21.03.2019

Сравнения различных автоматических систем управления освещением. Управление освещением из нескольких мест


Системы управления освещением представляют собой контроль над режимом работы, уровнем освещенности и другими параметрами электрического освещения. Разные способы изменения параметров света сегодня реализованы в «умных домах».

Виды

Системы управления освещением представлены в следующих видах:

  • Местном. Этот способ используется в небольших помещениях и домах, реализован ручными переключателями и выключателями. расположено обычно возле входной двери в комнату дома на высоте около 1,5 м. В некоторых комнатах (санузел, кладовая) ручные выключатели целесообразнее устанавливать в соседних комнатах. Чаще всего там встречаются однополюсные выключатели с силой тока от 6 до 10 А.
  • Централизованном. Представлено автоматами, которые устанавливаются в офисных или промышленных помещениях.

Системы управления освещением дома

  • таким способом сегодня часто используется в домах. Он реализован благодаря щитку станций управления, который включен в цепи осветительной сети. Эта разновидность системы управления освещением дает возможность использовать пульт ДУ. В контрольном пункте иногда предусмотрена сигнализация.
  • Автоматическом. Автономная разновидность системы управления освещением в помещениях предусматривает отсутствие участия человека. Может проводиться по графику или в зависимости от данных датчиков движения или освещенности.

Схемы управления светом из нескольких мест

Нередко при установке осветительной системы в зданиях может возникнуть необходимость во включении света в проходной комнате при входе в нее и выключении при выходе, расположенном с противоположной стороны.

Чтобы владелец дома не возвращался в начало коридора, существует технический вариант выхода из ситуации - управление освещением с 2 мест.

Существует целый список устройств, которые позволяют реализовать это в условиях дома:

  • проходной выключатель. Представлен переключателем, где содержится 3-контактная группа (2 контакта подвижны, 3-й - нет). Во время нажатия на клавишу выключателя подвижный провод присоединяется к одному из неподвижных. Таким образом, обеспечивается возможность независимого контроля за одной лампой при помощи 2 выключателей. Особенность проходного выключателя - положение второго выключателя из схемы, а не самой кнопки устройства. Существует такая разновидность проходного выключателя, как сдвоенный - он позволяет включать и выключать свет из 2 мест не одним, а сразу двумя приборами. Внешне он представляет собой парное устройство в общем корпусе;

  • крестовой (четырехконтактный) переключатель. Он используется, если контроля над одним или 2 источниками света с разных мест дома недостаточно. Монтаж 4 контактов устройства таков: первый и последний выключатель в цепи - проходные, а второй и третий - крестовые;
  • бистабильное (двустабильное) реле. Дает возможность управлять светом из 2 и больше мест дома. Приспособление представлено электронной схемой, имеющей 2 состояния. Триггер контролируется поданным к входу импульсом. Используя такое реле, можно в качестве выключателей использовать кнопки, а схема ручного контроля над светом в здании позволяет подключить кнопки параллельно.

Контроль освещения с пульта

Беспроводное управление светом с пульта может быть реализовано своими руками. Можно использовать обычный инфракрасный пульт от телевизора. Схема контроля над светом в здании предполагает:

  • использование микроконтроллера PIC16F628. Чтобы управлять осветительными приборами, в схеме есть аппаратный ШИМ. Его сигнал изолируется при помощи оптопары от силовых компонентов схемы;
  • силовые компоненты схемы предполагают регулировку лампы (в этом случае - галогенной) посредством подачи постоянного тока. Несмотря на существующие недостатки такого подключения, оно будет менее шумным, чем симистор;

Управление светом с пульта

  • модуль, принимающий ИК-лучи, работает с частотой 40 кГц. При установке в качестве приемника излучения RPM7140 дальность пульта будет составлять 40 м;
  • для запитки схемы контроля над освещением в здании можно использовать старую зарядку от мобильного телефона. А управляющими кнопками тут могут стать неиспользуемые на телевизионном пульте кнопки телетекста.

Одним из эффективных методов повышения энергоэффективности системы освещения и снижения затрат на её эксплуатацию является использование систем управления освещением. Основываясь на многолетнем опыте эксплуатации различных объектов, холдинг БЛ ГРУПП разработал собственную систему управления АСУНО «БРИЗ».

АСУНО «БРИЗ» включает в себя линейку различного оборудования и ПО, предназначенного для автоматизации систем уличного, архитектурного и промышленного освещения.




- Программное обеспечение.

Дополнительно НПО GALAD предоставляет услуги по проектированию объектов, шеф-монтажу и обучению персонала клиента. Ниже представлен перечень стандартного оборудования. При этом наша компания предлагает возможность разработки и изготовления оборудования по требованию клиента.

Шкафы управления освещением (ШУНО)

Предназначены для автономного и/или удаленного включения освещения, сбора и обработки диагностической и контрольной информации, коммерческого учета электроэнергии.

ШУНО-СС.GALAD.РВ

Шкаф управления освещением на базе контроллеров БРИЗ-РВ предназначен для автономного включения и отключения наружного освещения по астрономическому расписанию с возможностью синхронизации по системам ГЛОНАСС/GPS. Встроенное программное обеспечение позволяет определять время включения и отключения по координатам установки оборудования (широте и долготе).

ШУНО-СС.GALAD.ТМ

Шкаф управления освещением на базе контроллера БРИЗ-ТМ (до 6 отходящих трехфазных линий, связь по GSM/GPRS или Ethernet) предназначен для дистанционного включения и отключения наружного освещения по командам диспетчера, сбора и передачи диагностической информации.

ШУНО-СС.GALAD.DMX

Шкаф управления освещением на базе контроллера БРИЗ DMX. Предназначен для управления архитектурным RGBW освещением по протоколу DMX 512.

Преимущества использования ШУНО:
- Снижение затрат на обслуживание системы освещения за счет удаленного контроля её параметров;
- Точный учет и анализ потребляемой электроэнергии;
- Быстрое выявление и, как следствие, быстрое устранение аварийных ситуаций.

Регуляторы напряжения

Предназначены для группового управления световым потоком в линии методом снижения напряжения в сети. Являются энергосберегающим оборудованием и предназначены для управления процессом пуска, стабилизации и понижения энергопотребления светильников наружного освещения с лампами высокого давления (натриевыми или ртутными), использующих электромагнитные ПРА, и специальными LED светильниками GALAD (LED , Стандарт LED , Волна LED)

Преимущества использования Регулятора напряжения:
- Экономия потребляемой электроэнергии до 35%;
- Выравнивание фазного напряжения – увеличение срока службы светотехнического оборудования.

Автоматизированные пункты питания наружного освещения (АППНО)

Предназначены для питания и управления установками наружного освещения по отходящим трехфазным линиям. АППНО выполняет функции вводно-распределительного устройства и имеет возможность подключения регулятора напряжения, а также подсоединение шкафов управления типа ШУНО-СС.GALAD.хх и автоматизированной информационно-измерительной системы учета электроэнергии (АИИСКУЭ).

