27.02.2019

Методы снижение тепловых потерь и их виды. Потери воды в тепловых сетях: методы снижения объема утечек


Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Размещено на http://www.allbest.ru

Введение

Тепловые потери являются индивидуальной характеристикой каждой тепловой сети и должны определяться для каждой сети индивидуально. Транспортировка тепла от теплоисточника до потребителей в системах централизованного теплоснабжения связана с потерями тепловой энергии, которые объясняются охлаждением поверхности трубопроводов при контакте с окружающей средой, с утечками теплоносителя, с работой насосов для прокачки теплоносителя, а также с неоптимальными тепловыми и гидравлическими режимами работы сетей. В различных выступлениях и публикациях величина тепловых потерь при транспортировке в существующих тепловых сетях оценивается в 15-20% отпускаемой с источников тепловой энергии. Тепловые потери включаются в тарифы на тепловую энергию и являются одним из показателей энергетической эффективности эксплуатации тепловых сетей, поэтому определение фактической величины этих потерь является важной практической задачей.

Потери энергии в тепловых сетях неразрывно связаны с потерей ресурсов. При утечках безвозвратно теряются теплоносители, которые должны быть восполнены у источника теплоты. На подготовку теплоносителя затрачиваются как материальные средства, так и энергия.

Другими теряемыми ресурсами являются материал трубопроводов, их тепло- и гидроизоляция, выходящие из строя вследствие коррозии, увлажнения и механических повреждений. В этом случае изготовление и монтаж новых трубопроводов либо восстановление изоляционных конструкций требуют значительных материальных, трудовых и энергетических затрат.

Климатические условия в России предопределяют теплоснабжение как наиболее социально значимый и в то же время наиболее топливоемкий сектор экономики, который потребляет примерно 40% энергоресурсов, используемых в стране, причем около половины этих ресурсов приходится на коммунально-бытовой сектор. По данным около 72% тепловой энергии производится централизованными источниками тепла (мощностью более 20 МВт), остальные 28% производятся децентрализованными источниками, в том числе 18% - автономными и индивидуальными источниками тепла. При этом незначительная часть тепловой энергии обеспечивается за счет утилизации сбросного тепла от технологических установок и с использованием возобновляемых источников энергии. В настоящее время состояние теплоснабжения нельзя признать удовлетворительным. Многие централизованные источники тепла выработали свой ресурс. Около 50% объектов коммунального теплоснабжения и инженерных сетей требуют замены, не менее 15% находятся в аварийном состоянии. На каждые 100км тепловых сетей ежегодно регистрируется в среднем 70 повреждений. 82% общей протяженности тепловых сетей требуют капитального ремонта или замены.

Целью исследования данной работы является расчет эффективности тепловой изоляции и экономии тепловой энергии при восстановлении разрушенной изоляции теплопровода на примере тепловой сети г. Шатура.

Задачи исследования:

1. Изучение нормативных документов;

2. Анализ и обобщение изученных материалов;

3. Расчет эффективности тепловой изоляции.

4. Сравнение потерь тепла неизолированными теплопроводами с тепловой сетью с предварительно изолированными трубами.

1. Системы транспортировки и распределения тепловой энергии

Транспортирование тепловой энергии имеет место практически в каждой отрасли промышленности и в жилищно-коммунальном комплексе.

Передача теплоты от источника потребителям осуществляется с помощью систем теплоснабжения, которые включают источник, тепловую сеть и потребителей. Система теплоснабжения - совокупность технических устройств, агрегатов и подсистем, обеспечивающих приготовление теплоносителя, его транспортировку и распределение в соответствии со спросом на теплоту по отдельным потребителям на отопление, вентиляцию, горячее водоснабжение и технологическое теплоснабжение.

В зависимости от размещения источника теплоты по отношению к потребителям системы теплоснабжения разделяются на децентрализованные и централизованные.

В децентрализованных системах источник теплоты и теплоприемники потребителей либо совмещены в одном агрегате, либо размещены столь близко, что передача теплоты от источника до теплоприемников может осуществляться практически без промежуточного звена -- тепловой сети.

Системы децентрализованного теплоснабжения разделяются на индивидуальные и местные.

В индивидуальных системах теплоснабжение каждого помещения (участка цеха, комнаты, квартиры) обеспечивается от отдельного источника. К таким системам, в частности, относятся печное и поквартирное отопление. В местных системах теплоснабжение каждого здания обеспечивается от отдельного источника теплоты, обычно от местной или индивидуальной котельной. К этой системе, в частности, относится так называемое центральное отопление зданий.

Комплекс установок, предназначенных для подготовки, транспортировки и использования теплоносителя, составляет систему централизованного теплоснабжения. В системах централизованного теплоснабжения источник теплоты и теплоприемники потребителей размещены раздельно, часто на значительном расстоянии, поэтому теплота от источника до потребителей передается по тепловым сетям.

В зависимости от степени централизации системы централизованного теплоснабжения можно разделить на следующие четыре группы:

§ групповое -- теплоснабжение от одного источника группы зданий;

§ районное -- теплоснабжение от одного источника нескольких групп зданий (района);

§ городское -- теплоснабжение от одного источника нескольких районов;

§ межгородское -- теплоснабжение от одного источника нескольких городов.

В зависимости от фазового состояния теплоносителя тепловые сети разделяются на водяные и паровые. Водяные сети используют для теплоснабжения зданий, для покрытия промышленной технологической нагрузки низкого потенциала. Паровые сети используют также для обеспечения промышленной технологической нагрузки высокого потенциала.

Практика теплоснабжения показала ряд преимуществ воды, как теплоносителя, по сравнению с паром, а именно:

Возможность транспортировать теплоту на большие расстояния без больших потерь температурного потенциала, а, следовательно, возможностью более экономичной комбинированной выработки теплоты и электроэнергии на ТЭЦ;

Удобством центрального качественного и количественного регулирования отпуска теплоты на ее источнике;

Простотой присоединения большинства абонентских систем к тепловым сетям;

Сохранением всего конденсата греющего пара на ТЭЦ в водонагревательных установках.

Пар, в свою очередь, обладает перед водой следующими преимуществами: теплоснабжение изоляционный термический

Более широкими возможностями применения как теплоносителя (большая универсальность);

Малой плотностью и незначительностью создаваемых гидростатических давлений в трубопроводах даже при самых неблагоприятных рельефах местности теплоснабжаемых районов;

Простотой обнаружения и ликвидации аварий в сетях, так как пар всегда выходит на поверхность земли, а вести сварочные работы при авариях можно немедленно после выключения пара;

Отсутствием расхода электроэнергии на передачу пара, так как он поступает к абоненту под давлением в парогенераторах на теплоисточнике, а расход энергии на возврат конденсата весьма незначителен по сравнению с расходом энергии на перекачку воды в водяных теплосетях.

