16.03.2019

Вакуумные системы и установки. Вакуумная техника


Навигация:

Различают последующие периоды вакуум напылений:

  • Создание газов (паров) с элементов, образующих покрытие;
  • Транспортировка паров к подложке;
  • Конденсация пара в подложке и развитие напыления;
  • К группе способов вакуумного напыления принадлежат приведенные ниже технологические процессы, а кроме того реактивные виды данных действий.

Методы теплового напыления:

  • Испарение электрическим лучом;
  • Испарение лазерным лучом.

Испарение вакуумной дугой:

  • Сырье улетучивается в катодном пятне гальванической дуги;
  • Эпитаксия моляльным лучом.

Ионное рассеивание:

  • Первоначальное сырье распыляется бомбардировкой гетерополярным потоком и действует на подложку.

Магнетронное распыление:

  • Напыление с гетерополярным ассистированием;
  • Имплантация ионов;
  • Фокусируемый ионный пучок.

Вакуумное напыление

Применение

Вакуумное покрытие используют с целью формирования в плоскости элементов, приборов и оснащения многофункциональных покрытий - проводящих, изолирующих, абразивостойких, коррозионно-устойчивых, эрозионностойких, антифрикционных, антизадирных, барьерных и т. д. Процедура применяется с целью нанесения декоративных покрытий, к примеру, при изготовлении часов с позолотой и оправ для очков. Единственный из ключевых действий микроэлектроники, где используется с целью нанесения проводящих оболочек (металлизации). Вакуумное покрытие применяется с целью получения оптических покрытий: просветляющих, отображающих, фильтрующих.

Материалами для напыления предназначаются мишени с разных веществ, металлов (титана, алюминия, вольфрама, молибдена, железа, никеля, меди, графита, хрома), их сплавов и синтезов (Si02,Ti02,Al203). В научно-техническую сферу способен быть добавлен электрохимически динамичный метан, к примеру, ацетилен (с целью покрытий, включающих углерод), азот, воздух. Хим реакция в плоскости подложки активизируется нагревом, или ионизацией и диссоциацией газа той либо другой конфигурацией газового ряда.

С поддержкой способов вакуумного напыления обретают напыления толщиной с нескольких ангстрем вплоть до нескольких микрон, как правило в последствии нанесения напыления плоскость не требует добавочного обрабатывания.

Методы вакуумного напыления

Вакуумное покрытие — перенесение элементов напыляемого материала с источника (зоны его переведения в газовую фазу) к плоскости детали исполняется согласно прямолинейным траекториям при вакууме 10-3 Па и ниже (вакуумное улетучивание) и посредством дифузного и конвекционного перенесения в плазме при давлениях 1 Па (катодное рассеивание) и 10-1-10-3 Па (магнетронное и ионно-плазменное рассеивание). Участь любой из крупиц напыляемого элемента при соударении с поверхностью детали находится в зависимости от ее энергии, температуры плоскости и хим сродства веществ оболочки и составляющих. Атомы либо молекулы, достигнувшие плоскости, имеют все шансы или отразиться от нее, или адсорбироваться и спустя определенный период времени, покинуть ее (десорбция), или адсорбироваться и формировать в плоскости поликонденсат (уплотнение). При высочайших энергиях крупиц, высокой температуре плоскости и небольшом хим сродстве, часть отображается поверхностью. Температура плоскости детали, больше которой все частички отражаются с нее и оболочка не сформируется, именуется опасной температурой напыления вакуумного, её роль находится в зависимости от природы веществ оболочки и плоскости детали и от состояния плоскости. При весьма небольших струях испаримых частиц, в том числе и в случае если данные частички в плоскости адсорбируются, однако нечасто сталкиваются с иными подобными же частичками, они десорбируются и не могут формировать зачатков, т.е. оболочка никак не увеличивается. Опасной частотой струи испаримых элементов для переданной температуры плоскости именуется минимальная уплотненность, при которой частички конденсируются и образовывают пленку.

Метод вакуумного напыления

Вакуумно-плазменное напыление

Согласно данному способу тонкие оболочки толщиной 0,02-0,11 мкм выходят в следствии нагрева, улетучивания и осаждения элемента на подложку в изолированной камере при сокращенном давлении газа в ней. В камере с поддержкой вакуумного насоса формируется максимальное влияние остаточных газов примерно 1,2х10-3 Па.

Рабочая камера предполагает собою металлический либо стеклянный колпак с концепцией внешнего водяного остужения. Камера размещена в основной плите и формирует с ней вакуумно-непроницаемое объединение. Адгерент, в котором проводится напыление, зафиксирован на держателе. К подложке прилегает электронагреватель, раскаляющий подложку вплоть до 2500-4500 оС, с целью усовершенствования адгезии напыляемой оболочки. Теплообменник содержит в себе отопитель и ресурс напыляемого элемента. Переломная затворка закрывает течение паров с испарителя к подложке. Покрытие длится в ходе времени, когда заслонка не закрыта.

Для нагрева напыляемого элемента в основном применяется 2 вида испарителей:

  • Прямонакальный проволочный или ленточный испаритель, изготавляемый с вольфрама либо молибдена;
  • Электронно-радиальные испарители с нагревом испаримого элемента электрической бомбардировкой.

Для напыления пленок с многокомпонентых веществ используется подрывное улетучивание. При данном теплообменник разогревается вплоть до 20000 оС и посыпается порошком из смеси испаримых веществ. Подобным способом удаётся обретать композиционные покрытия.

Некоторые известные вещества с целью покрытий (к примеру, золото) обладают плохой адгезией с кремнием и иными полупроводниковыми веществами. В случае некачественной адгезии испаримого вещества к подложке, улетучивание прокладывают в 2 слоя. Вначале сверху подложки наносят слой сплава, обладающего отличной адгезией к полупроводниковой подложке, к примеру, Ni, Cr либо Ti. Далее напыляют главный пласт, у которого прилипание с подслоем ранее превосходное.

