие разрывающие напряжения в окружном направлении по сравнении с осевым. Следовательно труба не должна быть равнопрочной во всех направления. случае композитов это условие легко обеспечить, увеличив вдвое армирование в окружном направлении по сравнению с осевым.

Низкая ударная вязкость

Низкая ударная вязкость также является причиной необходимости повышения запаса прочности. Кроме этого, низкая ударная вязкость обуславливает высокую повреждаемость изделий из КМ, высокую вероятность возникновения скрытых дефектов, которые могут быть выявлены только инструментальными методами контроля.

Высокий удельный объём

Высокий удельный объем является существенным недостатком при применении КМ в областях с жесткими ограничениями по занимаемому объёму. Это относится, например, к области сверхзвуковой авиации, где даже незначительное увеличение объёма самолёта приводит к существенному росту волнового аэродинамического сопротивления.

Гигроскопичность

Композиционные материалы гигроскопичны, то есть склонны впитывать влагу, что обусловлено несплошностью внутренней структуры КМ. При длительной эксплуатации и многократном переходе температуры через 0 по Цельсию вода, проникающая в структуру КМ, разрушает изделие из КМ изнутри (эффект по природе аналогичен разрушению автомобильных дорог в межсезонье). Справедливости ради нужно отметить, что указанный недостаток относится к композитам первых поколений, которые имели недостаточно эффективное сцепление связующего с наполнителем, а также большой объем каверн в матрице связующего. Современные типы композитов с высокой адгезией связующего к наполнителю (достигается применением специальных замасливателей), получаемые методами вакуумного формования с минимальным количеством остаточных газовых каверн этому недостатку неподвержены, что позволяет в частности строить композитные корабли, производить композитную арматуру и композитные опоры воздушных линий электропередач.

Тем не менее КМ могут впитывать другие жидкости, обладающие высокой проникающей способностью, например, авиационный керосин или другие нефтепродукты.

Токсичность

При эксплуатации КМ могут выделять пары, которые часто являются токсичными. Если из КМ изготавливают изделия, которые будут располагаться в непосредственной близости от человека (таким примером может послужить композитный фюзеляж самолета Boeing 787 Dreamliner), то для одобрения применяемых при изготовлении КМ материалов требуются дополнительные исследования воздействия компонентов КМ на человека.

Низкая эксплуатационная технологичность

Композиционные материалы могут иметь низкую эксплуатационную технологичность, низкую ремонтопригодность и высокую стоимость эксплуатации. Это связано с необходимостью применения специальных трудоёмких методов (а подчас и ручного труда), специальных инструментов для доработки и ремонта объектов из КМ. Часто изделия из КМ вообще не подлежат какой-либо доработке и ремонту.

Области применения

Товары широкого потребления

  • Железобетон - один из старейших и простейших композиционных материалов
  • Удилища для рыбной ловли из стеклопластика и углепластика
  • Лодки из стеклопластика
  • Автомобильные покрышки
  • Металлокомпозиты

Спортивное оборудование

Композиты надёжно обосновались в спорте: для высоких достижений нужны высокая прочность и малый вес, а цена особой роли не играет.

  • Велосипеды
  • Оборудование для горнолыжного спорта - палки и лыжи
  • Хоккейные клюшки и коньки
  • Байдарки, каноэ и вёсла к ним
  • Детали кузовов гоночных автомобилей и мотоциклов
  • Шлемы

Медицина

Материал для зубных пломб. Пластиковая матрица служит для хорошей заполняемости, наполнитель из стеклянных частиц повышает износостойкость.

Машиностроение

В машиностроении композиционные материалы широко применяются для создания защитных покрытий на поверхностях трения , а также для изготовления различных деталей двигателей внутреннего сгорания (поршни, шатуны).

Характеристика

Технология применяется для формирования на поверхностях в парах трения сталь-резина дополнительных защитных покрытий. Применение технологии позволяет увеличить рабочий цикл уплотнений и валов промышленного оборудования, работающих в водной среде.