2. Тепловые потери в тепловых сетях

Согласно сводным данным по объектам теплоснабжения 89 регионов Российской Федерации, суммарная протяжённость тепловых сетей в двухтрубном исчислении составляет около 183 300 км. Средний процесс износа оценивается в 60-70%.

Основными показателями энергетической эффективности работы тепловых сетей являются приводимые ниже величины.

Удельный расход сетевой воды на единицу присоединенной тепловой нагрузки.

Удельный расход электрической энергии на транспорт теплоносителя.

Перепад температур сетевой воды в подающем и обратном трубопроводах или температура сетевой воды в обратном трубопроводе при соблюдении температуры сетевой воды в подающем трубопроводе согласно температурному графику.

Потери тепловой энергии на транспорт тепла, через изоляцию и с утечкой сетевой воды.

Потери сетевой воды.

Данные показатели должны устанавливаться проектом тепловой сети, заноситься в паспорт тепловой сети и проверяться при проведении энергетического обследования.

Ниже, в таблице 1, приведены результаты расчётов годовых нормативных и сверхнормативных потерь тепловой энергии и топлива при средних температурах теплоносителя-воды в подающем и обратном трубопроводах в течение отопительного периода соответственно 90 и 50С.

Таблица 1

Ниже, в таблице 2, приведены результаты расчётов расходов электроэнергии, топлива и средств на перекачку теплоносителя на источниках и в тепловых сетях.

Таблица 2

Тепловые потери в магистральных и распределительных сетях существенно различны. Техническое состояние магистральных сетей, как правило, значительно лучше. Кроме того, суммарная поверхность магистральных сетей, через которую теряется тепловая энергия, значительно меньше поверхности намного более разветвлённых и протяжённых распределительных сетей. Поэтому на магистральные сети приходится в несколько раз меньшая доля тепловых потерь по сравнению с распределительными.

3. Меры снижения тепловых потерь

Прогрессивные технологии.

Прогрессивные технологии позволяют повысить долговечность тепловых сетей, увеличить их надежность и одновременно повысить экономичность транспорта тепла.

Ниже приводится краткая характеристика таких технологий.

1) Бесканальная прокладка теплопроводов типа «труба в трубе» с пенополиуретановой изоляцией в полиэтиленовой оболочке и системой контроля увлажнения изоляции.

Такие теплопроводы позволяют на 80 % устранить возможность повреждения трубопроводов от наружной коррозии, сократить потери тепла через изоляцию в 2-3 раза, снизить эксплуатационные расходы по обслуживанию теплотрасс, снизить в 2-3 раза сроки строительства, снизить в 1,2 раза капитальные затраты при прокладке теплотрасс по сравнению с канальной прокладкой. Пенополиуретановая изоляция рассчитана на длительное воздействие температуры теплоносителя до 130оС и на кратковременное пиковое воздействие температуры до 150оС. Необходимое условие надежной и безаварийной работы трубопроводов тепловых сетей - наличие системы оперативно-дистанционного контроля (ОДК) изоляции. Данная система позволяет контролировать качество монтажа и сварки стального трубопровода, заводской изоляции, работ по изоляции стыковых соединений. Система включает в себя: сигнальные медные проводники, заложенные во все элементы теплосети; терминалы по трассе и в местах контроля (ЦТП, котельная); приборы для контроля: переносные для периодического и стационарные для непрерывного контроля. Система основана на измерении проводимости теплоизоляционного слоя, которая изменяется при изменении влажности. Контроль за состоянием ОДК в процессе эксплуатации трубопровода осуществляется с помощью детектора. Один детектор позволяет одновременно контролировать две трубы до 5 км каждая. Точное местоположение поврежденного участка определяется с помощью переносного локатора. Один локатор позволяет определить место повреждения на расстоянии до 2 км от точки его подключения. Срок службы тепловых сетей с пенополиуретановой изоляцией прогнозируется на уровне 30 лет.

2) Сильфонные компенсаторы, в отличие от сальниковых, обеспечивают полную герметичность компенсационных устройств, уменьшают эксплуатационные затраты. Надежные сильфонные компенсаторы выпускает АО «Металкомп» для всех диаметров трубопровода при бесканальной, канальной, наземной и надземной прокладках. Применение сильфонных компенсаторов в АО «Мосэнерго», установленных на магистральных трубопроводах диаметром от 300 до 1400 мм в количестве более 2000 штук, позволило сократить удельные утечки воды с 3,52 л/м 3 ч в 1994 г. до 2,43 л/м 3 ч в 1999 г.

3) Шаровая запорная арматура повышенной плотности, шаровая запорно-регулирующая арматура с гидроприводом, применяемая в качестве клапанов «рассечки», позволяет улучшить эксплуатационные характеристики арматуры и коренным образом изменить существующие схемы защит систем отопления от повышения давления.

4) Внедрение новых схем регулирования производительности насосно-перекачивающих станций с применением частотно-регулируемых приводов, использование схем защиты от повышения давления в обратной магистрали при остановке насосной позволяет значительно улучшить надежность работы оборудования и снизить расход электроэнергии при работе этих станций.

5) Вентиляция каналов и камер направлена на снижение тепловых потерь через изоляцию теплопроводов, что является одной из важнейших задач эксплуатации тепловых сетей. Одной из причин повышенных теплопотерь через изоляцию теплопровода подземной прокладки является ее увлажнение. Для уменьшения влажности и снижения тепловых потерь необходимо вентилировать каналы, камеры, что позволяет поддерживать влагосостояние тепловой изоляции на уровне, обеспечивающем минимальные тепловые потери.

6) Около трети повреждения тепловых сетей обусловлены процессами внутренней коррозии. Даже соблюдение нормативной величины утечек тепловых сетей, равной 0,25 % объема всех трубопроводов, что составляет 30000 т/ч, приводит к необходимости жесткого контроля качества подпиточной воды.

Основным параметром, на который можно воздействовать, является значение водородного показателя (рН).

Повышение значения рН сетевой воды является надежным способом борьбы с внутренней коррозией при условии поддержания в воде нормируемого содержания кислорода. Высокая степень защиты трубопроводов при рН 9,25 определяется изменением свойств железооксидных пленок.

Уровень повышения рН, обеспечивающий надежную защиту трубопроводов от внутренней коррозии, существенным образом зависит от содержания сульфатов и хлоридов в сетевой воде.