Вакуумно-плазменное напыление

Ионно-вакуумное напыление

Данный способ состоит в разбрызгивании вещества наносимого элемента, пребывающего под отрицательным потенциалом, вследствие бомбардировки ионами пассивного газа, появляющихся в ходе возбужденности перетлевающего разряда изнутри конструкции вакуумного напыления.

Материал негативно заряженного электрода распыляется перед воздействием ударяющихся о него ионизованных атомов пассивного газа. Данные пульверизированные промежуточные атомы и осаждаются сверху подложки. Основным превосходством ионно-вакуумного способа напыления представляется отсутствие потребности нагрева испарителя вплоть до высочайшей температуры.

Механизм происхождения тлеющего разряда. Разлагающийся разряд прослеживается в камерах с невысоким давлением газа меж 2-я железными электродами, на которые подается большой вольтаж вплоть до 1-4 кВ. При данном отрицательный электрод как правило заземлен. Катодом представляется мишень с распыляемого вещества. С камеры заранее откачивается воздушное пространство, далее запускается газ вплоть до давления 0,6 Па.

Тлеющий разряд приобрел собственное наименование из-за присутствия в мишени (катоде) так именуемого перетлевающего свечения. Данное сверкание обуславливается огромным падением возможности в тесном пласте объёмного заряда возле катода. К области TC прилегает сфера фарадеева тёмного пространства, переходящая в позитивный столбик, что представляется самостоятельной долею разряда, никак не подходящей с других слоев разряда.

Вблизи анода, кроме того, существует легкий пласт объёмного заряда, именуемый анодным пластом. Прочая часть межэлектродного интервала захвачена квазинейтральной плазмой. Таким способом, в камере прослеживается растровое сверкание с чередующихся тёмных и ясных полос.

Для прохождения тока меж электродами нужна стабильная эмиссия электронов катода. Данную эмиссию допускается спровоцировать по принуждению посредством нагрева катода, либо облучения его ультрафиолетовым светом. Такого рода разряд представляется несамостоятельным.

Ионно-плазменное напыление

Вакуумное напыление алюминия

В некоторых случаях, особенно при напылении пластика, применяется металлизирование алюминием, а этот металл — материал довольно легкий и никак не износоустойчивый, в данном случае необходимы некоторые особые научно-технические приемы. Пользователю следует понимать, что подобные составляющие правильнее всего оберегать от засорения сразу же по прошествии штамповки, а кроме того, вредно использовать разные смазывающие порошки и присыпки в пресс-фигурах.

Вакуумное напыление алюминия

Вакуумное напыление металлов

Металлы, испаряющиеся при температуре ниже места их плавления, допускается разогревать непосредственным прохождением тока, серебро и золото испаряют в челноках с тантала либо вольфрама. Покрытие обязано изготавливаться в камере с давлением < 10-4 мм рт.ст.

Вакуумное напыление металлов

Для происхождения независимого перетлевающего разряда следует спровоцировать эмиссию электронов с катода посредством подачи высочайшего напряжения размером 2-4 кВт меж электродами. В случае если вложенный вольтаж превосходит возможности ионизации газа в камере (как правило Ar), в таком случае, в результате конфликтов электронов с молекулами Ar, метан ионизируется с образованием положительно заряженных ионов Ar+. В следствии, в зоне катодного черного пространства появляется ограниченный пространственный разряд и поэтому, мощное гальваническое поле.

Ионы Ar+, приобретающие энергию в данной области, выбивают атомы вещества катода, в то же время инициируя эмиссию второстепенных электронов с катода. Данная эмиссия и удерживает независимый тлеющий разряд. Промежуточные атомы с вещества катода доходят подложки и осаждаются на ее плоскости.

Вакуумное ионно-плазменное напыление

Установка вакуумного напыления УВН

Конструкция оснащена важным комплексом прогрессивных устройств и приборов, которые обеспечивают оседание покрытий металлов их синтезов и PC сплавов с установленными свойствами, превосходной адгезией и высочайшей равномерностью по части площади.

Комплекс приборов и устройств, которые входят в структуру агрегата:

  • полуавтоматический (механический) блок управления вакуумной системой;
  • магнетронная распылительная концепция в стабильном токе (с 1 вплоть до 4 магнетронов);
  • концепция нагревания (с контролированием и поддержанием установленной температуры);
  • концепция очищения напыляемых продуктов в зоне тлеющего разряда;
  • концепция передвижения продуктов в вакуумной среде (простая либо планетарная карусель);
  • числовой вакуумметр;
  • концепция контролирования противодействия возрастающих пленок;
  • инверторный блок питания магнетронов (мощность вплоть до 9 кВт).

Установка вакуумного напыления

Основным функциональным предназначением вакуумной установки, является создание и поддержание технического вакуума, который достигается путем откачивания смеси из системы. Широкое применение вакуумным установкам находится в металлургической, текстильной, химической, автомобильной, пищевой и фармацевтической сферах. К основным деталям установки относится насос, панель с фильтрами, блок управления камера.

Навигация:

Применение вакуумных установок

Вакуумные установки могут применяться для проведения лабораторных исследований. Входит в состав микроскопов, хроматографов, испарителей и систем фильтрации. Для этих целей может подойти агрегат, который не будет занимать большую площадь. Производительность таких агрегатов не стоит на первом месте. Чаще всего это форвакуумный или турбомолекулярный насос. При работе с агрессивными газами лучший вариант – мембранный насос.

Вакуумные установки играют немаловажную роль в испытательном оборудовании. Они обеспечивают необходимую скороподъемность летательным аппаратам. Для того чтобы процесс взлета или посадки протекал успешно, необходимо обеспечить быструю скорость откачки.

Сухие насосы используются для полупроводниковых и напылительных вакуумных установок, для осаждения материалов. Отлично подойдут для создания сверхвысокого вакуума. К ним относятся турбомолекулярные и криогенные насосы.