АППНО.GALAD.РВ.6.0

Автоматизированный пункт питания наружного освещения (6 отходящих трехфазных линий по 100А), обеспечивающий автономное управление наружным освещением с помощью контроллера "БРИЗ-РВ" (автономное включение и отключение наружного освещения по годовому расписанию).

АППНО.GALAD.ТМ.6.0

Автоматизированный пункт питания наружного освещения (6 отходящих трехфазных линий по 100А), обеспечивающий дистанционное управление наружным освещением с помощью контроллера "БРИЗ-ТМ" (включение и отключение наружного освещения по командам диспетчера, сбор и передача диагностической информации).

При современном уровне развития инфраструктур использование лишь одного способа управления осветительными сетями является не рентабельным. Необходима интеграция всех способов управления освещением в общую многоструктурную систему, которая вмещала бы в себя и местное, и дистанционное управление, и при этом была, как на ручном, так и на автоматическом режиме контроля.

Подобное решение вызвано возможностью получить более разумное распоряжение ресурсами осветительных сетей. Подобные системы ценятся за их экономические преимущества. Расход электроэнергии на цели освещения заметно снижается не только благодаря достижению оптимальной работы осветительной установки в каждый момент времени, поскольку соблюдается четкость работы автоматики по расписанию, но благодаря более надежной системе, построенной из современных электронных компонентов, требующих меньше затрат на свое обслуживание. Происходит снижение стоимости монтажных работ, поскольку сокращаются затраты на материал и их установку.

Для построения таких систем понадобятся автономные программируемые контроллеры. Автономные контроллеры являются интеллектуальными устройствами, способными выполнять сложные функции, связанные с управлением и сбором данных, а также способными к принятию решений на основании текущих состояний системы и процессов. Чтобы все это делать, они, во-первых, должны программироваться. Программа интерпретируется и исполняется устройством, так что устройство в каждый момент времени "знает", что ему делать.

Будучи запрограммированным, автономное устройство может продолжать работать, производя измерения сигналов с датчиков, записывая данные в память и выполняя функции контроля и управления, даже если главный компьютер не подключен или не работает.

Возможны два способа программирования автономных контроллеров и передачи на ПК полученных данных, либо с помощью коммуникационного интерфейса связи, будь то RS-232, RS-485, Ethernet и прочие, либо с помощью портативных карт памяти.

Эта гибкость в программировании позволяет автономным контроллерам работать в разных режимах, которые определяются месторасположением устройства и объемом сохраняемых данных, а также наличием питания:

§ Автономная работа, когда с помощью карт памяти или портативных ПК (ноутбуков) производится периодическое обновление данных и программирование (при необходимости);

§ Он-лайновая работа с главным ПК, когда производится передача данных и программирование (при необходимости);

Если приложение требует большее количество датчиков, чем может поддерживать автономный контроллер, причем датчики распределены по большой территории, то может потребоваться сеть распределенных контроллеров. Каждый режим работы, использующий только один контроллер, также должен быть применим, если дополнительные устройства подключены в виде части распределенной сети.

Наиболее распространенной конфигурацией системы, обеспечивающей максимальную надежность системы, является прямое соединение с главным ПК с помощью коммуникационного интерфейса связи.

Эта конфигурация позволяет частую передачу данных на ПК, постоянное отслеживание опасных условий и онлайновый контроль системы. Наиболее часто такая система реализуется в условиях заводов и промышленных предприятий, когда критические процессы должны постоянно отслеживаться и регулироваться. Максимальное расстояние, на котором контроллер может находиться от главного ПК, зависит от скорости передачи информации через коммуникационный интерфейс. Если единственный контроллер подключен непосредственно к главному ПК, то такая система может быть настроена на передачу данных, как только они появятся.

Если приложение требует более одного контроллера и все устройства распределены на большой реальной площади, например на промышленном предприятии или на заводе, то контроллер может быть настроен как часть распределенной многоточечной сети RS-485. Одно единственное устройство, вынужденное быть главным или локальным, может быть подключено непосредственно к главному компьютеру.

Достоинством такого подключения является то, что остальные главные ПК или терминалы могут быть подключены к портам других контроллеров, что еще больше увеличит надежность системы.

Как часто собранные данные будут передаваться на ПК, зависит, во-первых, от важности для управляемой системы или процесса немедленного анализа данных и, во-вторых, от того, сколько памяти имеет устройство и насколько быстро она заполняется.

Быстрое заполнение памяти важно по двум причинам. В случае неисправности главного ПК или коммуникационного интерфейса устройство должно иметь достаточно памяти, чтобы обеспечить запись всех данных и продолжить работу без потери данных. Кроме того, устройство, подключенное к главному ПК через многоточечную сеть, может возвращать данные только по требованию с ПК. Если к главному компьютеру подключено большое количество устройств, то память каждого устройства должна быть достаточно большой, чтобы обеспечить запись данных и продолжать работу без потери данных до тех пор, пока главный компьютер в очередной раз не потребует передать к нему данные.

Не рассматривая специфические ограничения, рекомендуется обновлять данные максимально часто, поскольку любая ошибка датчика, неисправность источника питания или проблема с самим устройством будут сразу обнаружены и тем самым увеличена надежность системы. Кроме того, частое обновление данных поможет минимизировать шанс того, что данные могут быть потеряны вследствие неисправности устройства, например из-за неисправности памяти, питающейся от батарей.

Важной особенностью, которая наделяет автономные программируемые контроллеры производительностью и гибкостью при их использовании в качестве автономных устройств или в качестве распределенной сети, по существу, является их относительная сложность аппаратного обеспечения. Упрощенная блок-схема типичного автономного программируемого контроллера показана на рисунке 5.

Рисунок 5. Упрощенная блок-схема автономного программируемого контроллера.

Сердцем автономной системы является микропроцессор или микроконтроллер. В совокупности со встроенным программным обеспечением (программы, "зашитой" в ПЗУ) он обеспечивает все управление и работу системы. Важно представлять различие между микропроцессорами и микроконтроллерами. Микропроцессор является просто центральной частью компьютера, занимающейся обработкой данных, в которую не входят память, схемы ввода/вывода и периферия, необходимая для образования полной системы. Все остальные интеллектуальные системы (ИС) в ПК предназначены для того, чтобы обеспечить его теми функциями, которые не реализует ИС самого микропроцессора. Однако если микропроцессор дополнен схемой ввода/вывода, памятью и периферией, то эта совокупность уже называется микроконтроллером.

Микроконтроллер, по-видимому, является наиболее распространенным вариантом автономной системы, поскольку он обеспечивает все необходимые функции с помощью ИС. Одним из достоинств микроконтроллеров являются низкая стоимость, уменьшенное количество ИС и, следовательно, небольшие размеры печатной платы.