Чем больше концентрация в воде сульфатов и хлоридов, тем выше должно быть значение рН.

Одним из немногих способов продления рабочего ресурса тепловых сетей, прокладываемых стандартным способом, исключая трубопроводы в ППУ изоляции являются антикоррозионные покрытия.

Тепловая изоляция трубопроводов и оборудования тепловых сетей применяется при всех видах прокладки независимо от температуры теплоносителя. Теплоизоляционные материалы непосредственно контактируют с внешней средой, для которой свойственно непрерывное колебание температуры, влажности и давления. Ввиду этого теплоизоляционные материалы и конструкции должны удовлетворять ряду требований. Соображения экономичности и долговечности требуют, чтобы выбор теплоизоляционных материалов и конструкции производился с учетом способов прокладки и условий эксплуатации, определяемых внешней нагрузкой на теплоизоляцию, уровнем грунтовых вод, температурой теплоносителя, гидравлическим режимом работы тепловой сети.

Новые виды теплоизоляционных покрытий должны иметь не только низкую теплопроводность, но и малую воздухо- и водопроницаемость, а также низкую электропроводность, что уменьшает электрохимическую коррозию материала труб.

Наиболее экономичным видом прокладки теплопроводов тепловых сетей является надземная прокладка. Однако с учетом архитектурно-планировочных требований, требований экологии в населенных пунктах основным видом прокладки является подземная прокладка в проходных, полупроходных и непроходных каналах. Бесканальные теплопроводы, являясь более экономичными в сравнении с канальной прокладкой по капитальным затратам на их сооружение, применяются в тех случаях, когда они по теплотехнической эффективности и долговечности не уступают теплопроводам в непроходных каналах.

Тепловая изоляция предусматривается для линейных участков трубопроводов тепловых сетей, арматуры, фланцевых соединений, компенсаторов и опор труб для надземной, подземной канальной и бесканальной прокладки.

Тепловые потери с поверхности трубопроводов увеличивается при увлажнении теплоизоляции. Влага к поверхности трубопроводов поступает при затоплении их грунтовыми и поверхностными водами. Другими источниками увлажнения теплоизоляции является естественная влага, содержащаяся в грунте. Если трубопроводы проложены в каналах, то на поверхности перекрытий каналов возможна конденсации влаги из воздуха и попадание ее в виде капель на поверхность трубопроводов. Для снижения воздействия капель на тепловую изоляцию необходима вентиляция каналов тепловых сетей. Более того увлажнение теплоизоляции способствует разрушению труб из-за коррозии их внешней поверхности, что приводит к сокращению срока службы трубопроводов. Поэтому на металлическую поверхность трубы наносят антикоррозионные покрытия.

Таким образом, главными энергосберегающими мероприятиями, уменьшающими потери теплоты с поверхности трубопроводов, являются:

§ Изоляция неизолированных участков и восстановление целостности существующей теплоизоляции;

§ восстановление целостности существующей гидроизоляции;

§ нанесение покрытий, состоящих из новых теплоизоляционных материалов, либо использование трубопроводов с новыми типами теплоизоляционных покрытий;

§ изоляция фланцев и запорной арматуры.

Изоляция неизолированных участков является первоочередным энергосберегающим мероприятием, поскольку тепловые потери с поверхности неизолированных трубопроводов очень велики по сравнению с потерями с поверхности изолированных трубопроводов, а стоимость работ по нанесению теплоизоляции относительно невелика.

Сравним потери тепла неизолированными теплопроводами с тепловой сетью с предварительно изолированными трубами на примере системы теплоснабжения города Шатуры.

4. Расчет эффективности тепловой изоляции.

Характеристика системы теплоснабжения г. Шатуры.

Теплоснабжение жилых, административных и производственных зданий г. Шатура осуществляется от теплофикационной установки ГРЭС-5. Подпитка тепловой сети осуществляется деаэрирированной химочищенной водой.

Давление в обратном трубопроводе поддерживается регулятором подпитки.

От ГРЭС-5 теплоснабжение всех потребителей тепла осуществляется по двухтрубным водяным тепловым сетям.

Магистрали проложены в переходных железобетонных каналах со сборным железобетонным покрытием. Ответвления проложены в кирпичных и железобетонных каналах с покрытиями из железобетонных плит. В качестве тепловой изоляции применен диатомовый кирпич, покрытый сверху асбоцементной штукатуркой, а на головных участках алюминиевых листом.

Разводящие и квартальные сети частично имеют подвесную изоляцию из минеральной ваты, оштукатуренную асбоцементом.

Основная часть магистрали вынесена на поверхность.

Часть магистрали проложены на высоких и низких опорах. Между магистралями имеются перемычки, позволяющие осуществлять параллельное теплоснабжение городских потребителей, а в случае аварийных ситуаций позволяет осуществлять взаимозаменяемость.

Компенсация температурных удлинений осуществляется в основном П-образными компенсаторами и за счет изменения направления теплотрассы.

Система отопления рассматриваемой группы жилых зданий присоединяются к водяным сетям по зависимой схеме. В качестве теплоносителя в системах отопления применяется вода.

Тепловой режим системы теплоснабжения.

Для системы теплоснабжения города принят метод качественного регулирования отпуска тепла, которой предусматривает постоянный расход теплоносителя в системах отопления при переменной его температуре, зависящей от температуры наружного воздуха.

Регулирование отпуска тепла города осуществляется по температурному графику 150-70 С.

Эффективность тепловой изоляции.

Среднегодовая температура сетевой воды в подающем трубопроводе:

С, в обратном С.

Прокладка трубопровода надземная (в каналах).

Диаметр теплопроводов м. Диаметр изоляции м.

Изоляция - маты минераловатные прошивные, толщиной 0,07м. Покровной слой из бризола в 2 слоя.

Коэффициент теплопроводности основного слоя изоляции.

Где для подающей трубы

Для обратной трубы:

Термическое сопротивление основного слоя изоляции для каждой трубы:

Термическое сопротивление покровного слоя для каждой трубы:

Где -коэффициент теплопроводности покровного слоя бризола.

Термическое сопротивление на поверхности покрытия для каждого трубопровода:

Где - коэффициент теплоотдачи на поверхности покрытия

Термическое сопротивление каждого теплопровода:

Эквивалентный внутренний и наружный диаметры канала равны:

Где и - площадь и периметр канала по внутренним размерам; и - площадь и периметр канала по наружным размерам.

Принимая коэффициент теплоотдачи на внутренней поверхности канала рассчитываем термическое сопротивление на поверхности канала:

Термическое сопротивление стенок канала при коэффициенте теплопроводности железобетонной стенки канала.