В металлургической промышленности активно используются насосы, которые обладают достаточной пропускной способностью. Они должны быть износостойкими, так как в системе имеется пыль и грязь. Отлично справятся с задачами в промышленной сфере когтевые и винтовые насосы, выполняющие форвакуумную откачку. Возможно применение диффузионных насосов.

Вакуумная установка 976А относится к лабораторному типу. Она предназначена для определения водонасыщенности асфальтобетона в лабораторных условиях. Рабочий объем камеры составляет 2 л. Вакуумная установка способна создать конечный вакуум значением 1х10-2.

Элементы вакуумных установок

Вакуумные установки создают и поддерживают рабочий вакуум в определенном герметичном объеме. Как правило, для этого используются элементы, имеющие одинаковое предназначение в различных видах установок. В их состав входит блок управления со стойкой управления, вакуумный блок, подколпачное устройство, системы охлаждения и вакуумная система и привод подъема колпака. Вакуумная система состоит из насоса любого типа, вакуумного агрегата, трубопроводов, вакуумметра и электромагнитного натекателя.

Вакуумные установки Busch

Вакуумные установки Busch – это, в первую очередь, качественные вакуумные насосы. Компания выпускает такие установки, как пластинчато-роторная модель вакуумного насоса R5. Она отличается высоким качеством и производительностью. Предельное давления агрегата составляет от 0,1 до 20 гПа. Скорость откачки среды достигает 1800 м3/ч. Во вторую очередь – это кулачковые насосы и компрессоры. Одним из таковых является модель Mink. Широко применяется в промышленности. Особенно там, где необходимо поддержание постоянного уровня вакуума. Предельное давление составляет от 20 до 250 гПа. Скорость откачки может достигать 1150 м3/ч.

Вакуумные установки Булат

Одним из примеров установок для нанесения тонкопленочных покрытий, является модель Булат. Она производит нанесение пленки вакуумно-плазменным способом. Может производить покрытие посредствам других электропроводящих материалов. Это молибден, цирконий, нитрид и карбонитрид. Изначально модель разрабатывалась для нанесения покрытия на зубные протезы из металла. Установка включает в себя откачивающий пост, форвакуумный инструмент и соответствующее электрооборудование.

Другие производители вакуумных установок

Компания Agilent Technologies является одной из самых больших по производству вакуумного оборудования. На предприятии налажен выпуск вакуумных насосов, течеискателей, вакуумметров, вакуумных масел и других составляющих систем.

Компания Air Dimensions Inc. специализируется на массовом выпуске высококачественных насосов диафрагменного типа, которые осуществляют отбор проб коррозийных газов, а так же сухих диафрагменных компрессоров.

Компания Edwards производит лабораторную и промышленную вакуумную технику. Среди них вакуумные насосы, вакуумметры и другое вспомогательное оборудования. Славится выпуском широкого ассортимента насосов разного типа.

Установки вакуумного напыления

При помощи установки вакуумного напыления (УВН) производится покрытие различных деталей покрытиями, которые выполняют проводящие, изолирующие, износостойки, барьерные и другие функции. Данный метод является самым распространенным среди других процессов микроэлетроники, в котором применяема металлизация. Благодаря таким установкам возможно получение просветляющих, фильтрующих и отражающих покрытий.

В качестве материалов покрытия может использоваться алюминий, вольфрам, титан, железо, никель, хром и т.д. При необходимости в среду может добавляться ацетилен, азот и кислород. Активация химической реакции при нагреве, ионизации и диссоциации газа. После проведения процедуры покрытия, дополнительная обработка не требуется.

Установка УВН-71 П-3 способна производить отработку технологического напыления. Она задействована в серийном производстве различных пленочных схем. При ее помощи производится изготовление тонких пленок в условиях высокого вакуума. Применяемый метод – резистивное испарение металлов.

Вакуумная установка УВ-24 производит лабораторные испытания асфальтобетона. Помогает определить его качество. Отличительная особенность данного агрегата – наличие двух откачиваемых баков, которые соединены между собой.

Магнетронное напыление

При магнетронном напылении нанесение тонкой пленки происходит посредствам катодного распыления. Устройство, использующие данный метод, называются магнетронные распылители. Данная установка может производить напыление многих металлов и сплавов. При ее использовании в различных рабочих средах с кислородом, азотом, диоксидом углерода и т.п. получаются пленки с различным составом.

Ионное напыление

Принцип работы ионной установки в вакууме – бомбардировка твердых тел ионами. При помещении подложки в вакуум, происходит попадание атомов на нее и образуется пленка.

Другие способы напыления

Вакуумное напыление может производиться с помощью оборудования периодического и непрерывного действия. Установки с периодическим действием применяются при определенном количестве обрабатываемых изделий. В массовом или серийном производстве используются установки непрерывного действия. Существуют одно-,и многокамерные виды напылительного оборудования. В многокамерных установках напылительные модули расположены последовательно. Во всех камерах производится напыление определенного материала. Между модулями находятся шлюзовые камеры и транспортирующее конвейерное устройство. Они осуществляют операции по созданию вакуума, испарения материала пленки, транспортировку по отдельности.

Вакуумные агрегаты

Вакуумный водокольцевой насосный агрегат типа ВВН 12 производит отсасывание воздуха, неагрессивных газов и других смесей, которые не очищаются от влаги и пыли. Поступающий в установку газ не требует очистки.

Агрегат вакуумный золотниковый АВЗ 180 универсален, имеет хороший показатель предельного остаточного давления, небольшой вес и отличается быстродействием и компактностью.

Технические характеристики агрегата вакуумного золотникового АВЗ 180.

Вакуумный агрегат АВР 50 способен откачивать из вакуумных пространств воздух, неагрессивные газы, пары и парогазовые смеси. Он не предназначен для перекачивания вышеперечисленных составов из одной емкости в другую. В его состав входят два насоса: НВД-200 и 2НВР-5ДМ.

Режущие инструменты, покрытые напылением

Вакуумное напыление - обработка поверхности, нанесение слоев материала на подложку.