Долговременная память, используемая для хранения результатов измерений с датчика и параметров контроля, является важным элементом автономной системы. Обычно для хранения данных используется оперативная память с произвольным доступом (ОЗУ), которая требует наличия резервной батареи, необходимой на случай нарушения питания.

Аналогично ОЗУ в автономных системах для хранения результатов измерений и данных, необходимых для управления системой, используются также сменные карты памяти. Хотя имеется большое количество производителей карт, наиболее популярными картами для использования в подобных устройствах стали SD карты.

Важным достоинством карт памяти в автономных системах является возможность извлечения заполненной карты и замены ее пустой в полевых условиях, что обеспечивает очень удобный механизм переноса данных. Впоследствии карту памяти можно вынуть из устройства и перенести данные, находящиеся на ней, на любой компьютер. Кроме того, карты памяти позволяют пользователю покупать и устанавливать карты такой емкости, которая требуется для конкретного применения.

Если пустую карту памяти вставить в автономное устройство, то все данные из внутренней памяти будут перенесены на карту памяти, и запись будет продолжаться до заполнения карты памяти. При удалении карты памяти запись данных продолжится во внутреннюю память. Если же в устройство вставить частично заполненную карту памяти, то запись будет производиться во внутреннюю память.

Для экономии места данные записываются в фиксированном 24-разрядном формате с плавающей запятой. Для идентификации даты и времени записи в начале каждого блока данных используется заголовок фиксированной длины. При передаче данных идентифицирующий заголовок используется пользователем для интерпретации данных и дополнительной информации. Поэтому расписания не могут быть изменены, когда данные уже записаны. При использовании закодированных заголовков и данных фиксированной длины записи объем необходимых данных значительно уменьшается.

В автономных устройствах память фиксирована и ее объем неизменен. Используются два режима записи данных - режим остановки при заполнении памяти и режим перезаписи. То есть запись данных останавливается, как только память будет заполнена. Это позволяет сохранить данные в том порядке, в каком они были записаны, при этом самые последние данные не записываются. Если имеется карта памяти, то внутренняя память используется только после заполнения карты памяти.

А если брать режим перезаписи, то в этом режиме записи данных вся память организована в виде кольцевого буфера. При заполнении памяти самые старые данные могут быть переписаны новыми

Встроенная операционная система, или "зашитая" программа автономного устройства хранится в памяти, предназначенной только для чтения (ПЗУ), или в памяти, которую можно перепрограммировать (ППЗУ). ПЗУ обычно используется в системах, выпускаемых в больших объемах.

ППЗУ больше распространены в системах, выпускаемых небольшими партиями, поскольку они позволяют производителям изменять "зашитое" программное обеспечение и наделять систему новыми функциями или модернизировать ее без вмешательства в процесс производства. Для удобства установки и замены ИС ПЗУ и ППЗУ во время срока службы устройства эти ИС обычно устанавливаются на плате с помощью панелек.

Оперативная память с произвольным доступом (ОЗУ) обычно используется в автономных системах для хранения результатов измерений и системных параметров. В основном распространены два типа ОЗУ - статическое и динамическое. Динамическое ОЗУ требует периодического обновления, или перезаписи содержимого, в то время как статическое ОЗУ обновления не требует. Однако преимуществом динамического ОЗУ над статическим является то, что статическое ОЗУ имеет намного большую емкость для заданной площади кремниевой подложки.

Динамическое ОЗУ подходит для персональных компьютеров, используемых в офисе, где важным требованием является емкость памяти. В автономных системах достоинство статического ОЗУ заключается в его способности сохранять данные с помощью резервного питания при отсутствии основного. Это можно получить относительно легко, поскольку статическое ОЗУ не требует обновления даже в дежурном режиме.

Электрически перезаписываемое ПЗУ (ЭСППЗУ) относится к долговременной памяти, обычно используемой для хранения ограниченного количества данных по конфигурации системы и управляющих параметров. Сравнительно небольшая емкость памяти и медленный цикл записи ЭСППЗУ (обычно около 10 миллисекунд) ограничивают их применение.

Флэш-память также является долговременной памятью и используется для хранения как данных, так и программ. Флэш-память может иметь объем от 32 кбайт до 2 Мбайт. Значительно более короткий цикл записи имеет свой недостаток - необходимость стирать данные на ИС блоками фиксированного размера, а не побайтно.

Часы реального времени являются важным элементом любой автономной системы. Помимо информации о дате и времени, они с помощью программы обеспечивают функцию сигнализации и периодического запуска считывания сигналов с датчиков, а также управляют выходными сигналами.

Часы реального времени подключаются к соответствующей схеме управления питанием, позволяя системе оставаться в дежурном режиме, при котором потребление энергии невелико, до тех пор, пока из этого режима система не будет выведена заранее запрограммированным событием или аварийной ситуацией. Таким образом, управляющая программа может считывать и записывать данные с датчиков и управлять выходными сигналами, после чего система вновь переходит в дежурный режим с низким потреблением энергии.

В типичной автономной системе сбора данных датчики опрашиваются с периодическими интервалами, позволяя системе между измерениями переходить в дежурный режим, экономя электрическую энергию в период неактивности. Например, считывание данных может производиться только один раз в 500 мс. Тогда часы реального времени должны быть запрограммированы на пробуждение системы каждые 500 мс, тем самым обеспечив значительное уменьшение расхода энергии, что очень важно для систем, работающих от батарей.

Стартовый, стоповый биты и бит четности, используемый для проверки целостности данных при асинхронной передаче, физически вырабатываются универсальным асинхронным приемопередатчиком (UART), расположенным между шиной микропроцессора и формирователем линии, который связан с реальным каналом связи.

Основной целью UART является контроль всех рутинных операций, связанных с интерфейсом между параллельной шиной и последовательным коммуникационным каналом главного компьютера.

Во время передачи UART выполняет следующие функции:

§ Устанавливает необходимую скорость передачи информации.

§ Обеспечивает интерфейс с шиной данных микропроцессора и прием символов (по одному).

§ Генерирует стартовый бит для каждого символа.

§ Добавляет биты данных в последовательный поток данных.

§ Вычисляет и добавляет в поток данных бит четности.

§ Заключает последовательную группу необходимым стоповым битом (битами).

§ Подготавливает микропроцессор для передачи следующего символа.

Приемная часть схемы UART выполняет следующие функции:

§ Устанавливает необходимую скорость приема информации.

§ Синхронизирует с помощью стартового бита поступающие данные.

§ Считывает биты данных из последовательного потока.

§ Считывает биты четности и проверяет их соответствие с полученной информацией.

§ Считывает стоповые биты.

§ Передает символ в параллельном виде на шину данных микропроцессора.

§ Образует интерфейс линий квитирования.