Суммарное термическое сопротивление потоку тепла от воздуха в канале в окружающую среду.

Температуру воздуха в канале определяем по выражению:

Удельные потери теплоты подающим и обратным изолированным теплопроводами:

Суммарные удельные потери тепла:

При условии неизолированных теплопроводов суммарное термическое сопротивление будет равно термическому сопротивлению на поверхности теплопровода:

Температура воздуха в канале при неизолированных теплопроводах:

Удельные потери тепла неизолированными теплопроводами:

Суммарные потери тепла неизолированными теплопроводами будут равны потерям тепла подающим теплопроводом:

Эффективность тепловой изоляции:

Из полученных результатов видно, что изоляция неизолированных участков и восстановление целостности существующей изоляции приводит к значительному снижению потерь тепла с поверхности трубопроводов. Таким образом, изоляция трубопроводов является первоочередным энергосберегающим мероприятием.

Заключение

Экономическая эффективность систем централизованного теплоснабжения при современных масштабах теплового потребления в значительной мере зависит от тепловой изоляции оборудования и трубопроводов. Тепловая изоляция служит для уменьшения тепловых потерь и обеспечения допустимой температуры изолируемой поверхности.

Борьба за снижение транспортных потерь тепла в теплопроводах является важнейшим средством экономии топливных ресурсов. Дополнительные затраты, связанные с нанесением тепловой изоляции и антикоррозионных покрытий, относительно невелики и составляют 5-8% от общей стоимости тепловых сетей, но качественное изолирование повышает стойкость металла против коррозии, в результате которой существенно увеличивается срок службы трубопроводов. Потери теплоты при изоляции трубопроводов снижаются при наземной прокладке в 10-15 раз, а при подземной в 3-5 раз по сравнению с неизолированными трубопроводами. Тепловая изоляция оздоровляет условия труда персонала и позволяет сохранить высокие параметры теплоносителя на большом удалении от источника тепла.

Выбор толщины изоляции определяется соображениями технической и экономической целесообразности.

Литература

1. Данилов О.Л., Гаряев А.Б., И.В. Яковлев. Энергосбережение в теплоэнергетике и теплотехнологиях. М.: «Издательский дом МЭИ», 2010.

2. Яновский Ф.Б. Энергетическая стратегия и развитие теплоснабжения в России / Ф.Б. Яновский, С.А. Михайлова // Энергосбережение. - 2003. - №6. - С. 26-32.

3. Варфоломеев Ю.М., Кокорин О.Я. Отопление и тепловые сети. М.: ИНФРА-М, 2010.

4. Иванов В.В., Вершинин Л.Б. Распределение температур и тепловых потоков в зоне прокладки теплотрасс // Вторая Российская национальная конференция по теплообмену. Теплопроводность, теплоизоляция. - М., 1998. Т. 7. С. 103-105.

Размещено на Allbest.ru

...

Подобные документы

    Характеристика объектов теплоснабжения. Расчет тепловых потоков на отопление, на вентиляцию и на горячее водоснабжение. Построение графика расхода теплоты. Определение расчетных расходов теплоносителя в тепловой сети. Расчет магистрали тепловой сети.

    курсовая работа , добавлен 14.08.2012

    Определение величин тепловых нагрузок района и годового расхода теплоты. Выбор тепловой мощности источника. Гидравлический расчет тепловой сети, подбор сетевых и подпиточных насосов. Расчет тепловых потерь, паровой сети, компенсаторов и усилий на опоры.

    курсовая работа , добавлен 11.07.2012

    Технологические требования к строительным решениям производственных зданий и сооружений. Определение тепловых потерь свинокомплекса и ограждения свинарника. Расчет термического сопротивления стен. Выбор тепловой схемы котельной и схемы тепловых сетей.

    курсовая работа , добавлен 24.04.2014

    Характеристика тепловой нагрузки. Определение расчётной температуры воздуха, расходов теплоты. Гидравлический расчёт тепловой сети. Расчет тепловой изоляции. Расчет и выбор оборудования теплового пункта для одного из зданий. Экономия тепловой энергии.

    курсовая работа , добавлен 01.02.2016

    Определение понятия тепловой энергии и основных ее потребителей. Виды и особенности функционирования систем теплоснабжения зданий. Расчет тепловых потерь, как первоочередной документ для решения задачи теплоснабжения здания. Теплоизоляционные материалы.

    курсовая работа , добавлен 08.03.2011

    Определение тепловых потоков на отопление, вентиляцию и горячее водоснабжение. Построение температурного графика регулирования тепловой нагрузки на отопление. Расчёт компенсаторов и тепловой изоляции, магистральных теплопроводов двухтрубной водяной сети.

    курсовая работа , добавлен 22.10.2013

    Определение максимальной тепловой мощности котельной. Среднечасовой расход теплоты на ГВС. Тепловой баланс охладителей и деаэратора. Гидравлический расчет тепловой сети. Распределение расходов воды по участкам. Редукционно-охладительные установки.

    курсовая работа , добавлен 28.01.2011

    Описание системы теплоснабжения. Климатологические данные города Калуга. Определение расчетных тепловых нагрузок района города на отопление, вентиляцию и горячее водоснабжение. Гидравлический расчет водяных тепловых сетей. Эффективность тепловой изоляции.

    курсовая работа , добавлен 09.05.2015

    Основные меры по энергосбережению в жилищно-коммунальном хозяйстве. Автоматизация теплового пункта. повышения энергоэффективности технических систем зданий. Распределение тепловых потерь в зданиях. Распределение тепловых потерь в зданиях, домах.

    реферат , добавлен 16.09.2010

    Виды тепловой изоляции: естественная или природная (асбест, слюда, пробка) и предварительно обработанные материалы. Альфолевая изоляция. Термическое сопротивление теплопередачи через изолированный трубопровод. Выбор эффективной изоляции трубопроводов.

  • Определение структуры неучтенных расходов воды методом зонирования
  • Экспертиза систем водоснабжения и канализации — наш опыт
  • Потери воды в тепловых сетях: методы снижения объёма утечек
  • Потери воды в тепловых сетях: методы снижения объема утечек

    Задача уменьшения потерь воды сегодня стоит весьма остро. Утечки теплоносителя и, как следствие, существенные потери тепла имеются на большинстве действующих сетей. В результате увеличивается объем необходимой подпиточной воды, расходы на ее подготовку.