Наносимые материалы:

    металлы (например, кадмий, хром, медь, никель, титан)

    неметаллы (например, керамические матричные композиты из углерода / углерода, карбид углерода / кремния и т. д.)

Технологии осаждения паров включают процессы, которые переводят материалы в парообразное состояние путем конденсации, химической реакции. Когда паровая фаза создается из жидкого или твердого источника, это называется физическим осаждением из паровой фазы (PVD). При получении химической реакции происходит известен как химическое осаждение из паровой фазы (CVD).Вакуумное напыление происходит с плазмой или без нее. Вакуумная среда имеет следующие преимущества:

    Уменьшение плотности частиц

    Уменьшение плотности частиц нежелательных атомов и молекул

    Обеспечение появления плазмы

    Возможность регулирования состава газов и паров

  • Возможность управления массовым потоком в камере

Осаждение паров добавляет материал только на поверхность, оставляя большую часть объекта относительно неизменной. В результате свойства поверхности обычно изменяются без значительных изменений микроструктуры подложки.

Физическое осаждение из паровой фазы (PVD напыление)

Физическое осаждение из паровой фазы представляет собой тонкопленочный метод, при котором покрытие наносится поверх всего объекта, а не в определенные области. Всё вакуумное напыление PVD объединяют:

    Нанесение металлов

    Активный газ, такой как азот, кислород или метан

  • Плазменная бомбардировка подложки для обеспечения плотного твердого покрытия

Основными методами вакуумного напыления PVD являются ионное нанесение, ионная имплантация, распыление и лазерное поверхностное легирование. Общий принцип один: газифицированный материал конденсируется на материале подложки для создания желаемого слоя. Таким образом, здесь не происходит химических реакций.

Ионное покрытие в вакууме

Плазменное ионное покрытие используется для осаждения металлов, таких как титан, алюминий, медь, золото и палладий на поверхности составной части. Толщина обычно составляют от 0,008 до 0,025 мм. Преимущества: адгезия, чистота поверхности, очистка поверхности подложки перед нанесением пленки и корректировка свойств пленки (например, морфология, плотность и остаточное напряжение пленки).

Недостатки: необходимость жестко контролировать параметры обработки, потенциальное загрязнение, активируемое в плазме, и возможное загрязнение частиц бомбардируемого газа.

Типичные области применения: рентгеновские трубки, трубопроводные резьбы, используемые в химических средах, лопасти турбины авиационных двигателей, стальные буровые долота, зубчатые колеса, высокоточные литьевые формы, алюминиевые вакуумно-уплотнительные фланцы, декоративные покрытия и антикоррозионная защита в ядерных реакторах.

Ионная имплантация

Ионная имплантация не создает дискретного покрытия, скорее, изменяет элементный химический состав существующей поверхности подложки путем легирования. Азот, например, используется для повышения износостойкости металлов. Чистота поверхности имеет важное значение для данной технологии. Предварительная обработка (например, обезжиривание, полоскание и ультразвуковая очистка) для удаления любых поверхностных загрязнений перед имплантацией очень важно. Время осаждения зависит от температурного сопротивления заготовки и требуемой дозы имплантации.

Ионная имплантация может использовать любой элемент, который может испаряться и ионизироваться в вакуумной камере. Преимущества этого процесса включают воспроизводимость, ликвидацию последующей обработки и минимальное образование отходов. Ионная имплантация не обеспечивает стабильной отделки, если покрытие подвергается воздействию высоких температур.

Ионная имплантация используется в качестве противоизносной обработки для компонентов с высокой стоимостью, таких как биомедицинские устройства (например, протезы), инструменты (например, пресс-формы, штампы, пуансоны, режущие инструменты и вставки). Другие промышленные применения включают нанесение золота, керамики и других материалов на подложки из арсенида пластика, керамики, кремния и галлия для полупроводниковой промышленности.

Распыление и вакуумное напыление

Распыление - нанесения, который изменяет физические свойства поверхности. Здесь газовый плазменный разряд устанавливается между двумя электродами: материалом катода и анодной подложкой. Пленки получаются очень тонкие, от 0,00005 до 0,01 мм. Данным способом часто наносятся хром, титан, алюминий, медь, молибден, вольфрам, золото и серебро.

Пленки с нанесенным слоем обычно используются в декоративных приложениях, таких как браслеты, очки и украшения. Электронная промышленность использует вакуумное напыление (например, проводка тонкой пленки на чипах и записывающих головах, а также магнитные и магнитооптические носители записи). Компании также используют осаждение вакуумным напылением для производства отражающих пленок для архитектурного стекла. В пищевой упаковочной промышленности используется распыление для производства тонких пластиковых пленок для упаковки. По сравнению с другими процессами осаждения напыление является относительно недорогим.

Поверхностное легирование

Поверхностное легирование с использованием лазеров: впрыскивание другого материала в расплав. Поверхностная обработка данным способом даёт высокотемпературные характеристики, износостойкость, улучшенную коррозионную стойкость, лучшие механические свойства и улучшенный внешний вид. Одним из многих методов лазерного легирования поверхности является лазерное плакирование. Общая цель лазерного плакирования - выборочно обработать определенную область. В лазерном плакировании тонкий слой металла (или порошкового металла) соединяется с основным металлом посредством обработки температурой и давлением. Перемещение подложки под пучком и перекрывающиеся дорожки осаждения могут охватывать большие площади. Предварительная обработка не является критичной, хотя поверхность может потребовать шероховатости перед осаждением. После выполняют шлифование или полировку.

Лазерное плакирование может использовать большинство тех же материалов, что и технологии термического напыления. Материалы, которые легко окисляются, трудно осаждать без использования инертного газа. Скорости осаждения зависят от мощности лазера и скорости перемещения. Толщина может варьироваться от нескольких сотен микрон до нескольких миллиметров. Однако, если плотность слишком высокая, возможно образование трещин и расслоение, как в случае алюминия и некоторых сталей. Эта технология также не способна покрывать области, которые находятся вне зоны видимости.