§ Контролирует возникновение любых ошибок, связанных с принятым символом.

Типичные ошибки, которые может обнаружить схема UART:

o Переполнение приемника - биты принимаются быстрее, чем они могут считываться.

o Ошибки четности - несоответствие между битами четности и битами символа.

o Ошибка символа - все биты символа являются нулевыми или появление сообщения о разрыве.

Условие разрыва происходит, когда передатчик, захвативший линию данных, находится в состоянии паузы (положительное напряжение) дольше, чем это требуется для завершения передачи символа. Это условие является способом заставить принимающую схему UART немедленно отреагировать и переключиться на другую задачу.

Обычно контроллеры имеют несколько входных аналоговых каналов. Особенностью этих устройств является то, что каждый канал может быть настроен на работу с различными датчиками и сигналами. Типичная упрощенная схема входного канала показана на рисунке 6.


Рисунок 6. Упрощенная схема аналоговых входных каналов.

Гибкость, с которой каждый канал может быть настроен на различные датчики, различные режимы возбуждения, а также использование дифференциального или однопроводного входа обеспечиваются селектором аналогового сигнала. Конфигурация каждого канала производится командами программы, которые интерпретируются регистратором/контроллером, который управляет селектором аналоговых сигналов.

Возбуждение датчиков обычно производится постоянным током низкого уровня, предназначенным для измерения сопротивления (250 мкА), для работы резистивных термодатчиков (RTD) и для измерений с использованием моста Уитстона, или от источника напряжения (обычно нерегулируемого) через внутренний резистор, необходимый для питания некоторых датчиков.

Чтобы обеспечить обратную цепь для токов смещения инструментального усилителя, в цепь можно включить входные ограничительные сопротивления, обычно с номиналом 1 МО м. Если ограничительные резисторы не включены в цепь, то входное сопротивление, на которое нагружен датчик, может быть порядка 100 МОм.

Ни один контроллер не обходится и без цифровых каналов ввода/вывода. Контроллеры обычно имеют несколько цифровых каналов ввода/вывода двойного назначения, которые разделяют нагрузки и действуют как цифровые входы и выходы. Схема цифрового канала ввода/вывода показана на рисунке 7.


Рисунок 7. Схема цифрового канала ввода/вывода.

Цифровые входы имеют высокое входное сопротивление и поэтому буферизуются, чтобы защитить чувствительные КМОП схемы цифрового интерфейса от повреждений, вызываемых импульсами тока. Защиту от импульсов высокого напряжения обеспечивает стабилитрон на 30 В, который ограничивает входное напряжение на уровне, допустимом для входного буфера.

На автономных регистраторах/контроллерах наиболее часто используются цифровые выходы в виде схемы с открытым коллектором, способной на нагрузку до 200 мА при напряжении 30 В. При такой конфигурации стабилитрон действует также в качестве ограничителя напряжения, если канал используется в качестве выхода с открытым коллектором.

Входные каналы счетчика снабжены входным буфером на основе триггера Шмидта, входной порог которого установлен на уровне двух вольт. Это позволяет избежать срабатываний счетчика при уровне помех меньше заданного предела. Конденсатор, установленный на входе триггера Шмидта, обеспечивает фильтрацию, но снижает быстродействие до частоты порядка 1 кГц (= 1 /RC). Если конденсатор удалить, то скорость счета может достигать 500 кГц.

Становится очевидным, что внедрение автоматизированной системы управления освещением позволяет осуществлять телекоммуникационный контроль состояния сетей и приборов освещения, управлять режимами горения светильников, дистанционно управлять освещением по заранее заданному графику, а также вести учет энергопотребления и следить за эффективным использованием электроэнергии, что непременно приводит к понятию выгодности данных систем.

Создается строго соблюдаемый алгоритм работы осветительных сетей, так как исключается влияние человеческого фактора. Поскольку системе задано расписание, которому она должна следовать, не будет происходить нерационального расходования электроэнергии и ресурсов электрооборудования. Разумеется, конечное управление остается за человеком, и он вправе руководить работой системы по своему усмотрению. Однако система изначально просчитывает наиболее оптимальный режим функционирования, при котором будет обеспечиваться достаточное количество света и умеренное энергопотребление.

Бывают случаи, когда человек переходя на ручное управление в обход автоматическому забывал про контроль, тем не менее, в случае не отключения освещения не происходит потерь электроэнергии, так как диспетчер оперативно об этом оповещается и имеет возможность принять соответствующие меры, в ином случае это сделает автоматика системы.

Речь идет о человеко-машинных системах управления, диспетчерском управлении на основе использования автоматических информационных систем сбора данных и современных вычислительных комплексов.

Диспетчер в многоуровневой автоматизированной системе управления технологическими процессами получает информацию с монитора компьютера или с электронной системы отображения информации и воздействует на объекты, находящиеся от него на значительном расстоянии с помощью телекоммуникационных систем, контроллеров, интеллектуальных исполнительных механизмов.

Основой, необходимым условием эффективной реализации диспетчерского управления, имеющего ярко выраженный динамический характер, становится работа с информацией, т.е. процессы сбора, передачи, обработки, отображения, представления информации.

От диспетчера уже требуется не только профессиональное знание технологического процесса, основ управления им, но и опыт работы в информационных системах, умение принимать решение (в диалоге с компьютером) в нештатных ситуациях и многое другое.

Поэтому требуется программная оболочка диспетчерского управления. На мой взгляд отличным решением данного вопроса станет внедрение SCADA-технологий.

Концепция SCАDA (Supervisory Control And Data Acquisition - диспетчерское управление и сбор данных) предопределена всем ходом развития систем управления и результатами научно-технического прогресса. Применение SCADA-технологий позволяет достичь высокого уровня автоматизации в решении задач разработки систем управления, сбора, обработки, передачи, хранения и отображения информации.

Дружественность человеко-машинного интерфейса, предоставляемого SCADA - системами, полнота и наглядность представляемой на экране информации, доступность "рычагов" управления, удобство пользования подсказками и справочной системой и т.д. - повышает эффективность взаимодействия диспетчера с системой и сводит к нулю его критические ошибки при управлении.

Следует отметить, что концепция SCADA, основу которой составляет автоматизированная разработка систем управления, позволяет решить еще ряд задач, долгое время считавшихся неразрешимыми: сократить сроки разработки проектов по автоматизации и прямые финансовые затраты на их разработку.

В настоящее время SCADA является основным и наиболее перспективным методом автоматизированного управления динамическими системами.

В России диспетчерское управление технологическими процессами опиралось, главным образом, на опыт оперативно-диспетчерского персонала. Поэтому переход к управлению на основе SCADA-систем стал осуществляться несколько позднее. К трудностям освоения в России новой информационной технологии, какой являются SCADA-системы, относится как отсутствие эксплуатационного опыта, так и недостаток информации о различных SCADA-системах. В мире насчитывается не один десяток компаний, активно занимающихся разработкой и внедрением SCADA-систем.