    Основные причины утечек:

    • Разрушение труб под действием коррозии.
    • Неплотная подгонка регулирующей и запорной арматуры.
    • Нарушения целостности трубопровода под воздействием механических нагрузок, которые происходят по причине некачественного монтажа.

    Для восполнения утечек необходима энергия источника теплоты (подпиточная вода подогревается до определенной температуры), что приводит к лишним затратам.

    Потери горячей воды могут быть:

    • аварийными;
    • постоянными.

    Постоянные в тепловых сетях зависят от площади неплотных участков и давления. Аварийные утечки связаны с разрывами трубопроводов. Потери холодной воды (остывшего теплоносителя) вследствие аварий встречаются довольно редко. Подавляющее большинство аварий происходит именно на подающих трубопроводах. По ним движется вода высокой температуры под достаточно большим давлением.

    Согласно действующим нормативам при эксплуатации тепловой сети утечка теплоносителя должна за час составлять не более 0,25% от общего объема.

    Для сокращения потерь тепла, причиной которого являются утечки воды, необходимо регулярно проводить профилактические мероприятия.

    К таким мерам относятся:

    • Защита труб от электрохимической коррозии. Для этого выполняется катодная защита, и наносятся антикоррозийные средства.
    • Качественная водоподготовка. Для замедления коррозии трубопроводов снижают количества растворенного в воде кислорода.
    • Периодическая оценка остаточного ресурса труб. Благодаря этому можно своевременно выявлять участки трубопровода, которые необходимо заменить. Это позволяет существенно снизить риск аварий и, как следствие, уменьшить потери воды.

    Водный баланс тепловых сетей

    На любом объекте, который поставляет тепло, каждый месяц определяют эффективность работы. В том числе, подсчитывают баланс отпущенной и доставленной конечным потребителям воды. Небаланс может свидетельствовать как о существенных утечках, так и о неправильно проведенных измерениях или расчетах. Например, при выполнении расчетов не учтена погрешность средств измерения.

    Если наблюдается крупный небаланс, имеет смысл заказать диагностику сети, которая определит ее техническое состояние и возможность дальнейшей эксплуатации. Инженерная диагностика – это целый комплекс работ. Проводится визуальное обследование трубопровода, которое позволяет выявить очаги коррозии. При помощи ультразвуковой диагностики выполняется толщинометрия труб.

    Скрытые утечки обнаруживаются посредством корреляционной и акустической диагностики. Также выполняется анализ технической документации и необходимые инженерные расчеты. Заказчику представляется заключение, в котором указан остаточный ресурс, техническое состояние сети и рекомендации.

    Счета за отопление и горячую волу составляют весомую часть расколов на жилите и в определенной степени отражают уровень потребления тепловой энергии. В прошлом энергия была дешевой. Теперь ее цена увеличилась и в обозримом будущем вряд ли уменьшится. Но можно сократить расходы па отопление и горячую волу. Это делается с помощью термомолернизяцин. Она уменьшит утечку тепла через конструкции дома и повысит эффективность работы систем отопления и горячего водоснабжения. Конечно, термомодернизация потребует немалых финансовых затрат, но если ее правильно сделать, то затраты будут возмещены за счет сэкономленных на отоплении средств.

    Куда уходит тепло?

    Рассмотрим основные причины высокого уровня потребления тепловой энергии в частных домах. Тепло уходит:

    ☰ через вентиляцию. В современных домах традиционных конструкций таким образом уходит 30-40 % тепла;
    ☰ окна и двери. Обычно на них приходится до 25 % общих теплопотеръ дома.
    ☰ В некоторых домах величину окон определяют, руководствуясь не рациональными нормами естественного освещения, а архитектурной модой, пришедшей к нам из стран с более теплым климатом;
    ☰ наружные стены. Через конструкцию стен уходит 15-20% тепла. Строительные нормы прошлых лет не требовали от конструкции стен высокой теплоизоляционной способности, к тому лее и без того часто нарушались;
    ☰ крышу. Через нее уходит до 15% тепла;
    ☰ пол на грунте. Распространенное решение в домах без подвала, при недостаточной теплоизоляции может привести к потерям 5-10% тепла;
    ☰ мостики холода, или термические мостики. Служат причиной потери около 5 % тепла.

    Утепление наружных стен

    Оно состоит в создании дополнительного слоя теплоизоляции на внешней или внутренней стороне наружной стены дома. При этом теплопотери уменьшаются, а температура внутренней поверхности степы увеличивается, что делает проживание в доме комфортнее и устраняет причину повышения влажности и образования плесени. После дополнительного утепления теплоизоляционные свойства стены улучшаются в три-четыре раза.

    Утепление снаружи гораздо удобнее и эффективнее, поэтому его применяют в подавляющем большинстве случаев. Оно обеспечивает:

    ☰ равномерность теплоизоляции на всей поверхности наружной стены;
    ☰ увеличение теплостатичности стены, то есть последняя становится аккумулятором тепла. Днем от солнечного света она нагревается, а ночью, остывая, отдает тепло в помещение;
    ☰ устранение неровности стены и создание нового, более эстетичного фасада дома;
    ☰ выполнение работ без неудобств для жильцов.

    Утепление дома изнутри применяется только в исключительных случаях, например в домах с богато украшенными фасадами или когда утепляются лишь некоторые помещения.

    Утепление перекрытий и крыш

    Перекрытия на неотопляемом чердаке утепляют, укладывая слой из плит, матов или сыпучих материалов. Если чердак планируется использовать, то над утеплителем укладывают слой досок или цементную стяжку. Уложить дополнительный слой теплоизоляции на чердаке, куда легко добраться, на самом деле просто и недорого.

    Более сложной является ситуация с так называемой вентилируемой совмещенной кровлей, где над перекрытием последнего этажа находится пространство в несколько десятков сантиметров, к которому нет непосредственного доступа. Тогда в это пространство вдувают специальный утеплитель, чтобы, затвердев, он образовал на перекрытии толстый теплоизоляционный слой.

    Утеплить совмещенную кровлю (такую обычно устраивают над мансардными этажами) можно, уложив на нее дополнительный слой теплоизоляции и выполнив новое кровельное покрытие. Перекрытия над подвалами легче всего утеплить, приклеив или подвесив теплоизоляцию при помощи анкеров и стальной сетки. Слой теплоизоляции можно оставить открытым или закрыть алюминиевой фольгой, обоями, штукатуркой и пр.

    Уменьшение теплопотерь через окна

    Существует несколько способов уменьшения теплопотерь через оконную «столярку».

    Вот САМЫЕ ПРОСТЫЕ из них:
    ☰ уменьшить окна;
    ☰ приметить ставни и жалюзи;
    ☰ поменять окна.