Химическое осаждение из паровой фазы (СVD напыление)

В процессах CVD химическая смесь реагентного газа контактирует с подложкой и затем осаждается в нее. Газы подаются в камеру при нормальных давлениях и температурах, в то время как твердые вещества и жидкости требуют высоких температур и / или низкого давления.


Процесс разложения может быть ускорен или ускорен с использованием тепла, плазмы или других процессов. Химическое осаждение из паровой фазы включает в себя распыление, ионное покрытие, CVD с повышением температуры, CVD с низким давлением, CVD с улучшенным лазерным излучением, активное реактивное испарение, ионный пучок, лазерное испарение и другие варианты. Эти процессы обычно отличаются способами, с помощью которых инициируются химические реакции и обычно классифицируются по рабочему давлению.

Основными шагами в процессах вакуумного напыления CVD являются:

    Формирование реакционной газовой смеси

    Массовый перенос газа-реагента через пограничный слой на подложку

    Адсорбция реагентов на субстрате

  • Реакция адсорбентов с образованием осадка

Предварительная обработка включает механическую и / или химическую очистку (например, ультразвуковую очистку и / или обезжиривание паром), а затем в некоторых случаях путем хонингования паром (для улучшения адгезии). Кроме того, камера осаждения должна быть чистой, герметичной и не содержать пыли и влаги.

Вакуумное напыление CVD используется для защиты от коррозии и износостойкости и применяется к материалам для получения конкретных свойств, которые трудно получить при других процессах. Наиболее часто используемыми металлами в CVD являются никель, вольфрам, хром и карбид титана.

Большинство приложений находятся в электронике оптической, оптоэлектрической, фотоэлектрической и химической промышленности. CVD используется для нанесения покрытий и формирования фольги, порошков, композиционных материалов, отдельно стоящих тел, сферических частиц, нитей и усов.


Вакуумное напыление нитрида титана и титанового карбонитрида

Основы процесса

Нитрид титана (TiN) может наноситься с использованием либо PVD, либо CVD-методов. Для высокоскоростных стальных применений обычно предпочтительны процессы PVD. Однако процессы PVD имеют определенные ограничения в отношении геометрии компонентов, необходимость вращения детали для достижения однородности и температуры

Температура обработки CVD обычно составляет от 850 до 1100°C. Основная химическая реакция (Уравнение 1) в CVD- для получения слоя TiN находится между тетрахлоридом титана (TiCl4), азотом (N) и водородом (H):

2TiC1 4 + N 2 + 4H 2 → 2TiN + 8HC1

В отличие от этого, процессы вакуумного напыления PVD работают при гораздо более низких температурах, в диапазоне от 400 до 600 C (750 - 1100ºF) или ниже. Процессы PVD полагаются на ионную бомбардировку вместо высоких температур (как в случае CVD) в качестве движущей силы. Покрываемую подложку помещают в вакуумную камеру и нагревают до температуры. Материал Ti, испаряется и химически активный газ, такой как N 2 вводится и ионизированный; Испаренные атомы титана затем взаимодействуют с ионизированным азотом с образованием соединения TiN, которое откладывается на подложке. Существует три основных процесса PVD для инструментов: испарение, вакуумное напыление и реактивное ионное покрытие, отличающееся главным образом тем, как испаряется реагирующий металл.

Покрытия из карбонитрида титана (TiCN) имеют немного более высокую твердость по сравнению с TiN и могут демонстрировать несколько меньший коэффициент трения во многих областях применения. Они в основном используются для достижения повышенной абразивной износостойкости.

Вакуумное напыление PVD широко используется для высокоскоростных и инструментальных сталей, поскольку температуры процесса CVD попадают в диапазон, в котором закаливаются некоторые инструментальные стали. Может потребоваться обработка после нанесения покрытия (повторное упрочнение и повторное закаливание). Эти обработки могут влиять на адгезию и размеры покрытия.

 Вакуумное напыление основано на создании направленного потока частиц (атомов, молекул, кластеров) наносимого материала на поверхность изделий и их конденсации.
Процесс включает несколько стадий: переход напыляемого вещества или материала из конденсированной фазы в газовую, перенос молекул газовой фазы к поверхности изделия, конденсацию их на поверхность, образование и рост зародышей, формирование пленки.
 Вакуумное напыление - перенос частиц напыляемого вещества от источника (места его перевода в газовую фазу) к поверхности детали осуществляется по прямолинейным траекториям при вакууме 10 -2 Па и ниже (вакуумное испарение) и путем диффузионного и конвективного переноса в плазме при давлениях 1 Па (катодное распыление) и 10 -1 -10 -2 Па (магнетронное и ионно-плазменное распыление). Судьба каждой из частиц напыляемого вещества при соударении с поверхностью детали зависит от ее энергии, температуры поверхности и химического сродства материалов пленки и детали. Атомы или молекулы, достигшие поверхности, могут либо отразиться от нее, либо адсорбироваться и через некоторое время покинуть ее (десорбция), либо адсорбироваться и образовывать на поверхности конденсат (конденсация). При высоких энергиях частиц, большой температуре поверхности и малом химическом сродстве частица отражается поверхностью.
 Температура поверхности детали, выше которой все частицы отражаются от нее и пленка не образуется, называется критической температурой напыления вакуумного; ее значение зависит от природы материалов пленки и поверхности детали, и от состояния поверхности. При очень малых потоках испаряемых частиц, даже если эти частицы на поверхности адсорбируются, но редко встречаются с другими такими же частицами, они десорбируются и не могут образовывать зародышей, т.е. пленка не растет. Критической плотностью потока испаряемых частиц для данной температуры поверхности называется наименьшая плотность, при которой частицы конденсируются и формируют пленку.
 Структура напыленных пленок зависит от свойств материала, состояния и температуры поверхности, скорости напыления. Пленки могут быть аморфными (стеклообразными, например оксиды, Si), поликристаллическими (металлы, сплавы, Si) или монокристаллическими (например, полупроводниковые пленки, полученные молекулярно-лучевой эпитаксией). Для упорядочения структуры и уменьшения внутренних механических напряжений пленок, повышения стабильности их свойств и улучшения адгезии к поверхности изделий сразу же после напыления без нарушения вакуума производят отжиг пленок при температурах, несколько превышающих температуру поверхности при напылении. Часто посредством вакуумного напыления создают многослойные пленочные структуры из различных материалов.
 Напыление вакуумное используют в планарной технологии полупроводниковых микросхем, в производстве тонкопленочных гибридных схем, изделий пъезотехники, акустоэлектроники и др. (нанесение проводящих, диэлектрических, защитных слоев, масок и др.), в оптике (нанесение просветляющих, отражающих и др. покрытий), ограниченно - при металлизации поверхности пластмассовых и стеклянных изделий, тонировании стекол автомобилей. Методом напыления вакуумного наносят металлы (Al, Au, Cu, Cr, Ni, V, Ti и др.), сплавы (например, NiCr, CrNiSi), химические соединения (силициды, оксиды, бориды, карбиды и др.).