Большое значение при внедрении современных систем диспетчерского управления имеет решение следующих задач:

1) выбора SCADA-системы (исходя из требований и особенностей технологического процесса);

2) кадрового сопровождения.

Многие проекты автоматизированных систем контроля и управления (СКУ) для большого спектра областей применения позволяют выделить обобщенную схему их реализации, представленную на рисунке 8.


Рисунок 8. Обобщенная схема контроля и управления посредством SCADA-систем

Как правило, это двухуровневые системы, так как именно на этих уровнях реализуется непосредственное управление технологическими процессами. Специфика каждой конкретной системы управления определяется используемой на каждом уровне программно - аппаратной платформой.

Нижний уровень - уровень объекта (контроллерный) - включает различные датчики для сбора информации о ходе технологического процесса, электроприводы и исполнительные механизмы для реализации регулирующих и управляющих воздействий. Датчики поставляют информацию локальным программируемым логическим контроллерам (PLC - Programming Logical Controoller), которые могут выполнять следующие функции:

ѕ сбор и обработка информации о параметрах технологического процесса;

ѕ управление электроприводами и другими исполнительными механизмами;

ѕ решение задач автоматического логического управления и др.

Так как информация в контроллерах предварительно обрабатывается и частично используется на месте, существенно снижаются требования к пропускной способности каналов связи.

В качестве локальных PLC в системах контроля и управления различными технологическими процессами в настоящее время применяются контроллеры как отечественных производителей, так и зарубежных. На рынке представлены многие десятки и даже сотни типов контроллеров, способных обрабатывать от нескольких переменных до нескольких сот переменных.

К аппаратно-программным средствам контроллерного уровня управления предъявляются жесткие требования по надежности, времени реакции на исполнительные устройства, датчики и т.д. Программируемые логические контроллеры должны гарантированно откликаться на внешние события, поступающие от объекта, за время, определенное для каждого события.

Для критичных с этой точки зрения объектов рекомендуется использовать контроллеры с операционными системами реального времени (ОСРВ). Контроллеры под управлением ОСРВ функционируют в режиме жесткого реального времени.

Разработка, отладка и исполнение программ управления локальными контроллерами осуществляется с помощью специализированного программного обеспечения, широко представленного на рынке.

К этому классу инструментального ПО относятся пакеты типа ISaGRAF (CJ International France), InConrol (Wonderware, USA), Paradym 31 (Intellution, USA), TraceMode (AdAstra Research Group, Россия), имеющие открытую архитектуру.

Информация с локальных контроллеров может направляться в сеть диспетчерского пункта непосредственно, а также через контроллеры верхнего уровня (см. рис.8). В зависимости от поставленной задачи контроллеры верхнего уровня (концентраторы, интеллектуальные или коммуникационные контроллеры) реализуют различные функции. Некоторые из них перечислены ниже:

Ш сбор данных с локальных контроллеров;

Ш обработка данных, включая масштабирование;

Ш поддержание единого времени в системе;

Ш синхронизация работы подсистем;

Ш организация архивов по выбранным параметрам;

Ш обмен информацией между локальными контроллерами и верхним уровнем;

Ш работа в автономном режиме при нарушениях связи с верхним уровнем;

Ш резервирование каналов передачи данных и др.

Верхний уровень - диспетчерский пункт (ДП) - включает, прежде всего, одну или несколько станций управления, представляющих собой автоматизированное рабочее место (АРМ) диспетчера/оператора. Здесь же может быть размещен сервер базы данных, рабочие места (компьютеры) для специалистов и т.д. Зачастую в качестве рабочих станций используются компьютеры типа IBM PC различных конфигураций. Станции управления предназначены для отображения хода технологического процесса и оперативного управления. Эти задачи и призваны решать SCADA - системы. SCADА - это специализированное программное обеспечение, ориентированное на обеспечение интерфейса между диспетчером и системой управления, а также коммуникацию с внешним миром.

Спектр функциональных возможностей определен самой ролью SCADA в системах управления и реализован практически во всех пакетах:

Ш автоматизированная разработка, дающая возможность создания ПО системы автоматизации без реального программирования;

Ш средства исполнения прикладных программ;

Ш сбор первичной информации от устройств нижнего уровня;

Ш обработка первичной информации;

Ш регистрация алармов и исторических данных;

Ш хранение информации с возможностью ее пост-обработки (как правило, реализуется через интерфейсы к наиболее популярным базам данных);

Ш визуализация информации в виде мнемосхем, графиков и т.п.;

Ш возможность работы прикладной системы с наборами параметров, рассматриваемых как "единое целое" ("recipe" или "установки").

Рассматривая обобщенную структуру систем управления, следует ввести и еще одно понятие - Micro-SCADA.

Micro-SCADA - это системы, реализующие стандартные (базовые) функции, присущие SCADA - системам верхнего уровня, но ориентированные на решение задач автоматизации в определенной отрасли (узкоспециализированные). В противоположность им SCADA - системы верхнего уровня являются универсальными.

Все компоненты системы управления объединены между собой каналами связи. Обеспечение взаимодействия SCADA - систем с локальными контроллерами, контроллерами верхнего уровня, офисными и промышленными сетями возложено на, так называемое, коммуникационное ПО. Это достаточно широкий класс программного обеспечения, выбор которого для конкретной системы управления определяется многими факторами, в том числе и типом применяемых контроллеров, и используемой SCADA - системой.

Для осуществления контроля над составляющими и параметрами системы, её оборудуют механизмами передачи информации о состоянии. То есть речь идёт о телеметрии, используемой в подобных системах. Телеизмерения предоставляют полные данные по параметрам системы, позволяют оперативно выявлять несанкционированные подключения к сетям освещения и выявлять хищения электроэнергии, ведут технический учёт энергии. С помощью телеизмерений напряжений, токов и мощностей можно осуществить первичную диагностику осветительной сети в случаях каких-либо аварий, происходит автоматизация инспекции и технического обслуживания электрооборудования. Таким образом, отпадет необходимость непосредственного участия человека при диагностике и профилактической проверке электрооборудования, исключается возможный человеческий фактор при подобных мероприятиях - ошибки при измерении величин, невнимательность при диагностике.

Все необходимые данные поступают на компьютер. Оператор компьютера имеет полный доступ ко всей информации, поступающей с датчиков телеметрии - фактическое напряжение и мощность в сети, рабочие токи в цепях, техническое состояние сетей и оборудования. Любое отклонение от нормы отображается другим цветом и может инициировать сигнал звукового предупреждения, чтобы привлечь внимание. Изображения на экране можно получать в одной из нескольких разных форм. Каждый пользователь может назначить по своему выбору воспроизведение результатов конкретных измерений в графическом или числовом виде. Данные, полученные с телеметрии, обычно копируются и заносятся в базу данных, чтоб иметь возможность проанализировать, сравнить или исследовать их.