Композиционные материалы состоят из нескольких функционально отличных материалов. Основу неорганических материалов составляют модифицированные различными добавками силикаты магния, железа, алюминия. Фазовые переходы в этих материалах происходят при достаточно высоких локальных нагрузках, близких к пределу прочности металла. При этом на поверхности формируется высокопрочный металлокерамический слой в зоне высоких локальных нагрузок, благодаря чему удается изменить структуру поверхности металла.

Полимерные материалы на основе политетрафторэтиленов модифицируются ультрадисперсными алмазографитовыми порошками, получаемыми из взрывных материалов, а также ультрадисперсных порошков мягких металлов. Пластифицирование материала осуществляется при сравнительно невысоких (менее 300 °C) температурах.

Металлоорганические материалы, полученные из природных жирных кислот, содержат значительное количество кислотных функциональных групп. Благодаря этому взаимодействие с поверхностными атомами металла может осуществляться в режиме покоя. Энергия трения ускоряет процесс и стимулирует появление поперечных сшивок.

Технические характеристики

Защитное покрытие в зависимости от состава композиционного материала может характеризоваться следующими свойствами:

  • толщина до 100 мкм;
  • класс чистоты поверхности вала (до 9);
  • иметь поры с размерами 1 - 3 мкм;
  • коэффициент трения до 0,01;
  • высокая адгезия к поверхности металла и резины.

Технико-экономические преимущества

  • На поверхности формируется высокопрочный металлокерамический слой в зоне высоких локальных нагрузок;
  • Формируемый на поверхности политетрафторэтиленов слой имеет низкий коэффициент трения и невысокую стойкость к абразивному износу;
  • Металлоорганические покрытия являются мягкими, имеют малый коэффициент трения, пористую поверхность, толщина дополнительного слоя составляет единицы микрон.

Области применения технологии

  • нанесение на рабочую поверхность уплотнений с целью уменьшения трения и создания разделительного слоя, исключающего налипание резины на вал в период покоя.
  • высокооборотные двигатели внутреннего сгорания для авто и авиастроения.

Авиация и космонавтика

В авиации и космонавтике с 1960-х годов существует настоятельная необходимость в изготовлении прочных, лёгких и износостойких конструкций. Композиционные материалы применяются для изготовления силовых конструкций летательных аппаратов, искусственных спутников, теплоизолирующих покрытий шаттлов, космических зондов. Всё чаще композиты применяются для изготовления обшивок воздушных и космических аппаратов, и наиболее нагруженных силовых элементов.

Вооружение и военная техника

Благодаря своим характеристикам (прочности и лёгкости) КМ применяются в военном деле для производства различных видов брони:

  • бронежилетов (см. также кевлар)
  • брони для военной техники

До IV в. до н. э. широко использовались в составе луков в качестве оружия.

См. также

  • Композитная арматура
  • Гибридный материал

Примечания

  1. Дж. Любин. 1.2 Термины и определения // Справочник по композиционным материалам: 2-х кн = Handbook of Composites. - М.: Машиностроение, 1988. - Т. 1. - 448 с. - ISBN 5-217-00225-5.

Литература

  • Кербер М. Л., Полимерные композиционные материалы. Структура. Свойства. Технологии. - СПб.: Профессия, 2008. - 560 с.
  • Васильев В. В., Механика конструкций из композиционных материалов. - М.: Машиностроение, 1988. - 272 с.
  • Карпинос Д. М., Композиционные материалы. Справочник. - Киев, Наукова думка

Ссылки

  • Журнал Механика композиционных материалов и конструкций
  • «Композиты из наукограда» Телесюжет
  • «Технология чёрного крыла» Телесюжет

композиционный материал импекс, композиционный материал судлал, композиционный материализм, композиционный материаловедение

Композиционный материал Информацию О