 
Рис. П2.1.

 Для вакуумного напыления используют технологическое оборудование периодического, полунепрерывного и непрерывного действия. Установки периодического действия осуществляют один цикл нанесения пленок при заданном числе загружаемых изделий. Установки непрерывного действия используют при серийном и массовом производстве. Они бывают двух видов: многокамерные и многопозиционные однокамерные. Первые состоят из последовательно расположенных напылительных модулей, в каждом из которых осуществляется напыление пленок определенных материалов или их термическая обработка и контроль. Модули объединены между собой шлюзовыми камерами и транспортирующим конвейерным устройством. Многопозиционные однокамерные установки содержат несколько напылительных постов (расположенных в одной вакуумной камере), соединяемых транспортным устройством конвейерного или роторного типа. Основные узлы и системы установок для вакуумного напыления представляют собой самостоятельные устройства, выполняющие заданные функции:
 ·создание вакуума;
 ·испарение или распыление материала пленок;
 ·транспортировка и осаждение покрытия;
 ·контроль режимов вакуумного напыления и свойств пленок;
 ·электропитание.

 Установки вакуумного напыления

 Вакуумная установка резистивного напыления серии DV-502B (Рис. П2.2.) (данная установка является настольной)


Рис. П2.2.

 Установка ВАТТ1600-4ДК (Рис. П2.4.) предназначена для нанесения комбинированного покрытия, которое может состоять из слоя металла, слоя соединения этого металла (оксид, нитрид, карбид) и слоя SiOx.


Рис. П2.3.

 Применяя различные соединения титана возможно получать различные оттенки золотого, синего, зеленого, черного и некоторых других цветов (Рис. П2.4.). Покрытия можно наносить на листы нержавеющей стали с любой обработкой поверхности: зеркальной, шлифованной, декоративной текстурированной или обычной матовой. Габариты вакуумной установки позволяют напылять листы размером 1500х3000 мм. Листы после напыления могут быть покрыты самоклеющейся защитной пленкой. Стоимость напыления – от 700 руб./кв.м.

 

Рис. П2.4. Применение вакуумного напыления.

Нержавеющая сталь:

 Для вакуумного напыления нитридом титана используют подложку из нержавеющей стали.
 ·элегантность и изящество в отделке;
 ·коррозионная стойкость, устойчивость к воздействию атмосферных воздействий;
 ·соответствие самым строгим гигиеническим требованиям;
 ·легкость ухода и долговечность;
 ·термостойкость и пожаробезопасность;
 ·отличное сочетание с другими отделочными материалами (стекло, пластик, дерево, камень).

Технические характеристики:

 ·Материал подложки - сталь нержавеюшая, 08Х18Н10 (AISI 304);
 ·Толщина подложки 0,5мм – 1,5 мм;
 ·Покрытие нитрид титана, толщина 0,2-6 мкм;
 ·Цвет покрытия - различные оттенки золотого;
 ·Светорассеивание - от зеркального до матового;
 ·Механические свойства - допускает многократный изгиб и холодную штамповку;
 ·Атмосферостойкость - не менее 50 лет.

Метод получения материала

 Покрытие на нержавеющей стали TIN, TiO2 и TiON получено методом ионно-плазменного напыления в вакуумной камере.
 Листы нержавеющей стали, после предварительной обработки, которая обеспечивает высокую отражающую способность покрытия, помещаются в герметичную вакуумную камеру. Во время процесса напыления в камере создается глубокий вакуум, который обеспечивает заданный цвет и стойкость покрытий.
 При ионно - плазменном напылении ионы плазмы, обладающие высокой энергией, выбивают с поверхности титанового листа атомы титана, которые в свою очередь, проходя через высокоразреженное облако азота или кислорода, окисляясь, внедряются в материал подложки.
 Такой процесс обеспечивает хорошие адгезионные и декоративные свойства покрытия.
 Технологии вакуумного напыления являются чрезвычайно энергозатратными, и во многих странах превращаются в нишевой продукт. Многие компании заменяют вакуумное напыление на более производительное и менее затратное атмосферное плазменное напыление.
 Качества и свойства материала:
 Высокая атмосферная и антикоррозионная стойкость декоративного покрытия подтверждена сертификатом соответствия ГОСТ №СХ02.1.3,0040 от 18.09.96г. и составляет 50 лет в условиях городской атмосферы;
 Цвет может быть достигнут любой, но технологический процесс отлажен под три основных цвета: имитирующий цвет золота - покрытие TiN, синий - покрытие TiO2, имитирующий цвет свежей меди - покрытие TiON;
 Отражающая способность покрытия - 60-70%;

Области применения:

 ·Кровля куполов церквей и крыш зданий;
 ·Наружная реклама (таблички, объемные и плоские буквы из нержавеющей стали);
 ·Декоративное оформление зданий и интерьеров помещений;
 ·Реставрация памятников культуры;
 ·Изготовление фрагментов сувениров и фурнитуры.
 Вакуумное напыление применяется для изделий как из чёрного металла так и других металлов, используются различные напыления, в том числе и под золото, серебро (Рис. П2.5.).