Как и в других телекоммуникационных областях существуют международные стандарты, установленные такими организациями как CCSDS и IRIG для телеметрического оборудования и программного обеспечения. Стандарты CCSDS относится к авиационным и космическим системам передачи данных, в промышленности же используют стандарты IRIG.

Система телеметрии воспринимает и ретранслирует электрические сигналы от многих датчиков одновременно благодаря процессу уплотнения данных, называемому мультиплексированием. По стандарту IRIG в промышленных системах телеметрии принят способ импульсно-кодовой модуляции (ИКМ) уплотнения данных. ИКМ до сих пор является наиболее распространенной благодаря характерной для нее низкой вероятности ошибок (обычно менее 0,25% для любого измерения). ИКМ-система преобразует результат каждого измерения, выраженный аналоговым значением напряжения, в приемлемое для компьютера цифровое значение. В системе с использованием, например, 12-разрядных двоичных чисел самое малое напряжение будет представлено кодовым числом 000 000 000 000 (0), а самое большое - 111 111 111 111 (2047). Для подачи сигнала о начале каждого нового цикла сканирования датчиков и преобразователей генерируется специальная кодограмма. В ИКМ-системе процесс демультиплексирования (разуплотнения) включает в себя отыскание кодограммы, которая вставляется в поток данных, чтобы сигнализировать о начале каждого цикла сканирования, после чего ведется подсчет битов для идентификации каждого измерения и подготовки его результата для ввода в компьютер.

Компьютер, который принимает все поступившие данные с датчиков телеметрии и производит контроль над системой, именуется сервером. Сервером может выступить любой настольный компьютер офисного пользования, который будет поддерживать работу с беспроводными сетями. Разумеется, необходима установка специального программного обеспечения на компьютер. Поскольку данные телеметрии поступают на приемную станцию многократно и иногда даже непрерывно, аппаратные и программные средства должны быть хорошо согласованы друг с другом, а сервер всегда включенным. В типичных случаях аппаратные средства отрабатывают относительно простые и неоднократно повторяющиеся задания (примером могут служить установление синхронизации и реакция на возникновение тревожной ситуации); программные средства выполняют первичную обработку для воспроизведения данных на экране.

В задачи программного обеспечения входят настройка всех аппаратных и программных средств, высокоскоростной ввод данных, возможная предварительная проверка аппаратных средств, высокоскоростной вывод отобранных результатов измерений на монитор, специальная обработка данных в соответствии с требованиями анализа. Программные средства также довольно часто используют, чтобы подготовить накопитель для работы со всеми или отобранными результатами измерений, для выборки в целях проведения более детального анализа и для выполнения самодиагностики состояния системы телеметрии перед началом и в процессе приема данных.

Однако помимо работы с данными, мы имеем возможность управления элементами осветительной сети через компьютер. Помимо того, что система работает по выставленному нами режиму и принципу, мы можем произвести управление авторитарно в обход запрограммированному алгоритму. Ведь программа заранее знает, когда и где зажечь свет, для чего и для кого, это помимо отдельных возможностей простой работы на датчиках присутствия и движения, датчиков освещенности. Когда нами просто выставляется работа системе на режиме определения сколько света необходимо для освещения данного помещения - информация поступит с датчика освещенности - программа сама просчитает необходимое количество освещенности, или же режим включения/отключения света по наличию человека - информация поступит с датчика движения или присутствия - программа включит или отключит свет в нужный момент. Имеется возможность создать такой алгоритм, в котором учитывалось бы рабочее расписание объекта, контролируемого системой, и параллельная работа системы по показаниям датчиков. При наличии видеокамер можно наблюдать за своими действиями не только по принципиальному графическому представлению схемы освещения, но и посредством видеокартины.

При усовершенствовании структуры аппаратного обеспечения системы благодаря внедрению GSM модуля соединенного с сервером, возникает возможность управления системой даже через мобильный телефон. То есть происходит отправка команды через телефон посредством sms-сообщения на GSM модуль, соединенный с сервером. Сервер обрабатывает команду и отправляет команду контроллеру высшего уровня осветительных сетей. Может быть и такое, что команда будет отправлена через сам сервер, даже возможно, что посредством проводной связи с контроллером. ПЛК, приняв сигнал, отдаст команду реле, чтобы тот, в свою очередь, включил освещение. Это изображено на рисунке 9.

Рисунок 9. Автоматическая система управления с GSM модулем

Также стоит иметь в виду, что телефон выступает не только как отправитель команд, но и как приемник информации о параметрах системы или каких-либо изменениях в ней. Так мы сможем на расстоянии вести полный контроль над системой. Достаточно, выставить на сервере параметр отправки данных о системе на телефон каждые сутки, чтоб можно было отслеживать ее работу и в случае чего отправить sms-команду на выполнение какой-либо операции.

Управление светом бывает местным и дистанционным. В первом случае включение и отключение освещения производится при помощи коммутационных аппаратов: обычных, автоматических или сумеречных выключателей (фотореле), датчиков движения, рубильников. Такие аппараты управления располагают внутри зданий, при входе в них или на улице. Во втором случае все приборы управления освещением сосредотачивают в определенном месте, например, в шкафах управления, находящихся на расстоянии.

Местное управление осветительными установками в свою очередь делится на: групповое и индивидуальное. При групповом управлении каждый аппарат включения/отключения «контролирует» группу светильников. При индивидуальном регулировании на каждый светильник устанавливают отдельный выключатель. Также местное управление бывает ручным, когда включение или отключение ламп производится обслуживающим персоналом или жителями, и автоматическим, при котором процессом управляют упомянутые выше фотореле, датчики движения, освещения или времени.

Дистанционное управление делится на 3 вида. В первом случае работа осветительной установки может контролироваться с распределительного щита при помощи коммутационных аппаратов, установленных на линии. Во втором случае контроль осуществляется из пунктов управления посредством устройств, которые воздействуют на катушки магнитных пускателей или контакторов током определенного напряжения. Здесь также управление бывает автоматическим и ручным.

Третий вид дистанционного контроля - беспроводное управление освещением. Он подразумевает использование дистанционных пультов управления, смартфонов и компьютеров с установленным на них специализированным программным обеспечением и тому подобных устройств.

Дистанционное управление светом при помощи пульта

Управление светом с пульта в основном используется в квартирах. Сам процесс ничем не отличается от процесса переключения каналов телевизора. Человек нажимает на кнопки и лампы как по волшебству загораются. Каждой кнопкой пульта можно управлять как одним светильником, так и их группой.

Процесс управления заключается в следующем: лампы в квартире соединяются с силовым блоком, при подаче сигнала на этот блок с пульта, свет включается или отключается. Сам блок монтируется в стену или в люстру и соединяется с сетью 220 вольт.