    Самым радикальным способом уменьшения теплопотерь является последний. Вместо старых ставят окна с более высокими теплоизоляционными свойствами. Рынок предлагает различные типы энергосберегающих окоп: деревянные, пластиковые, алюминиевые, с двух- и трехкамерными стеклопакетами, со специальным иизкоэмисси-оппым стеклом. Поменять окна обойдется недешево, но за новыми проще ухаживать (пластиковые окна не нужно красить), их высокая плотность препятствует проникновению пыли, улучшается звуко-и теплоизоляция.

    В некоторых домах слишком много окон, значительно больше, чем необходимо для естественного освещения помещений. Поэтому можно уменьшить их площадь, заполнив часть проемов стеновым материалом.

    Самые низкие температуры снаружи дома отмсчаются обычно ночью, когда дневного света нет. Следовательно, теплопоте-ри можно уменьшить, применив ставни или жалюзи.

    Система отопления и горячего водоснабжения

    Если теплоснабжение дома осуществляется при помощи котельнои, которой пользуются 10-15 лет, то она требует термомодернизации. Самым большим недостатком старых котлов является их низкая производительность. Кроме того, такие устройства, отопляемые углем, выделяют много продуктов сгорания. Поэтому их целесообразно заменять современными газовыми или жидкотопливными котлами: у них больше производительность, и они меньше загрязняют воздух.

    Модернизировать можно и саму теплосеть в доме. Аля этого устраивают теплоизоляцию на трубах отопления и горячей воды, которые проходят через неотопляемые помещения. Кроме того, на всех радиаторах ставят терморегулирующие вентили. Это позволяет устанавливать необходимую температуру и не отапливать нежилые помещения. Можно также устроить воздушное отопление или «теплый пол». Модернизация сети горячей воды - это замена протекающих трубопроводов и теплоизоляция новых, оптимизация работы системы, готовящей горячую воду, и включение в нее циркуляционного насоса.

    Система вентиляции

    Чтобы уменьшить теплопотери через эту систему, можно уста» ювить рекуператор - устройство, позволяющее использовать тепло выходящего из дома воздуха. Кроме того, можно применить подогрев приточного воздуха. Простейшими устройствами, уменьшающими теплопотери через плотные современные окна, являются вентиляционные карманы, подающие воздух в помещения.

    Нетрадиционные источники энергии

    Аля отопления дома можно использовать энергию возобновляемых источников. Например тепло от сжигания дров, отходов древесины (опилок) и соломы. Аля этого применяют специальные котлы. Стоимость отопления таким способом существенно ниже, чем системами, работающими на традиционных видах топлива.

    Чтобы использовать для отопления солнечное тепло, применяют солнечные коллекторы, располагаемые на крыше или па стене дома. Аля максимальной эффективности их работы коллекторы нужно разместить на южном скате крыши с уклоном около 45°. В наших климатическиx условиях коллекторы обычно сочетаются с еще одним источником тепла, например, конвекционным газовым котлом или котлом на твердом топливе.

    Для отопления и горячего водоснабжения можно применять тепловые насосы, использующие тепло земли или подземных вод. Однако для своей работы они требуют электроэнергии. Себестоимость тепла, произведенного тепловыми насосами, низкая, а вот стоимость насоса и системы отопления довольно высокая. Годовая потребность в тепле для индивидуальных домов составляет 120-160 кВт-ч/м2. Несложно посчитать, что для отопления жилища площадью 200 м2 е течение года потребуется 24000-32 000кВт.ч. Применив ряд технических мероприятий, эту величину можно сократить почти в два раза.

    Предисловие

    Причин потери тепла в доме несколько, и каждая из них может быть если не полностью устранена, то хотя бы частично локализована. Согласно исследованиям Госстроя, две трети энергии, вырабатываемой в стране, «растворяется в воздухе».

    Cодержание

    Причин потери тепла в доме несколько, и каждая из них может быть если не полностью устранена, то хотя бы частично локализована. Согласно исследованиям Госстроя, две трети энергии, вырабатываемой в стране, «растворяется в воздухе». Перед тем как снизить теплопотери дома, нужно выяснить, почему вместо обогрева помещения отапливается улица и, несмотря на огненные батареи, в квартире холодно.

    Понять, как дом теряет тепло, можно, если вспомнить некоторые физические законы.

    Основными причинами теплопотери дома являются следующие факторы:

    • проводимость . Поскольку дом построен на холодной земле, то вследствие теплопроводности тепловые потоки уходят в почву;
    • конвекция . При включенном отоплении стены и крыша изнутри становятся теплыми. В результате действия теплопроводности тепло перемещается и на наружную сторону стен и крыши. При этом окружающая их атмосфера, будучи более холодной, нагревается за счет них и отбирает часть тепла, унося его вверх.

    Таким образом, можно сказать, что теплопроводность стройматериалов и разница между температурами в доме и на улице - два главных фактора, влияющих на потери домом тепла.

    При этом основные потери тепла происходят через ограждающие конструкции дома: на долю стен приходится 35% теплопотерь, на крышу - 25%, через подвальное перекрытие и всевозможные щели - по 15%, через окна - 10%. Определенная часть тепла может выносить из дома .

    Установить, что именно из них повинно в том, что в доме холодно, несмотря на огненные батареи, поможет специальная экспертиза, которая называется тепловизионной диагностикой. Если пригласить службы, специализирующиеся на ней, то проведенное обследование выявит конкретные места утечек тепла; качество, дефекты и повреждения теплоизоляции чердачного и подвального перекрытий и труб; мостики холода; состояние и и т. д.

    Как уменьшить теплопотери дома: теплоизоляция стен и окон

    Понимание причин потери тепла вызывает естественный вопрос: как устранить теплопотери дома хотя бы значительно снизить? Ответ очевиден - кардинально улучшить теплоизоляцию стен, крыши, перекрытий, окон, что позволит повысить температуру в доме без увеличения затрат на отопление.

    При качественной теплоизоляции дома даже при понижении температуры воздуха до -25 °С и выключенном отоплении температура внутри дома за сутки упадет всего лишь на 1 °С. Понятно, что и расходы на отопление в таком доме не столь обременительны.

    Если вы не знаете, как уменьшить теплопотери дома, начните с осмотра окон: проверьте механизмы открывания и закрывания, при необходимости отрегулируйте их. Если будут обнаружены зазоры между оконными блоками и стенами, их тоже нужно герметично заделать. На стекла можно нанести отражающее покрытие. Поможет снизить теплопотери и остекление балкона и лоджии.