 

Рис. П2.5. Применение вакуумного напыления.

 Материалы покрытий:
 TiN - нитрид титана (золотисто-бронзовый,повышенной износостойкости);
 TiOx1Cx2Nx3 - карбонид титана
 Gr - хром (белый);
 TiOx - оксид титана (голубой, многоцветный, перламутровый);
 NiGr - нихром (светло-серый);
 ZrN - нитрид циркония (светло-золотистый);
 также алюминий, медь и т.д., по желанию заказчика.
 Цвет, твердость и другие параметры покрытия могут варьироваться в широком диапазоне материалов и оттенков.
 Важными характеристиками микросхем является быстродействие, электрические контакты, формат матрицы и т.д. Для повышения одного из самого важного параметра – быстродействие – требуется повысить проводимость электрических контактов. Наиболее простым способом сделать это является вакуумное напыление элементов через свободные маски. Золото обладает очень хорошей проводимостью, что дает возможность повысить скорость прохождения информации.

Микросхема PRAM-памяти компании Intel (Рис. П2.6.)


 Материал: Золото(серебро).

 
Рис. П2.6. Микросхема PRAM-памяти компании Intel

Подшипники скольжения центробежных насосов (Рис. П2.6.)

 Самой главной характеристикой подшипника является его ресурс. Для его повышения у подшипников скольжения разработана специальная технология детонационного напыления с нанесением нанопорошков. В процессе детонационного напыления получены наноструктурированные покрытия с содержанием монокарбида 62%. Испытания таких покрытий на трение и износ в воде показали, что они обладают пониженным коэффициентом трения, высокой нагрузкой заедания по сравнению с обычным покрытием из керамического порошка.
 Технологии: вакуумное напыление
 Отрасль: Электроника и Электротехника
 Материал: быстрозакаленные магнитные порошки БЗМП системы Nd-Fe-B.


Рис. П2.6. Подшипник скольжения

Высокоскоростное напыление

 Высокоскоростное газопламенное напыления по праву считается наиболее современной из технологий напыления. Твердосплавные покрытия, нанесенные методами высокоскоростного напыления, по всем статьям превосходят гальванические покрытия , процесс создания которых признан чрезвычайно канцерогенным .
 В начале 80-х годов появились установки высокоскоростного напыления, более простые по конструкции и основанные на классической схеме ЖРД, со скоростью газового потока более 2000 м/с. Плотность покрытий достигает 99%. В качестве наносимого материала используют порошки карбидов, металлокарбидов, сплавов на основе Ni, Cu и др. Для увеличения скорости частиц увеличивают скорость истечения продуктов сгорания путем повышения давления в камере сгорания до 1,0…1,5 МПа, а в конструкцию соплового аппарата вводят сопло Лаваля. На Рис. П2.7. представлена схема распылителя системы ВСН.


Рис. П2.6. Схема высокоскоростного порошкового распылителя:
1 - подача порошка (осевая); 2 - подача кислорода; 3 - подача топлива;
4 - подача порошка (радиальная); 5 - ствол.

Марийский государственный технический университет

Кафедра конструирования и производства радиоаппаратуры

Вакуумное напыление

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

к курсовой работе по дисциплине

Основы физики твёрдого тела и микроэлектроники

Разработал: студент группы ЭВС-31

Колесников

Консультировал: доцент

Игумнов В.Н

Йошкар-Ола 2003г.

Введение

1.Термическое вакуумное напыление

1.1 Резистивное напыление

1.2 Индукционное напыление

1.3 Электронно-лучевое напыление

1.4 Лазерное напыление

1.5 Электродуговое напыление

2. Распыление ионной бомбардировкой

2.1 Катодное распыление

2.2 Магнетронное распыление

2.3 Высокочастотное распыление.

2.4 Плазмоионное распыление в несамостоятельном газовом разряде

3. Технология тонких пленок на ориентирующих подложках

3.1 Механизмы эпитаксиального роста тонких пленок

3.2 Молекулярно-лучевая эпитаксия

Заключение

Литература


ВВЕДЕНИЕ

Тонкие пленки, наносимые в вакууме, широко применяются в производстве дискретных полупроводниковых приборов и интегральных микросхем (ИМС).

Получение высококачественных и воспроизводимых по электрофизическим параметрам тонкопленочных слоев является одним из важнейших технологических процессов формирования структур как дискретных диодов и транзисторов, так и активных и пассивных элементов ИМС.

Таким образом, от совершенства технологических процессов нанесения тонких пленок в значительной степени зависят надежность и качество изделий микроэлектроники, технический уровень и экономические показатели их производства.

Тонкопленочная технология базируется на сложных физико-химических процессах и применении различных металлов и диэлектриков. Так, тонкопленочные резисторы, электроды конденсаторов и межсоединения выполняют осаждением металлических пленок, а межслойную изоляцию и защитные покрытия – диэлектрических.

Важным этапом является контроль параметров тонких пленок (скорости их нанесения, толщины и ее равномерности, поверхностного сопротивления), который проводится с помощью специальных приборов, как при выполнении отдельных технологических операций, так и по завершении всего процесса.

Методы ионно-плазменного и магнетронного напыления находят широкое применение в современной микроэлектронике. Высокие скорости напыления и энергия падающих на подложку атомов в процессе напыления позволяют использовать эти методы для получения пленок различного состава и структуры, и, в частности, для низкотемпературной эпитаксии.

В настоящее время исследованиям в данной области уделяется значительный интерес.

Целью данной курсовой работы является рассмотрение основных методов напыления и распыления в вакууме, физико-химических процессов, а также описание и работа установок использующихся в данных методах.

Процесс нанесения тонких пленок в вакууме состоит в создании (генерации) потока частиц, направленного в сторону обрабатываемой подложки, и последующей их концентрации с образованием тонкопленочных слоев на покрываемой поверхности.