Пульты дистанционного управления бывают механическими и цифровыми. Механические устройства производятся с количеством кнопок от 4 до 16 (в основном), может быть и другое количество. На одну кнопку, как говорилось выше, можно подключить одну группу светильников. Цифровые устройства программируемые. В их память можно задать 200-250 групп и более.

Пульты отличаются размером. Есть миниатюрные устройства, которые можно прикрепить на связку ключей, как брелок, а есть пульты, размером чуть меньше тех, что используются для переключения каналов телевизора. Для управления светом в кинотеатрах, клубах, театрах используют специализированные мощные пульты длиной 50-80 см., шириной - 40-50 сантиметров. Они оснащены встроенным жестким диском и устройством чтения «DVD-болванок». К ним можно дополнительно подключать сенсорные или простые дисплеи, а также процессоры.

Дистанционное управление освещением с компьютера или смартфона

Очень удобно управлять освещением с компьютера или телефона. В обоих случаях контроль осуществляется при помощи web-приложения, установленного на девайсах. Web-приложение - мини-сайт, который открывается любым браузером. Установив приложение в своей локальной сети, управлять светом в квартире можно с любого компьютера или телефона, подключенных к этой сети. При желании доступ к web-приложению можно осуществлять и из внешних сетей и управлять освещением через интернет. Для этого придется произвести нужные настройки. Контролировать потребление электроэнергии через интернет удобно тем, что делать это можно даже находясь в другом городе или другой стране.

Для работы системы недостаточно одного приложения. Необходим USB-адаптер и несколько силовых блоков. Силовые блоки используются для подключения нагрузки (светильников) к бытовой сети. Управление светильниками происходит посредством радиосигналов, которые поступают на блоки от USB-адаптера. USB-адаптер, в свою очередь, подключен к компьютеру через соответствующий порт.

Управление освещением по радиоканалу стало популярным. Многие компании предлагают приложения для дистанционной работы со светом. Как правило, всё необходимое программное обеспечение можно скачать с их сайта и даже попробовать настроить систему онлайн (без установки программы на компьютер). Некоторые компании предоставляют инсталлятор, который автоматически устанавливает и настраивает все компоненты, необходимые для дальнейшей работы. Наиболее популярные программы дистанционного управления светом это: Noolite Web Control Panel и Unica Wireless.

Управление светом с использованием радиовыключателей

Радио-выключатели удобны тем, что их можно расположить в любом месте квартиры, например, возле своей кровати, около входной двери, на ручке кресла. Система радиоуправления состоит из пульта управления, который внешне похож на стандартный выключатель и блока-приемника сигналов, подключаемого к нагрузке, который также дает команды на коммутацию цепи освещения. Дальность действия радиосигнала - 80-100 метров при условии отсутствия внешних препятствий (бетонных или металлических конструкций). Чтобы обеспечить прохождение сигнала используют ретрансляторы или усилители.

Одна из популярных систем управления светом по радиоканалу - «Ноолайт», о которой уже упоминалось ранее. С ее помощью можно управлять не только светом, но и всей электроникой в квартире. В комплект системы входят: радиопульт, который питается от батарейки и силовые блоки (контроллеры), их подбирают с учетом типа и мощности нагрузки. Всего разработано три вида блоков:

  1. Тип SL - контроллеры предназначены для управления всеми электро- и свето-приборами;
  2. Тип SN - блоки используются для управления светильниками с установленными в них или лампами накаливания, они также позволяют регулировать уровень освещенности;
  3. Тип ST - контроллеры пригодны для регулирования работы точеных галогенных (через трансформатор) и светодиодных (без драйвера) светильников, а также ламп накаливания и галогенных ламп на 220 В.

Местное управление освещением с двух мест

Нередко можно встретить систему управления освещением с двух и более мест. Ее организуют в коридорах, на лестничных площадках, в жилых помещениях, на предприятиях. Делают это для того, чтобы сделать процесс управления светом максимально удобным и разумно расходовать электроэнергию. В комнате один выключатель можно разместить на входе в нее, второй - около своей кровати и выключать свет непосредственно оттуда. На лестничной площадке аналогично - один выключатель на входе, второй, например, возле лифта.

Для управления освещением с двух мест используют не стандартные выключатели, а проходные, а для управления из трех точек - перекрестные (перекидные). Проходные выключатели бывают с одной и двумя клавишами. Одноклавишные устройства используются для управления одним светильником, двухклавишные - группой.

Применение проходных выключателей обусловлено их конструкцией, которая позволяет корректно управлять освещением. У стандартного выключателя один вход и один выход, у проходного одноклавишного один вход и два выхода, при этом электричество, поступившее на вход, может подаваться поочередно на один и другой выход (переключатель меняет положение). Это говорит о том, что свет будет загораться всегда, независимо от того, какой выключатель задействован. В случае с простыми выключателями все выглядит следующим образом: человек заходит в подъезд и включает свет. Дойдя до лифта, он свет выключает. Другой человек, который зайдет с улицы не сможет включить свет, потому что дальний выключатель не соединен с силовой цепью (разомкнут). Это правило будет работать и в обратном направлении. В случае с проходными выключателями цепь будет замыкаться всегда, смотрите фото.

При подключении проходных одноклавишных выключателей надо учитывать тот факт, что для соединения их между собой и с силовой цепью в распределительной коробке требуется трехжильный провод.

Расход электроэнергии на цели освещения может быть заметно снижен достижением оптимальной работы осветительной установки в каждый момент времени.

Добиться наиболее полного и точного учета наличия дневного света, равно как и учета присутствия людей в помещении, можно, применяя средства автоматического управления освещением (СУО) . Управление осветительной нагрузкой осуществляется при этом двумя основными способами: отключением всех или части светильников (дискретное управление) и плавным изменением мощности светильников (одинаковым для всех или индивидуальным).

К системам дискретного управления освещением в первую очередь относятся различные фотореле (фотоавтоматы) и таймеры. Принцип действия первых основан на включении и отключении нагрузки по сигналам датчика наружной естественной освещенности .

Вторые осуществляют коммутацию осветительной нагрузки в зависимости от времени суток по предварительно заложенной программе.

К системам дискретного управления освещением относятся так­же автоматы, оснащенные датчиками присутствия . Они отключают светильники в помещении спустя заданный промежуток времени после того, как из него удаляется последний человек. Это наиболее экономичный вид систем дискретного управления, однако к побочным эффектам их использования относится возможное сокра­щение срока службы ламп за счет частых включений и выключений.

Системы плавного регулирования мощности освещения по своему устройству несколько сложнее. Принцип их действия поясняет рисунок.

В последнее время многими зарубежными фирмами освоено производство оборудования для автоматизации управления внутренним освещением. Современные системы управления освещением сочетают в себе значительные возможности с максимальным удобством для пользователей.