    Ещё один способ, как снизить теплопотери дома - утепление дверей, причем желательно установить вторую дверь, которая дополнительно будет играть роль звукоизолятора.

    Как снизить теплопотери дома: утепление крыши и подвала

    Кроме того, стены, крышу и подвал необходимо утеплить. При этом надо заметить, что утеплять дом надо не изнутри, а снаружи. Если сделать это со стороны помещения, то между стеной и внутренней теплоизоляцией будет скапливаться конденсат, что не только ухудшит теплоизоляцию дома, но и приведет к повреждению отделки и размножению грибов. Для внешней теплоизоляции подходит такой материал, как экструдированный пенополистирол; хорошо себя зарекомендовало устройство вентилируемого фасада и т.д.

    Для теплоизоляции крыш, как правило, используют каменную или минеральную вату, которые реализуются в виде плит. При этом нельзя забыть о пароизоляции (желательно, чтобы ее сторона, обращенная внутрь, была покрыта алюминиевой фольгой, что предотвратит потери тепла от излучения).

    Если дом еще только в проекте, то необходимо заранее подумать о том, как уменьшить периметр внешних холодных стен (чем больше квадратура наружных стен, тем значительнее потери тепла; дом, украшенный многочисленными выступающими элементами, теряет много тепла), не допустить образования мостиков холода.

    Снижение теплопотерь дома: возведение монсарды

    Возведение мансарды - еще один способ снижения теплопотерь дома и сокращения потери тепла через крышу, поскольку ее часть используется в качестве стен мансардного помещения. О том, что для кровли следует выбрать качественный материал, наверное, можно не говорить.

    Уменьшение теплопотерь дома до нуля вряд ли удастся, но реально предпринять меры, благодаря которым можно перестать обогревать улицу. Первое, что приходит на ум,- это необходимость утепления дома. При этом заметим, что стоимость теплоизоляции по сравнению с тем, во сколько обойдется строительство дома, просто мизерна. Экономия на теплоизоляции непременно обернется еще большими потерями в будущем, тем более что цены на энергоносители постоянно растут. Подойдя к утеплению дома в комплексе, можно сократить расходы на отопление примерно на 40%. Это означает, что теплоизоляция выгодна вдвойне, поскольку снижает теплопотери и минимизирует затраты на энергоресурсы.

    Уменьшение теплопотерь дома: теплоизоляционные материалы

    Теплоизоляционные материалы должны отвечать целому ряду требований, среди которых:

    • долговечность (это важно для длительной его эксплуатации);
    • экологичность (отсутствие вредных для здоровья выделений);
    • горючесть (отсюда и пожаробезопасность);
    • повышенная паропроницаемость (благодаря чему из помещения будет выводиться влага и конструкции дома будут оставаться сухими);
    • небольшой вес (не придется , не возникнет проблем с монтажом, транспортировка материала и покупка крепежа обойдутся не слишком дорого
    • естественно, цена (для многих это главный показатель, определяющий ).

    Проблемы потерь тепла и наладка качественной теплоизоляции – одни из ключевых вопросов строительной и жилищно-коммунальной сферы.

    Предотвращают и решают проблемы утечек тепла инженеры ещё на стадии строительства. Но вот дом сдан и Вы, как счастливый обладатель любимых квадратных метров, остаётесь с проблемами наедине. Конечно, если речь не идёт о серьёзных технологических нарушениях, за устранением которых – прямиком к подрядчиками и управляющей компании. А если дело в относительно небольших огрехах, то справляться с ними, как правило, приходится своими силами и посредством собственного кошелька.

    Проблемы потерь тепла реальны?

    Квартиры, частные дома, гаражи, офисы, склады – словом, любые сооружения, теряют тепло через ограждающие конструкции: стены, пол, потолок и перекрытия. Источников проблемы может быть два. Первый – явные конструкционные дефекты, или попросту – щели, зазоры, трещины. Второй источник проблемы потерь тепла – собственно материал. Тепло может уходить сквозь стены, окна и крыши в буквальном смысле слова.

    Возьмём, к примеру, стены. Ключ к сохранению тепла – сопротивление теплопередаче. Стена – это барьер между воздухом комнатным и уличным. С одной стороны на неё воздействует температура выше, с другой – ниже. Законы физики не обойдёшь. И стена выступает в качестве передатчика тепла. Очевидно – чем хуже будет стена передавать тепло, тем стабильнее будет климат внутри помещения: зимой – тепло, летом – прохладно. Значит, материал стены должен по максимуму выполнять задачу «непередачи». И стены делают не однородными, а состоящими из нескольких слоёв, каждый из которых работает на то, чтобы минимизировать смешение двух температур. Если материалы с задачей не справляются, Вы теряете тепло. Всё тоже и с окнами. Около 20-25% фасада здания – это окна. И через них также может уходить тепло: сквозь щели и путём теплового излучения.

    Почему возникают проблемы потерь тепла

    И снова можно назвать два источника проблемы. Первый – строительство с нарушениями и огрехами. К сожалению, современные российские технологии далеко не всегда соответствуют образцам энергосберегающего строительства. Например, в США при возведении новых жилых и офисных помещений примерно 80% окон закрывают энергосберегающими стёклами. Ещё больше таких стеклопакетов ставят в Германии. А в отечественных новостях то и дело показывают растерянные лица жильцов, которые демонстрируют промёрзшие углы, протекающие крыши новостроек. Естественно, подобные жилищные оказии – скорее исключение. Но говорить о том, что 99% зданий в нашей стране тёплые, сухие и комфортные, к сожалению, не приходится.

    И даже в строительстве частном, когда Вы максимально контролируете процесс, нет стопроцентной гарантии, что бригада или Вы сами не допустите огрехов, а материалы, к примеру, герметик, качественные.

    Перейдём к источнику проблем потерь тепла номер два. Даже отлично выполненная стена, окно, пол, перекрытие со временем ветшают. Под воздействием двух факторов, человеческого и среды, неминуемо появляются дефекты. Яркий пример – трещины в швах панельных домов. Другой пример – разрушение кровли осадками, птицами и массой снега. По крошке, по крошке, дефект уже заметен глазу и стал путём выхода тепла.

    И даже наша, казалось бы, созидательная деятельность, вроде замены окон, дверей или утепления крыши, не всегда приносит желаемый эффект. Не качественным может быть сам стеклопакет, нетщательно загерметизированы щели.

    Как же решить проблему потери тепла? Как превратить наши жилища в уютные «термосы» зимой и уголки прохлады и комфорта летом? Задача очевидна – устранить места теплопотерь, сделать качественное утепление. И первый шаг – поиск утечек тепла – определение локализации зон, через которые уходит тёплый воздух.