Для модификации свойств поверхности твердого тела используют различные режимы ионной обработки. Процесс взаимодействия ионного пучка с поверхностью сводится к протеканию взаимосвязанных физических процессов: конденсации, распыления и внедрения. Превалирование того или иного физического эффекта определяется главным образом энергией E 1 бомбардирующих ионов. При Е 1 =10-100 эВ конденсация преобладает над распылением, поэтому имеет место осаждение покрытия. При повышении энергии ионов до 10 4 эВ начинает преобладать процесс распыления с одновременным внедрением ионов в металл. Дальнейшее повышение энергии бомбардирующих ионов (Е 1 >10 4 эВ) приводит к снижению коэффициента распыления и установлению режима ионной имплантации (ионного легирования).

Технологический процесс нанесения тонкопленочных покрытий в вакууме включает 3 основных этапа:

Генерация потока частиц осаждаемого вещества;

Переноса частиц в разреженном пространстве от источника до подложки;

Осаждения частиц при достижении подложки.

Существуют 2 метода нанесения вакуумных покрытий, различающихся по механизму генерации потока осаждаемых частиц: термическое напыление и распыление материалов ионной бомбардировкой. Испаренные и распыленные частицы переносятся на подложку через вакуумную среду (или атмосферу реактивных газов, вступая при этом в плазмохимические реакции). Для повышения степени ионизации потока осаждаемого вещества в вакуумную камеру могут быть введены специальные источники заряженных частиц (например, термокатод) или электромагнитного излучения. Дополнительное ускорение движения ионов к обрабатываемой поверхности может достигаться за счет приложения к ней отрицательного напряжения.

Общими требованиями, предъявляемыми к каждому из этих методов, является воспроизводимость свойств и параметров получаемых пленок и обеспечения надежного сцепления (адгезии) пленок с подложками и другими пленками.

Для понимания физических явлений, происходящих при нанесении тонких пленок в вакууме, необходимо знать, что процесс роста пленки на подложке состоит из двух этапов: начального и завершающего. Рассмотрим, как взаимодействуют наносимые частицы в вакуумном пространстве и на подложке.

Покинувшие поверхность источника частицы вещества движутся через вакуумное (разреженное) пространство с большими скоростями (порядка сотен и даже тысяч метров в секунду) к подложке и достигают ее поверхности, отдавая ей при столкновении часть своей энергии. Доля передаваемой энергии тем меньше, чем выше температура подложки.

Сохранив при этом некоторый избыток энергии, частица вещества способна перемещаться (мигрировать) по поверхности подложки. При миграции по поверхности частица постепенно теряет избыток своей энергии, стремясь к тепловому равновесию с подложкой, и при этом может произойти следующее. Если на пути движения частица потеряет избыток, своей энергии, она фиксируется на подложке (конденсируется). Встретив же на пути движения другую мигрирующую частицу (или группу частиц), она вступит с ней в сильную связь (металлическую), создав адсорбированный дуплет. При достаточно крупном объединении такие частицы полностью теряют способность мигрировать и фиксируются на подложке, становясь центром кристаллизации.

Вокруг отдельных центров кристаллизации происходит рост кристаллитов, которые впоследствии срастаются и образуют сплошную пленку. Рост кристаллитов происходит как за счет мигрирующих по поверхности частиц, так и в результате непосредственного осаждения частиц на поверхность кристаллитов. Возможно также образование дуплетов в вакуумном пространстве при столкновении двух частиц, которые в конечном итоге адсорбируются на подложке.

Образованием сплошной пленки заканчивается начальный этап процесса. Так как с этого момента качество поверхности подложки перестает влиять на свойства наносимой пленки, начальный этап имеет решающее значение в их формировании. На завершающем этапе происходит рост пленки до необходимой толщины.

При прочих неизменных условиях рост температуры подложки увеличивает энергию, т.е. подвижность адсорбированных молекул, что повышает вероятность встречи мигрирующих молекул и приводит к формированию пленки крупнокристаллической структуры. Кроме того, при увеличении плотности падающего пучка повышается вероятность образования дуплетов и даже многоатомных групп. В то же время рост количества центров кристаллизации способствует образованию пленки мелкокристаллической структуры.

Разреженное состояние газа, т.е. состояние, при котором давление газа в некотором замкнутом герметичном объеме ниже атмосферного, называют вакуумом.

Вакуумная техника занимает важное место в производстве пленочных структур ИМС. Для создания вакуума в рабочей камере из нее должны быть откачаны газы. Идеальный вакуум не может быть достигнуть, и в откачанных рабочих камерах технологических установок всегда присутствует некоторое количество остаточных газов, чем и определяется давление в откачанной камере (глубина, или степень вакуума).

Сущность данного процесса нанесе6ния тонких пленок заключается в нагреве вещества в вакууме до температуры, при которой возрастающая с нагревом кинетическая энергия атомов и молекул вещества становится достаточной для их отрыва от поверхности и распространения в окружающем пространстве. Это происходит при такой температуре, при которой давление собственных паров вещества превышает на несколько порядков давление остаточных газов. При этом атомарный поток распространяется прямолинейно и при соударении с поверхностью испаряемые атомы, и молекулы конденсируются на ней.

Процесс испарения осуществляется по обычной схеме: твердая фаза – жидкая фаза – газообразное состояние. Некоторые вещества (магний, кадмий, цинк и др.) переходят в газообразное состояние, минуя жидкую фазу. Такой процесс называется сублимацией.

Основными элементами установки вакуумного напыления, упрощенная схема которой представлена на рис.1, являются: 1 - вакуумный колпак из нержавеющей стали; 2 - заслонка; 3 - трубопровод для водяного нагрева или охлаждения колпака; 4 - игольчатый натекатель для подачи атмосферного воздуха в камеру; 5 - нагреватель подложки; 6 - подложкодержатель с подложкой, на которой может быть размещен трафарет; 7 - герметизирующая прокладка из вакуумной резины; 8 - испаритель с размещённым в нём веществом и нагревателем (резистивным или электронно-лучевым).