Автоматизированные системы управления освещением , предназначенные для использования в общественных зданиях, выполняют следующие типичные для этого вида изделий функции:

Точное поддержание искусственной освещенности в помещении на заданном уровне . Достигается это введением в систему управления освещением фотоэлемента, находящегося внутри помещения и контролирующего создаваемую осветительной установкой освещенность. Уже только одна эта функция позволяет экономить энергию за счет отсечки так называемого "излишка освещенности".

Учет естественной освещенности в помещениии . Несмотря на наличие в в подавляющем большинстве помещений естественного освещения в светлое время суток, мощность осветительной установки рассчитывается без его учета.

Если поддерживать освещенность, создаваемую совместно осветительной установкой и естественным освещением, на заданном уровне, то можно еще сильнее снизить мощность осветительной установки в каждый момент времени.

В определенное время года и часы суток возможно даже использование одного естественного освещения. Эта функция может осуществляться тем же фотоэлементом, что и в предыдущем случае, при условии, что он отслеживает полную (естественную + искусственную) освещенность. При этом экономия энергии может составлять 20 - 40%.

Учет времени суток и дня недели. Дополнительная экономия энергии в освещении может быть достигнута отключением осветительной установки в определенные часы суток, а также в выходные и праздничные дни. Эта мера позволяет эффективно бороться с забывчивостью людей, не отключающих освещение на рабочих местах перед своим уходом. Для ее реализации автоматизированная система управления освещением должна быть оборудована собственными часами реального времени.

Учет присутствия людей в помещении. При оборудовании системы управления освещением датчиком присутствия можно включать и отключать светильники в зависимости от того, есть ли люди в данном помещении. Эта функция позволяет расходовать энергию наиболее оптимально, однако ее применение оправдано далеко не во всех помещениях. В отдельных случаях она может даже сокращать срок службы осветительного оборудования и производить неприятное впечатление при работе.

Получаемая за счет отключения светильников по сигналам таймера и датчиков присутствия экономия электроэнергии составляет 10 - 25 %.

Дистанционное беспроводное управление осветительной установкой . Хотя такая функция не является автоматизированной, она часто присутствует в автоматизированных системах управления освещением благодаря тому, что ее реализация на базе электроники системы управления освещением очень проста, а сама функция добавляет значительное удобство в управлении осветительной установкой.

Методами непосредственного управления осветительной установкой является дискретное включение/отключение всех или части светильников по командам управляющих сигналов, а также ступенчатое или плавное снижение мощности освещения в зависимости от этих же сигналов.

Ввиду того, что современные регулируемые электронные ПРА имеют ненулевой нижний порог регулирования, в современных автоматизированных системах управления освещением применяется комбинация плавного регулирования вплоть до нижнего порога с полным отключением ламп в светильниках при его достижении.

Системы автоматического управления освещением, условно можно разделить на два основных класса - так называемые локальные и централизованные .

Для локальных систем характерно управление только одной группой светильников, в то время как централизованные системы допускают подключение практически бесконечного числа раздельно управляемых групп светильников.

В свою очередь, по охватываемой сфере управления локальные системы могут быть подразделены на "системы управлении светильниками" и "системы управления освещением помещений" , а централизованные - на специализированные (только для управления освещением) и общего назначения (для управления всеми инженерными системами здания - отоплением, кондиционированием, пожарной и охранной сигнализацией и т.д.).

Локальные "системы управления светильниками" в большинстве случаев не требуют дополнительной проводки, а ино­гда даже сокращают необходимость в прокладке проводов. Конструктивна они выполняются в малогабаритных корпусах, закрепляемых непосредственно на светильнике или на колбе одной из ламп. Все датчики, как правило, составляют один электронный прибор, в свою очередь, встроенный в корпус самой системы.

Часто светильники, оборудованные датчиками, обмениваются между собой информацией по проходам электрической сети. За счет этого даже в случае, если в здании остался единственный человек, находящиеся на его пути светильники останутся включенными.

Централизованные системы управления освещением

Централизованные системы управления освещением, наиболее полно отвечающие названию "интеллектуальных", строятся на основе микропроцессоров, обеспечивающих возможность практически одновременного многовариантного управления значительным (до нескольких сотен) числом светильников. Такие системы могут применяться либо только для управления освещением, либо также и для взаимодействия с другими системами зданий (например, с телефонной сетью, системами безопасности, вентиляции, отопления и солнцезащитных ограждений).

Централизованные системы выдают также управляющие сигналы на светильники по сигналам ло­кальных датчиков. Однако преобразование сигналов происходит в едином (центральном) узле, что предоставляет дополнительные возможности вручную управлять освещением здания. Одновременно существенно упрощается ручное изменение алгоритма работы системы.

При системах централизованного дистанционного или автоматического управления освещением питание цепей управления разрешается от линии, питающей освещение.

Для помещений, имеющих зоны с разными условиями естественного освещения, управление рабочим освещением должно обеспечивать включение и отключение светильников группами или рядами по мере изменения естественной освещенности помещений.

Существующий ассортимент автоматизированных систем управления освещением (СУО) делится на три класса:

1) СУО светильника - простейшая малогабаритная система, конструктивно являющаяся частью светильника и управляющая только либо одной группой нескольких близлежащих светильников.

2) - самостоятельная система, управляющая одной или несколькими группами светильников в одном или нескольких помещениях.

3) СУО здания - централизованная компьютеризованная система управления, охватывающая освещение и другие системы целого здания или группы зданий.

Большинство компаний-производителей систем управления освещением (СУО) светильников изготовляют эти системы в виде отдельных блоков, которые могут быть встроены в светильники различных типов.

Безусловным преимуществом СУО светильников является простота их монтажа и эксплуатации, а также надежность. Особенно надежны СУО, не требующие электропитания, так как выходу из строя наиболее подвержены блоки питания СУО и энергопотребляющие микросхемы.

Однако если требуется управлять осветительными установками крупных помещений или, например, стоит задача индивидуального управления всеми светильниками в помещении, СУО светильников оказываются достаточно дорогим средством управления, так как требуют установки одной СУО на один светильник. В этом случае удобнее использовать , которые содержат меньше электронных компонентов, чем требуется в предыдущем случае, и поэтому более дешевы.

представляют собой блоки, размещаемые за подвесными потолками или конструктивно встраиваемые в электрические распределительные щиты. Системы этого типа, как правило, осуществляют одну функцию или фиксированный набор функций, выбор между которыми производится перестановкой переключателей на корпусе или выносном пульте управления системы.

Подобные СУО относительно просты в изготовлении и обычно построены на дискретных логических микросхемах. Датчики СУО помещений всегда являются выносными, они должны быть размещены в помещении с управляемыми осветительными установками и к ним необходима специальная проводка, что представляет собой определенное практическое неудобство.