    Эффективное решение проблемы теплопотерь

    Компания «ТеплоПоток» успешно помогает устранить проблемы потерь тепла в Новосибирске , а именно выполнить первый этап – определить места «утечек». Мы проводим тепловизионные исследования домов, коттеджей, квартир, гаражей, бань и других помещений и целых зданий. Профессиональный прибор для поиска потерь тепла – тепловизор. Он позволяет получить изображение, на котором видно распределение температур в цветовой схеме и с указанием конкретных градусов. Прибор для поиска потерь тепла безошибочно продемонстрирует все слабые, с точки зрения энергоэффективности, места в ограждающих конструкциях.

    Поиск скрытых коммуникаций – второе назначение тепловизора. Проблемы с запрятанными в стенах, потолке и полу системами также могут спровоцировать нарушение комфортного домашнего климата. Неполадки с отоплением? Прибор для поиска потерь тепла поможет найти дефекты тёплых полов, не вскрывая настил, выявить места образования воздушных пробок в радиаторах и сделать другие полезные исследования скрытых коммуникаций.

    На основании снимков, термограмм, которые даёт прибор для поиска потерь тепла, мы готовим для Вас отчёт. В нём Вы увидите все холодные зоны – места утечек тепла и неполадки скрытых коммуникаций.

    Имея чёткое представление о состоянии помещения и зная его слабые места, Вы без лишних временных и финансовых затрат сможете поправить дефекты. Полезны при этом будут и прописанные к термограммам комментарии наших специалистов, с рекомендациями по устранению нарушений.

    Немного статистики по проблемам потерь тепла

    Согласно проведенным не так давно исследованиям, порядка 75% энергии, вырабатываемой в стране, уходи в никуда. Можно сказать, растворяется в воздухе. Не зря в городе всегда на 2-3 градуса теплее зимой, чем в той же области. Связанно это именно с выходом тепла наружу. Но, зачем отапливать улицу, когда и на дом-то не хватает?

    Давайте приведем немного статистики. Проблемы потерь тепла в Сибири далеко не на последнем месте. Сами понимаете, что наш суровый сибирский климат располагает к тому, чтобы к зиме утеплить свой дом как можно лучше, сильнее. От этого зависит не просто комфортное в нем пребывание, но и здоровье всех тех, кто в нем собирается зимовать.

    Существует мнение, что большое количество теплопотерь идет через окна. Безусловно, это так. Но лидером среди большой отдачи тепла являются стены. На их долю приходится порядка 35% всех теплопотерь дома. Но это и не удивительно. Ведь дом – это и есть стены. И, к сожалению, не всегда качественные, не всегда хорошо утепленные, не всегда сделанные «на совесть». Тем более, в связи с тем, что в наше время строится очень много жилья и строители стараются успеть в срок, а то и раньше сдать дом в эксплуатацию. Иногда это отражается на качестве. Но, предпринятые вовремя меры, значительно улучшат теплопроводность и сведут тепловые потери к минимуму. А это значит, что завышенные счета за отопление вскоре заменятся на нормальные, адекватные цены, на такие, какими они и должны быть.

    При качественной и правильной теплоизоляции дома, здания, гаража, да и любой другой постройки, даже если уличная температура опустится до -30 градусов, а отопление по какой-то причине отключится, температура внутри помещения не должна упасть больше, чем на 1 градус. Впечатляет? Не верится? Но это правда!

    Ситуации бывают всякие, легко может случится коммунальная авария, при которой вы вынуждены будете находиться какое-то время без тепла. А благодаря правильной теплоизоляции, уже накопленное тепло, не выйдет наружу. Это очень важно, как для частных домов, так и городских многоэтажек. Потому что, обычно, такие аварии быстро не устраняются. И вместо того, чтобы надевать десятки теплых носков и три свитера, лучше задуматься о том, есть ли у вас проблемы потерь тепла в доме.

    Нет нерешаемых проблем тепловых потерь

    Конечно, можно попробовать самостоятельно найти проблемные места в доме. Начать хотя бы с тех же самых окон. Проверьте, правильно ли функционируют все механизмы открывания и закрывания. Не требуется ли им регулировка? Между окном и стеной не должно быть никаких зазоров. Это однозначно приведет к большим теплопотерям. В таких случаях может помочь даже обычный герметик. Если в конструкции дома предусмотрены лоджии или балконы, то их тоже необходимо осмотреть на предмет герметичности. +1 к утеплению помещения дает остекление балконов. Это помогает пускать в помещение гораздо меньше холодного воздуха с улицы. А отражающее покрытие, нанесенное на окна, также благотворно влияют на сохранение тепла в помещении. Кстати, в домах, в которых предусмотрено 2 входных двери, вместо одной – тепло сохраняется чуть лучше, чем в домах с одной входной дверью. Не говоря уже об улучшенной звукоизоляции от улицы и подъезда.

    Стоит ли говорить о дополнительном утеплении крыши и подвала? Бесспорно. Обычно такие места отдают не меньше тепла, чем стены. Подвал, конечно, должен быть сухим и прохладным, но это не значит, что вся его прохлада должна попадать в жилое помещение. Советуем вам обратить внимание на то, что утеплять стены и крышу лучше снаружи. Связанно это с тем, что при утеплении стен изнутри помещения, может образоваться конденсат, который в свою очередь не просто сделает хуже для теплоизоляции дома, но и станет отличным поводом для появления плесени. А плесень для здоровья часто даже хуже, чем обычный сквозняк. К тому же плесень негативно влияет на сохранность материалов и прочность вашего дома окажется под угрозой.

    Проблему потери тепла гораздо легче обнаружить при помощи тепловизионного обследования. Обследование тепловизором, проведенное профессионалами, значительно сэкономит ваше время на обнаружение теплопотерь. Это означает, что приступить к устранению проблемы потерь тепла вы сможете гораздо быстрее и начнете экономить на теплоэнергии уже в ближайшее время.

    В «тепловизионном парке» компании ТеплоПоток собраны только лучшие модели тепловизоров, зарекомендовавшие себя не однократно. Но, даже самый лучший тепловизор не справится в одиночку. Именно поэтому, мы подобрали самых сильных специалистов в сфере тепловизионного обследования, дали им в руки тепловизоры и отправили бороться с теплопотерями. От них не скроется ни один угол, ни одна щель, через которую может задувать даже самый незначительный сквозняк. А, как известно, даже маленький сквозняк, может напакостить по-крупному!